uvm_pdaemon.c revision 1.13 1 1.13 mrg /* $NetBSD: uvm_pdaemon.c,v 1.13 1999/03/25 18:48:55 mrg Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.1 mrg * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.1 mrg *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.1 mrg *
54 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.1 mrg *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.7 mrg #include "opt_uvmhist.h"
70 1.7 mrg
71 1.1 mrg /*
72 1.1 mrg * uvm_pdaemon.c: the page daemon
73 1.1 mrg */
74 1.1 mrg
75 1.1 mrg #include <sys/param.h>
76 1.1 mrg #include <sys/proc.h>
77 1.1 mrg #include <sys/systm.h>
78 1.1 mrg #include <sys/kernel.h>
79 1.9 pk #include <sys/pool.h>
80 1.1 mrg
81 1.1 mrg #include <vm/vm.h>
82 1.1 mrg #include <vm/vm_page.h>
83 1.1 mrg #include <vm/vm_kern.h>
84 1.1 mrg
85 1.1 mrg #include <uvm/uvm.h>
86 1.1 mrg
87 1.1 mrg /*
88 1.1 mrg * local prototypes
89 1.1 mrg */
90 1.1 mrg
91 1.1 mrg static void uvmpd_scan __P((void));
92 1.1 mrg static boolean_t uvmpd_scan_inactive __P((struct pglist *));
93 1.1 mrg static void uvmpd_tune __P((void));
94 1.1 mrg
95 1.1 mrg
96 1.1 mrg /*
97 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
98 1.1 mrg *
99 1.1 mrg * => should be called with all locks released
100 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
101 1.1 mrg */
102 1.1 mrg
103 1.1 mrg void uvm_wait(wmsg)
104 1.8 mrg char *wmsg;
105 1.8 mrg {
106 1.8 mrg int timo = 0;
107 1.8 mrg int s = splbio();
108 1.1 mrg
109 1.8 mrg /*
110 1.8 mrg * check for page daemon going to sleep (waiting for itself)
111 1.8 mrg */
112 1.1 mrg
113 1.8 mrg if (curproc == uvm.pagedaemon_proc) {
114 1.8 mrg /*
115 1.8 mrg * now we have a problem: the pagedaemon wants to go to
116 1.8 mrg * sleep until it frees more memory. but how can it
117 1.8 mrg * free more memory if it is asleep? that is a deadlock.
118 1.8 mrg * we have two options:
119 1.8 mrg * [1] panic now
120 1.8 mrg * [2] put a timeout on the sleep, thus causing the
121 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
122 1.8 mrg *
123 1.8 mrg * note that option [2] will only help us if we get lucky
124 1.8 mrg * and some other process on the system breaks the deadlock
125 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
126 1.8 mrg * to continue). for now we panic if DEBUG is defined,
127 1.8 mrg * otherwise we hope for the best with option [2] (better
128 1.8 mrg * yet, this should never happen in the first place!).
129 1.8 mrg */
130 1.1 mrg
131 1.8 mrg printf("pagedaemon: deadlock detected!\n");
132 1.8 mrg timo = hz >> 3; /* set timeout */
133 1.1 mrg #if defined(DEBUG)
134 1.8 mrg /* DEBUG: panic so we can debug it */
135 1.8 mrg panic("pagedaemon deadlock");
136 1.1 mrg #endif
137 1.8 mrg }
138 1.1 mrg
139 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
140 1.8 mrg thread_wakeup(&uvm.pagedaemon); /* wake the daemon! */
141 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
142 1.8 mrg timo);
143 1.1 mrg
144 1.8 mrg splx(s);
145 1.1 mrg }
146 1.1 mrg
147 1.1 mrg
148 1.1 mrg /*
149 1.1 mrg * uvmpd_tune: tune paging parameters
150 1.1 mrg *
151 1.1 mrg * => called when ever memory is added (or removed?) to the system
152 1.1 mrg * => caller must call with page queues locked
153 1.1 mrg */
154 1.1 mrg
155 1.8 mrg static void
156 1.8 mrg uvmpd_tune()
157 1.8 mrg {
158 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
159 1.1 mrg
160 1.8 mrg uvmexp.freemin = uvmexp.npages / 20;
161 1.1 mrg
162 1.8 mrg /* between 16k and 256k */
163 1.8 mrg /* XXX: what are these values good for? */
164 1.11 chs uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
165 1.11 chs uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
166 1.1 mrg
167 1.8 mrg uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
168 1.8 mrg if (uvmexp.freetarg <= uvmexp.freemin)
169 1.8 mrg uvmexp.freetarg = uvmexp.freemin + 1;
170 1.1 mrg
171 1.8 mrg /* uvmexp.inactarg: computed in main daemon loop */
172 1.1 mrg
173 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
174 1.8 mrg UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
175 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
176 1.1 mrg }
177 1.1 mrg
178 1.1 mrg /*
179 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
180 1.1 mrg */
181 1.1 mrg
182 1.8 mrg void
183 1.8 mrg uvm_pageout()
184 1.8 mrg {
185 1.8 mrg int npages = 0;
186 1.8 mrg int s;
187 1.8 mrg struct uvm_aiodesc *aio, *nextaio;
188 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
189 1.8 mrg
190 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
191 1.8 mrg
192 1.8 mrg /*
193 1.8 mrg * ensure correct priority and set paging parameters...
194 1.8 mrg */
195 1.8 mrg
196 1.8 mrg uvm.pagedaemon_proc = curproc;
197 1.8 mrg (void) spl0();
198 1.8 mrg uvm_lock_pageq();
199 1.8 mrg npages = uvmexp.npages;
200 1.8 mrg uvmpd_tune();
201 1.8 mrg uvm_unlock_pageq();
202 1.8 mrg
203 1.8 mrg /*
204 1.8 mrg * main loop
205 1.8 mrg */
206 1.8 mrg while (TRUE) {
207 1.1 mrg
208 1.8 mrg /*
209 1.8 mrg * carefully attempt to go to sleep (without losing "wakeups"!).
210 1.8 mrg * we need splbio because we want to make sure the aio_done list
211 1.8 mrg * is totally empty before we go to sleep.
212 1.8 mrg */
213 1.8 mrg
214 1.8 mrg s = splbio();
215 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
216 1.8 mrg
217 1.8 mrg /*
218 1.8 mrg * if we've got done aio's, then bypass the sleep
219 1.8 mrg */
220 1.8 mrg
221 1.8 mrg if (uvm.aio_done.tqh_first == NULL) {
222 1.8 mrg UVMHIST_LOG(maphist," <<SLEEPING>>",0,0,0,0);
223 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
224 1.8 mrg &uvm.pagedaemon_lock, FALSE, "daemon_slp", 0);
225 1.8 mrg uvmexp.pdwoke++;
226 1.8 mrg UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
227 1.8 mrg
228 1.8 mrg /* relock pagedaemon_lock, still at splbio */
229 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
230 1.8 mrg }
231 1.8 mrg
232 1.8 mrg /*
233 1.8 mrg * check for done aio structures
234 1.8 mrg */
235 1.8 mrg
236 1.8 mrg aio = uvm.aio_done.tqh_first; /* save current list (if any)*/
237 1.8 mrg if (aio) {
238 1.8 mrg TAILQ_INIT(&uvm.aio_done); /* zero global list */
239 1.8 mrg }
240 1.1 mrg
241 1.8 mrg simple_unlock(&uvm.pagedaemon_lock); /* unlock */
242 1.8 mrg splx(s); /* drop splbio */
243 1.1 mrg
244 1.8 mrg /*
245 1.8 mrg * first clear out any pending aios (to free space in case we
246 1.8 mrg * want to pageout more stuff).
247 1.8 mrg */
248 1.8 mrg
249 1.8 mrg for (/*null*/; aio != NULL ; aio = nextaio) {
250 1.8 mrg
251 1.8 mrg uvmexp.paging -= aio->npages;
252 1.8 mrg nextaio = aio->aioq.tqe_next;
253 1.8 mrg aio->aiodone(aio);
254 1.8 mrg
255 1.8 mrg }
256 1.9 pk
257 1.9 pk /* Next, drain pool resources */
258 1.9 pk pool_drain(0);
259 1.8 mrg
260 1.8 mrg /*
261 1.8 mrg * now lock page queues and recompute inactive count
262 1.8 mrg */
263 1.8 mrg uvm_lock_pageq();
264 1.8 mrg
265 1.8 mrg if (npages != uvmexp.npages) { /* check for new pages? */
266 1.8 mrg npages = uvmexp.npages;
267 1.8 mrg uvmpd_tune();
268 1.8 mrg }
269 1.8 mrg
270 1.8 mrg uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
271 1.8 mrg if (uvmexp.inactarg <= uvmexp.freetarg)
272 1.8 mrg uvmexp.inactarg = uvmexp.freetarg + 1;
273 1.8 mrg
274 1.8 mrg UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
275 1.8 mrg uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
276 1.8 mrg uvmexp.inactarg);
277 1.8 mrg
278 1.8 mrg /*
279 1.8 mrg * scan if needed
280 1.8 mrg * [XXX: note we are reading uvm.free without locking]
281 1.8 mrg */
282 1.8 mrg if (uvmexp.free < uvmexp.freetarg ||
283 1.8 mrg uvmexp.inactive < uvmexp.inactarg)
284 1.8 mrg uvmpd_scan();
285 1.8 mrg
286 1.8 mrg /*
287 1.8 mrg * done scan. unlock page queues (the only lock we are holding)
288 1.8 mrg */
289 1.8 mrg uvm_unlock_pageq();
290 1.8 mrg
291 1.8 mrg /*
292 1.8 mrg * done! restart loop.
293 1.8 mrg */
294 1.8 mrg thread_wakeup(&uvmexp.free);
295 1.8 mrg }
296 1.8 mrg /*NOTREACHED*/
297 1.1 mrg }
298 1.1 mrg
299 1.1 mrg /*
300 1.1 mrg * uvmpd_scan_inactive: the first loop of uvmpd_scan broken out into
301 1.1 mrg * its own function for ease of reading.
302 1.1 mrg *
303 1.1 mrg * => called with page queues locked
304 1.1 mrg * => we work on meeting our free target by converting inactive pages
305 1.1 mrg * into free pages.
306 1.1 mrg * => we handle the building of swap-backed clusters
307 1.1 mrg * => we return TRUE if we are exiting because we met our target
308 1.1 mrg */
309 1.1 mrg
310 1.8 mrg static boolean_t
311 1.8 mrg uvmpd_scan_inactive(pglst)
312 1.8 mrg struct pglist *pglst;
313 1.8 mrg {
314 1.8 mrg boolean_t retval = FALSE; /* assume we haven't hit target */
315 1.8 mrg int s, free, result;
316 1.8 mrg struct vm_page *p, *nextpg;
317 1.8 mrg struct uvm_object *uobj;
318 1.11 chs struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
319 1.8 mrg int npages;
320 1.11 chs struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; /* XXX: see below */
321 1.8 mrg int swnpages, swcpages; /* XXX: see below */
322 1.8 mrg int swslot, oldslot;
323 1.8 mrg struct vm_anon *anon;
324 1.8 mrg boolean_t swap_backed;
325 1.10 eeh vaddr_t start;
326 1.8 mrg UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
327 1.1 mrg
328 1.8 mrg /*
329 1.8 mrg * note: we currently keep swap-backed pages on a seperate inactive
330 1.8 mrg * list from object-backed pages. however, merging the two lists
331 1.8 mrg * back together again hasn't been ruled out. thus, we keep our
332 1.8 mrg * swap cluster in "swpps" rather than in pps (allows us to mix
333 1.8 mrg * clustering types in the event of a mixed inactive queue).
334 1.8 mrg */
335 1.1 mrg
336 1.8 mrg /*
337 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
338 1.8 mrg * to stay in the loop while we have a page to scan or we have
339 1.8 mrg * a swap-cluster to build.
340 1.8 mrg */
341 1.8 mrg swslot = 0;
342 1.8 mrg swnpages = swcpages = 0;
343 1.8 mrg free = 0;
344 1.8 mrg
345 1.8 mrg for (p = pglst->tqh_first ; p != NULL || swslot != 0 ; p = nextpg) {
346 1.8 mrg
347 1.8 mrg /*
348 1.8 mrg * note that p can be NULL iff we have traversed the whole
349 1.8 mrg * list and need to do one final swap-backed clustered pageout.
350 1.8 mrg */
351 1.8 mrg if (p) {
352 1.8 mrg /*
353 1.8 mrg * update our copy of "free" and see if we've met
354 1.8 mrg * our target
355 1.8 mrg */
356 1.8 mrg s = splimp();
357 1.8 mrg uvm_lock_fpageq();
358 1.8 mrg free = uvmexp.free;
359 1.8 mrg uvm_unlock_fpageq();
360 1.8 mrg splx(s);
361 1.8 mrg
362 1.8 mrg if (free >= uvmexp.freetarg) {
363 1.8 mrg UVMHIST_LOG(pdhist," met free target: "
364 1.8 mrg "exit loop", 0, 0, 0, 0);
365 1.8 mrg retval = TRUE; /* hit the target! */
366 1.8 mrg
367 1.8 mrg if (swslot == 0)
368 1.8 mrg /* exit now if no swap-i/o pending */
369 1.8 mrg break;
370 1.8 mrg
371 1.8 mrg /* set p to null to signal final swap i/o */
372 1.8 mrg p = NULL;
373 1.8 mrg }
374 1.8 mrg }
375 1.8 mrg
376 1.8 mrg uobj = NULL; /* be safe and shut gcc up */
377 1.8 mrg anon = NULL; /* be safe and shut gcc up */
378 1.8 mrg
379 1.8 mrg if (p) { /* if (we have a new page to consider) */
380 1.8 mrg /*
381 1.8 mrg * we are below target and have a new page to consider.
382 1.8 mrg */
383 1.8 mrg uvmexp.pdscans++;
384 1.8 mrg nextpg = p->pageq.tqe_next;
385 1.8 mrg
386 1.8 mrg /*
387 1.8 mrg * move referenced pages back to active queue and
388 1.8 mrg * skip to next page (unlikely to happen since
389 1.8 mrg * inactive pages shouldn't have any valid mappings
390 1.8 mrg * and we cleared reference before deactivating).
391 1.8 mrg */
392 1.8 mrg if (pmap_is_referenced(PMAP_PGARG(p))) {
393 1.8 mrg uvm_pageactivate(p);
394 1.8 mrg uvmexp.pdreact++;
395 1.8 mrg continue;
396 1.8 mrg }
397 1.8 mrg
398 1.8 mrg /*
399 1.8 mrg * first we attempt to lock the object that this page
400 1.8 mrg * belongs to. if our attempt fails we skip on to
401 1.8 mrg * the next page (no harm done). it is important to
402 1.8 mrg * "try" locking the object as we are locking in the
403 1.8 mrg * wrong order (pageq -> object) and we don't want to
404 1.8 mrg * get deadlocked.
405 1.8 mrg *
406 1.8 mrg * the only time we exepct to see an ownerless page
407 1.8 mrg * (i.e. a page with no uobject and !PQ_ANON) is if an
408 1.8 mrg * anon has loaned a page from a uvm_object and the
409 1.8 mrg * uvm_object has dropped the ownership. in that
410 1.8 mrg * case, the anon can "take over" the loaned page
411 1.8 mrg * and make it its own.
412 1.8 mrg */
413 1.8 mrg
414 1.8 mrg /* is page part of an anon or ownerless ? */
415 1.8 mrg if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
416 1.1 mrg
417 1.8 mrg anon = p->uanon;
418 1.1 mrg
419 1.1 mrg #ifdef DIAGNOSTIC
420 1.8 mrg /* to be on inactive q, page must be part
421 1.8 mrg * of _something_ */
422 1.8 mrg if (anon == NULL)
423 1.8 mrg panic("pagedaemon: page with no anon "
424 1.8 mrg "or object detected - loop 1");
425 1.1 mrg #endif
426 1.1 mrg
427 1.8 mrg if (!simple_lock_try(&anon->an_lock))
428 1.8 mrg /* lock failed, skip this page */
429 1.8 mrg continue;
430 1.8 mrg
431 1.8 mrg /*
432 1.8 mrg * if the page is ownerless, claim it in the
433 1.8 mrg * name of "anon"!
434 1.8 mrg */
435 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
436 1.1 mrg #ifdef DIAGNOSTIC
437 1.8 mrg if (p->loan_count < 1)
438 1.8 mrg panic("pagedaemon: non-loaned "
439 1.8 mrg "ownerless page detected -"
440 1.8 mrg " loop 1");
441 1.1 mrg #endif
442 1.8 mrg p->loan_count--;
443 1.8 mrg p->pqflags |= PQ_ANON; /* anon now owns it */
444 1.8 mrg }
445 1.8 mrg
446 1.8 mrg if (p->flags & PG_BUSY) {
447 1.8 mrg simple_unlock(&anon->an_lock);
448 1.8 mrg uvmexp.pdbusy++;
449 1.8 mrg /* someone else owns page, skip it */
450 1.8 mrg continue;
451 1.8 mrg }
452 1.8 mrg
453 1.8 mrg uvmexp.pdanscan++;
454 1.8 mrg
455 1.8 mrg } else {
456 1.8 mrg
457 1.8 mrg uobj = p->uobject;
458 1.8 mrg
459 1.8 mrg if (!simple_lock_try(&uobj->vmobjlock))
460 1.8 mrg /* lock failed, skip this page */
461 1.8 mrg continue;
462 1.8 mrg
463 1.8 mrg if (p->flags & PG_BUSY) {
464 1.8 mrg simple_unlock(&uobj->vmobjlock);
465 1.8 mrg uvmexp.pdbusy++;
466 1.8 mrg /* someone else owns page, skip it */
467 1.8 mrg continue;
468 1.8 mrg }
469 1.8 mrg
470 1.8 mrg uvmexp.pdobscan++;
471 1.8 mrg }
472 1.8 mrg
473 1.8 mrg /*
474 1.8 mrg * we now have the object and the page queues locked.
475 1.8 mrg * the page is not busy. if the page is clean we
476 1.8 mrg * can free it now and continue.
477 1.8 mrg */
478 1.8 mrg
479 1.8 mrg if (p->flags & PG_CLEAN) {
480 1.8 mrg /* zap all mappings with pmap_page_protect... */
481 1.8 mrg pmap_page_protect(PMAP_PGARG(p), VM_PROT_NONE);
482 1.8 mrg uvm_pagefree(p);
483 1.8 mrg uvmexp.pdfreed++;
484 1.8 mrg
485 1.8 mrg if (anon) {
486 1.1 mrg #ifdef DIAGNOSTIC
487 1.8 mrg /*
488 1.8 mrg * an anonymous page can only be clean
489 1.8 mrg * if it has valid backing store.
490 1.8 mrg */
491 1.8 mrg if (anon->an_swslot == 0)
492 1.8 mrg panic("pagedaemon: clean anon "
493 1.8 mrg "page without backing store?");
494 1.1 mrg #endif
495 1.8 mrg /* remove from object */
496 1.8 mrg anon->u.an_page = NULL;
497 1.8 mrg simple_unlock(&anon->an_lock);
498 1.8 mrg } else {
499 1.8 mrg /* pagefree has already removed the
500 1.8 mrg * page from the object */
501 1.8 mrg simple_unlock(&uobj->vmobjlock);
502 1.8 mrg }
503 1.8 mrg continue;
504 1.8 mrg }
505 1.8 mrg
506 1.8 mrg /*
507 1.8 mrg * this page is dirty, skip it if we'll have met our
508 1.8 mrg * free target when all the current pageouts complete.
509 1.8 mrg */
510 1.8 mrg if (free + uvmexp.paging > uvmexp.freetarg)
511 1.8 mrg {
512 1.8 mrg if (anon) {
513 1.8 mrg simple_unlock(&anon->an_lock);
514 1.8 mrg } else {
515 1.8 mrg simple_unlock(&uobj->vmobjlock);
516 1.8 mrg }
517 1.8 mrg continue;
518 1.8 mrg }
519 1.8 mrg
520 1.8 mrg /*
521 1.8 mrg * the page we are looking at is dirty. we must
522 1.8 mrg * clean it before it can be freed. to do this we
523 1.8 mrg * first mark the page busy so that no one else will
524 1.8 mrg * touch the page. we write protect all the mappings
525 1.8 mrg * of the page so that no one touches it while it is
526 1.8 mrg * in I/O.
527 1.8 mrg */
528 1.8 mrg
529 1.8 mrg swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
530 1.8 mrg p->flags |= PG_BUSY; /* now we own it */
531 1.8 mrg UVM_PAGE_OWN(p, "scan_inactive");
532 1.8 mrg pmap_page_protect(PMAP_PGARG(p), VM_PROT_READ);
533 1.8 mrg uvmexp.pgswapout++;
534 1.8 mrg
535 1.8 mrg /*
536 1.8 mrg * for swap-backed pages we need to (re)allocate
537 1.8 mrg * swap space.
538 1.8 mrg */
539 1.8 mrg if (swap_backed) {
540 1.8 mrg
541 1.8 mrg /*
542 1.8 mrg * free old swap slot (if any)
543 1.8 mrg */
544 1.8 mrg if (anon) {
545 1.8 mrg if (anon->an_swslot) {
546 1.8 mrg uvm_swap_free(anon->an_swslot,
547 1.8 mrg 1);
548 1.8 mrg anon->an_swslot = 0;
549 1.8 mrg }
550 1.8 mrg } else {
551 1.8 mrg oldslot = uao_set_swslot(uobj,
552 1.11 chs p->offset >> PAGE_SHIFT, 0);
553 1.8 mrg
554 1.8 mrg if (oldslot)
555 1.8 mrg uvm_swap_free(oldslot, 1);
556 1.8 mrg }
557 1.8 mrg
558 1.8 mrg /*
559 1.8 mrg * start new cluster (if necessary)
560 1.8 mrg */
561 1.8 mrg if (swslot == 0) {
562 1.8 mrg /* want this much */
563 1.11 chs swnpages = MAXBSIZE >> PAGE_SHIFT;
564 1.8 mrg
565 1.8 mrg swslot = uvm_swap_alloc(&swnpages,
566 1.8 mrg TRUE);
567 1.8 mrg
568 1.8 mrg if (swslot == 0) {
569 1.8 mrg /* no swap? give up! */
570 1.8 mrg p->flags &= ~PG_BUSY;
571 1.8 mrg UVM_PAGE_OWN(p, NULL);
572 1.8 mrg if (anon)
573 1.8 mrg simple_unlock(
574 1.8 mrg &anon->an_lock);
575 1.8 mrg else
576 1.8 mrg simple_unlock(
577 1.8 mrg &uobj->vmobjlock);
578 1.8 mrg continue;
579 1.8 mrg }
580 1.8 mrg swcpages = 0; /* cluster is empty */
581 1.8 mrg }
582 1.8 mrg
583 1.8 mrg /*
584 1.8 mrg * add block to cluster
585 1.8 mrg */
586 1.8 mrg swpps[swcpages] = p;
587 1.8 mrg uvmexp.pgswapout++;
588 1.8 mrg if (anon)
589 1.8 mrg anon->an_swslot = swslot + swcpages;
590 1.8 mrg else
591 1.8 mrg uao_set_swslot(uobj,
592 1.11 chs p->offset >> PAGE_SHIFT,
593 1.8 mrg swslot + swcpages);
594 1.8 mrg swcpages++;
595 1.8 mrg
596 1.8 mrg /* done (swap-backed) */
597 1.8 mrg }
598 1.8 mrg
599 1.8 mrg /* end: if (p) ["if we have new page to consider"] */
600 1.8 mrg } else {
601 1.8 mrg
602 1.8 mrg /* if p == NULL we must be doing a last swap i/o */
603 1.8 mrg swap_backed = TRUE;
604 1.8 mrg }
605 1.8 mrg
606 1.8 mrg /*
607 1.8 mrg * now consider doing the pageout.
608 1.8 mrg *
609 1.8 mrg * for swap-backed pages, we do the pageout if we have either
610 1.8 mrg * filled the cluster (in which case (swnpages == swcpages) or
611 1.8 mrg * run out of pages (p == NULL).
612 1.8 mrg *
613 1.8 mrg * for object pages, we always do the pageout.
614 1.8 mrg */
615 1.8 mrg if (swap_backed) {
616 1.8 mrg
617 1.8 mrg if (p) { /* if we just added a page to cluster */
618 1.8 mrg if (anon)
619 1.8 mrg simple_unlock(&anon->an_lock);
620 1.8 mrg else
621 1.8 mrg simple_unlock(&uobj->vmobjlock);
622 1.8 mrg
623 1.8 mrg /* cluster not full yet? */
624 1.8 mrg if (swcpages < swnpages)
625 1.8 mrg continue;
626 1.8 mrg }
627 1.8 mrg
628 1.8 mrg /* starting I/O now... set up for it */
629 1.8 mrg npages = swcpages;
630 1.8 mrg ppsp = swpps;
631 1.8 mrg /* for swap-backed pages only */
632 1.10 eeh start = (vaddr_t) swslot;
633 1.8 mrg
634 1.8 mrg /* if this is final pageout we could have a few
635 1.8 mrg * extra swap blocks */
636 1.8 mrg if (swcpages < swnpages) {
637 1.8 mrg uvm_swap_free(swslot + swcpages,
638 1.8 mrg (swnpages - swcpages));
639 1.8 mrg }
640 1.1 mrg
641 1.8 mrg } else {
642 1.1 mrg
643 1.8 mrg /* normal object pageout */
644 1.8 mrg ppsp = pps;
645 1.8 mrg npages = sizeof(pps) / sizeof(struct vm_page *);
646 1.8 mrg /* not looked at because PGO_ALLPAGES is set */
647 1.8 mrg start = 0;
648 1.8 mrg
649 1.8 mrg }
650 1.8 mrg
651 1.8 mrg /*
652 1.8 mrg * now do the pageout.
653 1.8 mrg *
654 1.8 mrg * for swap_backed pages we have already built the cluster.
655 1.8 mrg * for !swap_backed pages, uvm_pager_put will call the object's
656 1.8 mrg * "make put cluster" function to build a cluster on our behalf.
657 1.8 mrg *
658 1.8 mrg * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
659 1.8 mrg * it to free the cluster pages for us on a successful I/O (it
660 1.8 mrg * always does this for un-successful I/O requests). this
661 1.8 mrg * allows us to do clustered pageout without having to deal
662 1.8 mrg * with cluster pages at this level.
663 1.8 mrg *
664 1.8 mrg * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
665 1.8 mrg * IN: locked: uobj (if !swap_backed), page queues
666 1.8 mrg * OUT: locked: uobj (if !swap_backed && result !=VM_PAGER_PEND)
667 1.8 mrg * !locked: pageqs, uobj (if swap_backed || VM_PAGER_PEND)
668 1.8 mrg *
669 1.8 mrg * [the bit about VM_PAGER_PEND saves us one lock-unlock pair]
670 1.8 mrg */
671 1.8 mrg
672 1.8 mrg /* locked: uobj (if !swap_backed), page queues */
673 1.8 mrg uvmexp.pdpageouts++;
674 1.8 mrg result = uvm_pager_put((swap_backed) ? NULL : uobj, p,
675 1.8 mrg &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
676 1.8 mrg /* locked: uobj (if !swap_backed && result != PEND) */
677 1.8 mrg /* unlocked: pageqs, object (if swap_backed ||result == PEND) */
678 1.8 mrg
679 1.8 mrg /*
680 1.8 mrg * if we did i/o to swap, zero swslot to indicate that we are
681 1.8 mrg * no longer building a swap-backed cluster.
682 1.8 mrg */
683 1.8 mrg
684 1.8 mrg if (swap_backed)
685 1.8 mrg swslot = 0; /* done with this cluster */
686 1.8 mrg
687 1.8 mrg /*
688 1.8 mrg * first, we check for VM_PAGER_PEND which means that the
689 1.8 mrg * async I/O is in progress and the async I/O done routine
690 1.8 mrg * will clean up after us. in this case we move on to the
691 1.8 mrg * next page.
692 1.8 mrg *
693 1.8 mrg * there is a very remote chance that the pending async i/o can
694 1.8 mrg * finish _before_ we get here. if that happens, our page "p"
695 1.8 mrg * may no longer be on the inactive queue. so we verify this
696 1.8 mrg * when determining the next page (starting over at the head if
697 1.8 mrg * we've lost our inactive page).
698 1.8 mrg */
699 1.8 mrg
700 1.8 mrg if (result == VM_PAGER_PEND) {
701 1.8 mrg uvmexp.paging += npages;
702 1.8 mrg uvm_lock_pageq(); /* relock page queues */
703 1.8 mrg uvmexp.pdpending++;
704 1.8 mrg if (p) {
705 1.8 mrg if (p->pqflags & PQ_INACTIVE)
706 1.8 mrg /* reload! */
707 1.8 mrg nextpg = p->pageq.tqe_next;
708 1.8 mrg else
709 1.8 mrg /* reload! */
710 1.8 mrg nextpg = pglst->tqh_first;
711 1.8 mrg } else {
712 1.8 mrg nextpg = NULL; /* done list */
713 1.8 mrg }
714 1.8 mrg continue;
715 1.8 mrg }
716 1.8 mrg
717 1.8 mrg /*
718 1.8 mrg * clean up "p" if we have one
719 1.8 mrg */
720 1.8 mrg
721 1.8 mrg if (p) {
722 1.8 mrg /*
723 1.8 mrg * the I/O request to "p" is done and uvm_pager_put
724 1.8 mrg * has freed any cluster pages it may have allocated
725 1.8 mrg * during I/O. all that is left for us to do is
726 1.8 mrg * clean up page "p" (which is still PG_BUSY).
727 1.8 mrg *
728 1.8 mrg * our result could be one of the following:
729 1.8 mrg * VM_PAGER_OK: successful pageout
730 1.8 mrg *
731 1.8 mrg * VM_PAGER_AGAIN: tmp resource shortage, we skip
732 1.8 mrg * to next page
733 1.8 mrg * VM_PAGER_{FAIL,ERROR,BAD}: an error. we
734 1.8 mrg * "reactivate" page to get it out of the way (it
735 1.8 mrg * will eventually drift back into the inactive
736 1.8 mrg * queue for a retry).
737 1.8 mrg * VM_PAGER_UNLOCK: should never see this as it is
738 1.8 mrg * only valid for "get" operations
739 1.8 mrg */
740 1.8 mrg
741 1.8 mrg /* relock p's object: page queues not lock yet, so
742 1.8 mrg * no need for "try" */
743 1.8 mrg
744 1.8 mrg /* !swap_backed case: already locked... */
745 1.8 mrg if (swap_backed) {
746 1.8 mrg if (anon)
747 1.8 mrg simple_lock(&anon->an_lock);
748 1.8 mrg else
749 1.8 mrg simple_lock(&uobj->vmobjlock);
750 1.8 mrg }
751 1.1 mrg
752 1.1 mrg #ifdef DIAGNOSTIC
753 1.8 mrg if (result == VM_PAGER_UNLOCK)
754 1.8 mrg panic("pagedaemon: pageout returned "
755 1.8 mrg "invalid 'unlock' code");
756 1.1 mrg #endif
757 1.1 mrg
758 1.8 mrg /* handle PG_WANTED now */
759 1.8 mrg if (p->flags & PG_WANTED)
760 1.8 mrg /* still holding object lock */
761 1.8 mrg thread_wakeup(p);
762 1.8 mrg
763 1.8 mrg p->flags &= ~(PG_BUSY|PG_WANTED);
764 1.8 mrg UVM_PAGE_OWN(p, NULL);
765 1.8 mrg
766 1.8 mrg /* released during I/O? */
767 1.8 mrg if (p->flags & PG_RELEASED) {
768 1.8 mrg if (anon) {
769 1.8 mrg /* remove page so we can get nextpg */
770 1.8 mrg anon->u.an_page = NULL;
771 1.8 mrg
772 1.8 mrg simple_unlock(&anon->an_lock);
773 1.8 mrg uvm_anfree(anon); /* kills anon */
774 1.8 mrg pmap_page_protect(PMAP_PGARG(p),
775 1.8 mrg VM_PROT_NONE);
776 1.8 mrg anon = NULL;
777 1.8 mrg uvm_lock_pageq();
778 1.8 mrg nextpg = p->pageq.tqe_next;
779 1.8 mrg /* free released page */
780 1.8 mrg uvm_pagefree(p);
781 1.1 mrg
782 1.8 mrg } else {
783 1.1 mrg
784 1.1 mrg #ifdef DIAGNOSTIC
785 1.8 mrg if (uobj->pgops->pgo_releasepg == NULL)
786 1.8 mrg panic("pagedaemon: no "
787 1.8 mrg "pgo_releasepg function");
788 1.1 mrg #endif
789 1.1 mrg
790 1.8 mrg /*
791 1.8 mrg * pgo_releasepg nukes the page and
792 1.8 mrg * gets "nextpg" for us. it returns
793 1.8 mrg * with the page queues locked (when
794 1.8 mrg * given nextpg ptr).
795 1.8 mrg */
796 1.8 mrg if (!uobj->pgops->pgo_releasepg(p,
797 1.8 mrg &nextpg))
798 1.8 mrg /* uobj died after release */
799 1.8 mrg uobj = NULL;
800 1.8 mrg
801 1.8 mrg /*
802 1.8 mrg * lock page queues here so that they're
803 1.8 mrg * always locked at the end of the loop.
804 1.8 mrg */
805 1.8 mrg uvm_lock_pageq();
806 1.8 mrg }
807 1.8 mrg
808 1.8 mrg } else { /* page was not released during I/O */
809 1.8 mrg
810 1.8 mrg uvm_lock_pageq();
811 1.8 mrg nextpg = p->pageq.tqe_next;
812 1.8 mrg
813 1.8 mrg if (result != VM_PAGER_OK) {
814 1.8 mrg
815 1.8 mrg /* pageout was a failure... */
816 1.8 mrg if (result != VM_PAGER_AGAIN)
817 1.8 mrg uvm_pageactivate(p);
818 1.8 mrg pmap_clear_reference(PMAP_PGARG(p));
819 1.8 mrg /* XXXCDC: if (swap_backed) FREE p's
820 1.8 mrg * swap block? */
821 1.8 mrg
822 1.8 mrg } else {
823 1.8 mrg
824 1.8 mrg /* pageout was a success... */
825 1.8 mrg pmap_clear_reference(PMAP_PGARG(p));
826 1.8 mrg pmap_clear_modify(PMAP_PGARG(p));
827 1.8 mrg p->flags |= PG_CLEAN;
828 1.8 mrg /* XXX: could free page here, but old
829 1.8 mrg * pagedaemon does not */
830 1.8 mrg
831 1.8 mrg }
832 1.8 mrg }
833 1.8 mrg
834 1.8 mrg /*
835 1.8 mrg * drop object lock (if there is an object left). do
836 1.8 mrg * a safety check of nextpg to make sure it is on the
837 1.8 mrg * inactive queue (it should be since PG_BUSY pages on
838 1.8 mrg * the inactive queue can't be re-queued [note: not
839 1.8 mrg * true for active queue]).
840 1.8 mrg */
841 1.8 mrg
842 1.8 mrg if (anon)
843 1.8 mrg simple_unlock(&anon->an_lock);
844 1.8 mrg else if (uobj)
845 1.8 mrg simple_unlock(&uobj->vmobjlock);
846 1.8 mrg
847 1.8 mrg } /* if (p) */ else {
848 1.8 mrg
849 1.8 mrg /* if p is null in this loop, make sure it stays null
850 1.8 mrg * in next loop */
851 1.8 mrg nextpg = NULL;
852 1.8 mrg
853 1.8 mrg /*
854 1.8 mrg * lock page queues here just so they're always locked
855 1.8 mrg * at the end of the loop.
856 1.8 mrg */
857 1.8 mrg uvm_lock_pageq();
858 1.8 mrg }
859 1.8 mrg
860 1.8 mrg if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
861 1.8 mrg printf("pagedaemon: invalid nextpg! reverting to "
862 1.8 mrg "queue head\n");
863 1.8 mrg nextpg = pglst->tqh_first; /* reload! */
864 1.8 mrg }
865 1.1 mrg
866 1.8 mrg } /* end of "inactive" 'for' loop */
867 1.8 mrg return (retval);
868 1.1 mrg }
869 1.1 mrg
870 1.1 mrg /*
871 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
872 1.1 mrg *
873 1.1 mrg * => called with pageq's locked
874 1.1 mrg */
875 1.1 mrg
876 1.8 mrg void
877 1.8 mrg uvmpd_scan()
878 1.1 mrg {
879 1.8 mrg int s, free, pages_freed, page_shortage;
880 1.8 mrg struct vm_page *p, *nextpg;
881 1.8 mrg struct uvm_object *uobj;
882 1.8 mrg boolean_t got_it;
883 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
884 1.1 mrg
885 1.8 mrg uvmexp.pdrevs++; /* counter */
886 1.1 mrg
887 1.1 mrg #ifdef __GNUC__
888 1.8 mrg uobj = NULL; /* XXX gcc */
889 1.1 mrg #endif
890 1.8 mrg /*
891 1.8 mrg * get current "free" page count
892 1.8 mrg */
893 1.8 mrg s = splimp();
894 1.8 mrg uvm_lock_fpageq();
895 1.8 mrg free = uvmexp.free;
896 1.8 mrg uvm_unlock_fpageq();
897 1.8 mrg splx(s);
898 1.1 mrg
899 1.1 mrg #ifndef __SWAP_BROKEN
900 1.8 mrg /*
901 1.8 mrg * swap out some processes if we are below our free target.
902 1.8 mrg * we need to unlock the page queues for this.
903 1.8 mrg */
904 1.8 mrg if (free < uvmexp.freetarg) {
905 1.8 mrg
906 1.8 mrg uvmexp.pdswout++;
907 1.8 mrg UVMHIST_LOG(pdhist," free %d < target %d: swapout", free,
908 1.8 mrg uvmexp.freetarg, 0, 0);
909 1.8 mrg uvm_unlock_pageq();
910 1.8 mrg uvm_swapout_threads();
911 1.8 mrg pmap_update(); /* update so we can scan inactive q */
912 1.8 mrg uvm_lock_pageq();
913 1.1 mrg
914 1.8 mrg }
915 1.1 mrg #endif
916 1.1 mrg
917 1.8 mrg /*
918 1.8 mrg * now we want to work on meeting our targets. first we work on our
919 1.8 mrg * free target by converting inactive pages into free pages. then
920 1.8 mrg * we work on meeting our inactive target by converting active pages
921 1.8 mrg * to inactive ones.
922 1.8 mrg */
923 1.8 mrg
924 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
925 1.8 mrg pages_freed = uvmexp.pdfreed; /* so far... */
926 1.8 mrg
927 1.8 mrg /*
928 1.8 mrg * do loop #1! alternate starting queue between swap and object based
929 1.8 mrg * on the low bit of uvmexp.pdrevs (which we bump by one each call).
930 1.8 mrg */
931 1.8 mrg
932 1.8 mrg got_it = FALSE;
933 1.8 mrg if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
934 1.8 mrg got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
935 1.8 mrg if (!got_it)
936 1.8 mrg got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
937 1.8 mrg if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
938 1.8 mrg (void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
939 1.8 mrg
940 1.8 mrg /*
941 1.8 mrg * we have done the scan to get free pages. now we work on meeting
942 1.8 mrg * our inactive target.
943 1.8 mrg */
944 1.8 mrg
945 1.8 mrg page_shortage = uvmexp.inactarg - uvmexp.inactive;
946 1.8 mrg pages_freed = uvmexp.pdfreed - pages_freed; /* # pages freed in loop */
947 1.8 mrg if (page_shortage <= 0 && pages_freed == 0)
948 1.8 mrg page_shortage = 1;
949 1.8 mrg
950 1.8 mrg UVMHIST_LOG(pdhist, " second loop: page_shortage=%d", page_shortage,
951 1.8 mrg 0, 0, 0);
952 1.8 mrg for (p = uvm.page_active.tqh_first ;
953 1.8 mrg p != NULL && page_shortage > 0 ; p = nextpg) {
954 1.8 mrg nextpg = p->pageq.tqe_next;
955 1.8 mrg if (p->flags & PG_BUSY)
956 1.8 mrg continue; /* quick check before trying to lock */
957 1.8 mrg
958 1.8 mrg /*
959 1.8 mrg * lock owner
960 1.8 mrg */
961 1.8 mrg /* is page anon owned or ownerless? */
962 1.8 mrg if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
963 1.1 mrg
964 1.1 mrg #ifdef DIAGNOSTIC
965 1.8 mrg if (p->uanon == NULL)
966 1.8 mrg panic("pagedaemon: page with no anon or "
967 1.8 mrg "object detected - loop 2");
968 1.1 mrg #endif
969 1.1 mrg
970 1.8 mrg if (!simple_lock_try(&p->uanon->an_lock))
971 1.8 mrg continue;
972 1.1 mrg
973 1.8 mrg /* take over the page? */
974 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
975 1.1 mrg
976 1.1 mrg #ifdef DIAGNOSTIC
977 1.8 mrg if (p->loan_count < 1)
978 1.8 mrg panic("pagedaemon: non-loaned "
979 1.8 mrg "ownerless page detected - loop 2");
980 1.1 mrg #endif
981 1.1 mrg
982 1.8 mrg p->loan_count--;
983 1.8 mrg p->pqflags |= PQ_ANON;
984 1.8 mrg }
985 1.8 mrg
986 1.8 mrg } else {
987 1.8 mrg
988 1.8 mrg if (!simple_lock_try(&p->uobject->vmobjlock))
989 1.8 mrg continue;
990 1.8 mrg
991 1.8 mrg }
992 1.8 mrg
993 1.8 mrg if ((p->flags & PG_BUSY) == 0) {
994 1.8 mrg pmap_page_protect(PMAP_PGARG(p), VM_PROT_NONE);
995 1.8 mrg /* no need to check wire_count as pg is "active" */
996 1.8 mrg uvm_pagedeactivate(p);
997 1.8 mrg uvmexp.pddeact++;
998 1.8 mrg page_shortage--;
999 1.8 mrg }
1000 1.8 mrg
1001 1.8 mrg if (p->pqflags & PQ_ANON)
1002 1.8 mrg simple_unlock(&p->uanon->an_lock);
1003 1.8 mrg else
1004 1.8 mrg simple_unlock(&p->uobject->vmobjlock);
1005 1.8 mrg }
1006 1.8 mrg
1007 1.8 mrg /*
1008 1.8 mrg * done scan
1009 1.8 mrg */
1010 1.1 mrg }
1011