Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.131
      1  1.131       chs /*	$NetBSD: uvm_pdaemon.c,v 1.131 2020/11/04 01:30:19 chs Exp $	*/
      2    1.1       mrg 
      3   1.34       chs /*
      4    1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.34       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6    1.1       mrg  *
      7    1.1       mrg  * All rights reserved.
      8    1.1       mrg  *
      9    1.1       mrg  * This code is derived from software contributed to Berkeley by
     10    1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11    1.1       mrg  *
     12    1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13    1.1       mrg  * modification, are permitted provided that the following conditions
     14    1.1       mrg  * are met:
     15    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20  1.102     chuck  * 3. Neither the name of the University nor the names of its contributors
     21    1.1       mrg  *    may be used to endorse or promote products derived from this software
     22    1.1       mrg  *    without specific prior written permission.
     23    1.1       mrg  *
     24    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25    1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26    1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27    1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28    1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29    1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30    1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31    1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32    1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34    1.1       mrg  * SUCH DAMAGE.
     35    1.1       mrg  *
     36    1.1       mrg  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     37    1.4       mrg  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     38    1.1       mrg  *
     39    1.1       mrg  *
     40    1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41    1.1       mrg  * All rights reserved.
     42   1.34       chs  *
     43    1.1       mrg  * Permission to use, copy, modify and distribute this software and
     44    1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     45    1.1       mrg  * notice and this permission notice appear in all copies of the
     46    1.1       mrg  * software, derivative works or modified versions, and any portions
     47    1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     48   1.34       chs  *
     49   1.34       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50   1.34       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51    1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52   1.34       chs  *
     53    1.1       mrg  * Carnegie Mellon requests users of this software to return to
     54    1.1       mrg  *
     55    1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56    1.1       mrg  *  School of Computer Science
     57    1.1       mrg  *  Carnegie Mellon University
     58    1.1       mrg  *  Pittsburgh PA 15213-3890
     59    1.1       mrg  *
     60    1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     61    1.1       mrg  * rights to redistribute these changes.
     62    1.1       mrg  */
     63    1.1       mrg 
     64    1.1       mrg /*
     65    1.1       mrg  * uvm_pdaemon.c: the page daemon
     66    1.1       mrg  */
     67   1.42     lukem 
     68   1.42     lukem #include <sys/cdefs.h>
     69  1.131       chs __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.131 2020/11/04 01:30:19 chs Exp $");
     70   1.42     lukem 
     71   1.42     lukem #include "opt_uvmhist.h"
     72   1.69      yamt #include "opt_readahead.h"
     73    1.1       mrg 
     74  1.125        ad #define	__RWLOCK_PRIVATE
     75  1.125        ad 
     76    1.1       mrg #include <sys/param.h>
     77    1.1       mrg #include <sys/proc.h>
     78    1.1       mrg #include <sys/systm.h>
     79    1.1       mrg #include <sys/kernel.h>
     80    1.9        pk #include <sys/pool.h>
     81   1.24       chs #include <sys/buf.h>
     82   1.94        ad #include <sys/module.h>
     83   1.96        ad #include <sys/atomic.h>
     84  1.110       chs #include <sys/kthread.h>
     85    1.1       mrg 
     86    1.1       mrg #include <uvm/uvm.h>
     87   1.77      yamt #include <uvm/uvm_pdpolicy.h>
     88  1.119        ad #include <uvm/uvm_pgflcache.h>
     89    1.1       mrg 
     90  1.107      matt #ifdef UVMHIST
     91  1.107      matt UVMHIST_DEFINE(pdhist);
     92  1.107      matt #endif
     93  1.107      matt 
     94    1.1       mrg /*
     95   1.45       wiz  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     96   1.14       chs  * in a pass thru the inactive list when swap is full.  the value should be
     97   1.14       chs  * "small"... if it's too large we'll cycle the active pages thru the inactive
     98   1.14       chs  * queue too quickly to for them to be referenced and avoid being freed.
     99   1.14       chs  */
    100   1.14       chs 
    101   1.89        ad #define	UVMPD_NUMDIRTYREACTS	16
    102   1.14       chs 
    103   1.14       chs /*
    104    1.1       mrg  * local prototypes
    105    1.1       mrg  */
    106    1.1       mrg 
    107   1.65   thorpej static void	uvmpd_scan(void);
    108   1.77      yamt static void	uvmpd_scan_queue(void);
    109   1.65   thorpej static void	uvmpd_tune(void);
    110  1.110       chs static void	uvmpd_pool_drain_thread(void *);
    111  1.110       chs static void	uvmpd_pool_drain_wakeup(void);
    112    1.1       mrg 
    113  1.101     pooka static unsigned int uvm_pagedaemon_waiters;
    114   1.89        ad 
    115  1.110       chs /* State for the pool drainer thread */
    116  1.117        ad static kmutex_t uvmpd_lock __cacheline_aligned;
    117  1.110       chs static kcondvar_t uvmpd_pool_drain_cv;
    118  1.110       chs static bool uvmpd_pool_drain_run = false;
    119  1.110       chs 
    120    1.1       mrg /*
    121   1.61       chs  * XXX hack to avoid hangs when large processes fork.
    122   1.61       chs  */
    123   1.96        ad u_int uvm_extrapages;
    124   1.61       chs 
    125   1.61       chs /*
    126    1.1       mrg  * uvm_wait: wait (sleep) for the page daemon to free some pages
    127    1.1       mrg  *
    128    1.1       mrg  * => should be called with all locks released
    129    1.1       mrg  * => should _not_ be called by the page daemon (to avoid deadlock)
    130    1.1       mrg  */
    131    1.1       mrg 
    132   1.19   thorpej void
    133   1.65   thorpej uvm_wait(const char *wmsg)
    134    1.8       mrg {
    135    1.8       mrg 	int timo = 0;
    136   1.89        ad 
    137  1.111       chs 	if (uvm.pagedaemon_lwp == NULL)
    138  1.111       chs 		panic("out of memory before the pagedaemon thread exists");
    139  1.111       chs 
    140  1.117        ad 	mutex_spin_enter(&uvmpd_lock);
    141    1.1       mrg 
    142    1.8       mrg 	/*
    143    1.8       mrg 	 * check for page daemon going to sleep (waiting for itself)
    144    1.8       mrg 	 */
    145    1.1       mrg 
    146   1.86        ad 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    147    1.8       mrg 		/*
    148    1.8       mrg 		 * now we have a problem: the pagedaemon wants to go to
    149    1.8       mrg 		 * sleep until it frees more memory.   but how can it
    150    1.8       mrg 		 * free more memory if it is asleep?  that is a deadlock.
    151    1.8       mrg 		 * we have two options:
    152    1.8       mrg 		 *  [1] panic now
    153    1.8       mrg 		 *  [2] put a timeout on the sleep, thus causing the
    154    1.8       mrg 		 *      pagedaemon to only pause (rather than sleep forever)
    155    1.8       mrg 		 *
    156    1.8       mrg 		 * note that option [2] will only help us if we get lucky
    157    1.8       mrg 		 * and some other process on the system breaks the deadlock
    158    1.8       mrg 		 * by exiting or freeing memory (thus allowing the pagedaemon
    159    1.8       mrg 		 * to continue).  for now we panic if DEBUG is defined,
    160    1.8       mrg 		 * otherwise we hope for the best with option [2] (better
    161    1.8       mrg 		 * yet, this should never happen in the first place!).
    162    1.8       mrg 		 */
    163    1.1       mrg 
    164    1.8       mrg 		printf("pagedaemon: deadlock detected!\n");
    165    1.8       mrg 		timo = hz >> 3;		/* set timeout */
    166    1.1       mrg #if defined(DEBUG)
    167    1.8       mrg 		/* DEBUG: panic so we can debug it */
    168    1.8       mrg 		panic("pagedaemon deadlock");
    169    1.1       mrg #endif
    170    1.8       mrg 	}
    171    1.1       mrg 
    172   1.89        ad 	uvm_pagedaemon_waiters++;
    173   1.17   thorpej 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    174  1.117        ad 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvmpd_lock, false, wmsg, timo);
    175    1.1       mrg }
    176    1.1       mrg 
    177   1.77      yamt /*
    178   1.77      yamt  * uvm_kick_pdaemon: perform checks to determine if we need to
    179   1.77      yamt  * give the pagedaemon a nudge, and do so if necessary.
    180   1.77      yamt  */
    181   1.77      yamt 
    182   1.77      yamt void
    183   1.77      yamt uvm_kick_pdaemon(void)
    184   1.77      yamt {
    185  1.128        ad 	int fpages = uvm_availmem(false);
    186   1.77      yamt 
    187  1.117        ad 	if (fpages + uvmexp.paging < uvmexp.freemin ||
    188  1.117        ad 	    (fpages + uvmexp.paging < uvmexp.freetarg &&
    189  1.105      para 	     uvmpdpol_needsscan_p()) ||
    190  1.105      para 	     uvm_km_va_starved_p()) {
    191  1.117        ad 	     	mutex_spin_enter(&uvmpd_lock);
    192   1.77      yamt 		wakeup(&uvm.pagedaemon);
    193  1.117        ad 	     	mutex_spin_exit(&uvmpd_lock);
    194   1.77      yamt 	}
    195   1.77      yamt }
    196    1.1       mrg 
    197    1.1       mrg /*
    198    1.1       mrg  * uvmpd_tune: tune paging parameters
    199    1.1       mrg  *
    200    1.1       mrg  * => called when ever memory is added (or removed?) to the system
    201    1.1       mrg  */
    202    1.1       mrg 
    203   1.65   thorpej static void
    204   1.37       chs uvmpd_tune(void)
    205    1.8       mrg {
    206   1.95        ad 	int val;
    207   1.95        ad 
    208  1.130     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    209    1.1       mrg 
    210   1.93        ad 	/*
    211   1.93        ad 	 * try to keep 0.5% of available RAM free, but limit to between
    212   1.93        ad 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
    213   1.93        ad 	 */
    214   1.95        ad 	val = uvmexp.npages / 200;
    215   1.95        ad 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
    216   1.95        ad 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
    217   1.95        ad 	val *= ncpu;
    218   1.23     bjh21 
    219   1.23     bjh21 	/* Make sure there's always a user page free. */
    220   1.95        ad 	if (val < uvmexp.reserve_kernel + 1)
    221   1.95        ad 		val = uvmexp.reserve_kernel + 1;
    222   1.95        ad 	uvmexp.freemin = val;
    223   1.95        ad 
    224   1.96        ad 	/* Calculate free target. */
    225   1.95        ad 	val = (uvmexp.freemin * 4) / 3;
    226   1.95        ad 	if (val <= uvmexp.freemin)
    227   1.95        ad 		val = uvmexp.freemin + 1;
    228   1.96        ad 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
    229   1.61       chs 
    230    1.8       mrg 	uvmexp.wiredmax = uvmexp.npages / 3;
    231  1.109  pgoyette 	UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
    232    1.1       mrg 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    233    1.1       mrg }
    234    1.1       mrg 
    235    1.1       mrg /*
    236    1.1       mrg  * uvm_pageout: the main loop for the pagedaemon
    237    1.1       mrg  */
    238    1.1       mrg 
    239    1.8       mrg void
    240   1.80      yamt uvm_pageout(void *arg)
    241    1.8       mrg {
    242  1.110       chs 	int npages = 0;
    243   1.61       chs 	int extrapages = 0;
    244  1.117        ad 	int fpages;
    245  1.130     skrll 
    246  1.130     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    247   1.24       chs 
    248    1.8       mrg 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    249    1.8       mrg 
    250  1.117        ad 	mutex_init(&uvmpd_lock, MUTEX_DEFAULT, IPL_VM);
    251  1.110       chs 	cv_init(&uvmpd_pool_drain_cv, "pooldrain");
    252  1.110       chs 
    253  1.110       chs 	/* Create the pool drainer kernel thread. */
    254  1.110       chs 	if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL,
    255  1.110       chs 	    uvmpd_pool_drain_thread, NULL, NULL, "pooldrain"))
    256  1.110       chs 		panic("fork pooldrain");
    257  1.110       chs 
    258    1.8       mrg 	/*
    259    1.8       mrg 	 * ensure correct priority and set paging parameters...
    260    1.8       mrg 	 */
    261    1.8       mrg 
    262   1.86        ad 	uvm.pagedaemon_lwp = curlwp;
    263    1.8       mrg 	npages = uvmexp.npages;
    264    1.8       mrg 	uvmpd_tune();
    265    1.8       mrg 
    266    1.8       mrg 	/*
    267    1.8       mrg 	 * main loop
    268    1.8       mrg 	 */
    269   1.24       chs 
    270   1.24       chs 	for (;;) {
    271  1.105      para 		bool needsscan, needsfree, kmem_va_starved;
    272  1.105      para 
    273  1.105      para 		kmem_va_starved = uvm_km_va_starved_p();
    274   1.24       chs 
    275  1.117        ad 		mutex_spin_enter(&uvmpd_lock);
    276  1.105      para 		if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
    277  1.105      para 		    !kmem_va_starved) {
    278   1.89        ad 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    279   1.89        ad 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    280  1.117        ad 			    &uvmpd_lock, false, "pgdaemon", 0);
    281   1.89        ad 			uvmexp.pdwoke++;
    282   1.89        ad 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    283   1.89        ad 		} else {
    284  1.117        ad 			mutex_spin_exit(&uvmpd_lock);
    285   1.89        ad 		}
    286   1.24       chs 
    287    1.8       mrg 		/*
    288  1.113        ad 		 * now recompute inactive count
    289    1.8       mrg 		 */
    290    1.8       mrg 
    291   1.61       chs 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    292   1.24       chs 			npages = uvmexp.npages;
    293   1.61       chs 			extrapages = uvm_extrapages;
    294   1.24       chs 			uvmpd_tune();
    295   1.24       chs 		}
    296   1.24       chs 
    297   1.77      yamt 		uvmpdpol_tune();
    298   1.24       chs 
    299   1.60     enami 		/*
    300   1.60     enami 		 * Estimate a hint.  Note that bufmem are returned to
    301   1.60     enami 		 * system only when entire pool page is empty.
    302   1.60     enami 		 */
    303  1.128        ad 		fpages = uvm_availmem(false);
    304  1.109  pgoyette 		UVMHIST_LOG(pdhist,"  free/ftarg=%jd/%jd",
    305  1.117        ad 		    fpages, uvmexp.freetarg, 0,0);
    306    1.8       mrg 
    307  1.117        ad 		needsfree = fpages + uvmexp.paging < uvmexp.freetarg;
    308   1.93        ad 		needsscan = needsfree || uvmpdpol_needsscan_p();
    309   1.89        ad 
    310    1.8       mrg 		/*
    311   1.24       chs 		 * scan if needed
    312    1.8       mrg 		 */
    313   1.97        ad 		if (needsscan) {
    314   1.24       chs 			uvmpd_scan();
    315   1.97        ad 		}
    316    1.8       mrg 
    317    1.8       mrg 		/*
    318   1.24       chs 		 * if there's any free memory to be had,
    319   1.24       chs 		 * wake up any waiters.
    320    1.8       mrg 		 */
    321  1.128        ad 		if (uvm_availmem(false) > uvmexp.reserve_kernel ||
    322  1.121        ad 		    uvmexp.paging == 0) {
    323  1.117        ad 			mutex_spin_enter(&uvmpd_lock);
    324   1.24       chs 			wakeup(&uvmexp.free);
    325   1.89        ad 			uvm_pagedaemon_waiters = 0;
    326  1.117        ad 			mutex_spin_exit(&uvmpd_lock);
    327    1.8       mrg 		}
    328    1.1       mrg 
    329    1.8       mrg 		/*
    330  1.113        ad 		 * scan done.  if we don't need free memory, we're done.
    331   1.93        ad 		 */
    332   1.93        ad 
    333  1.105      para 		if (!needsfree && !kmem_va_starved)
    334   1.93        ad 			continue;
    335   1.93        ad 
    336   1.93        ad 		/*
    337  1.110       chs 		 * kick the pool drainer thread.
    338   1.38       chs 		 */
    339   1.57  jdolecek 
    340  1.110       chs 		uvmpd_pool_drain_wakeup();
    341   1.24       chs 	}
    342   1.24       chs 	/*NOTREACHED*/
    343   1.24       chs }
    344   1.24       chs 
    345   1.89        ad void
    346   1.89        ad uvm_pageout_start(int npages)
    347   1.89        ad {
    348   1.89        ad 
    349  1.113        ad 	atomic_add_int(&uvmexp.paging, npages);
    350   1.89        ad }
    351   1.89        ad 
    352   1.89        ad void
    353   1.89        ad uvm_pageout_done(int npages)
    354   1.89        ad {
    355   1.89        ad 
    356  1.127        ad 	KASSERT(atomic_load_relaxed(&uvmexp.paging) >= npages);
    357  1.127        ad 
    358  1.127        ad 	if (npages == 0) {
    359  1.127        ad 		return;
    360  1.127        ad 	}
    361  1.127        ad 
    362  1.113        ad 	atomic_add_int(&uvmexp.paging, -npages);
    363   1.89        ad 
    364   1.89        ad 	/*
    365   1.89        ad 	 * wake up either of pagedaemon or LWPs waiting for it.
    366   1.89        ad 	 */
    367   1.89        ad 
    368  1.117        ad 	mutex_spin_enter(&uvmpd_lock);
    369  1.128        ad 	if (uvm_availmem(false) <= uvmexp.reserve_kernel) {
    370   1.81      yamt 		wakeup(&uvm.pagedaemon);
    371  1.117        ad 	} else if (uvm_pagedaemon_waiters != 0) {
    372   1.81      yamt 		wakeup(&uvmexp.free);
    373   1.89        ad 		uvm_pagedaemon_waiters = 0;
    374    1.8       mrg 	}
    375  1.117        ad 	mutex_spin_exit(&uvmpd_lock);
    376    1.1       mrg }
    377    1.1       mrg 
    378  1.131       chs static krwlock_t *
    379  1.131       chs uvmpd_page_owner_lock(struct vm_page *pg)
    380  1.131       chs {
    381  1.131       chs 	struct uvm_object *uobj = pg->uobject;
    382  1.131       chs 	struct vm_anon *anon = pg->uanon;
    383  1.131       chs 	krwlock_t *slock;
    384  1.131       chs 
    385  1.131       chs 	KASSERT(mutex_owned(&pg->interlock));
    386  1.131       chs 
    387  1.131       chs #ifdef DEBUG
    388  1.131       chs 	if (uobj == (void *)0xdeadbeef || anon == (void *)0xdeadbeef) {
    389  1.131       chs 		return NULL;
    390  1.131       chs 	}
    391  1.131       chs #endif
    392  1.131       chs 	if (uobj != NULL) {
    393  1.131       chs 		slock = uobj->vmobjlock;
    394  1.131       chs 		KASSERTMSG(slock != NULL, "pg %p uobj %p, NULL lock", pg, uobj);
    395  1.131       chs 	} else if (anon != NULL) {
    396  1.131       chs 		slock = anon->an_lock;
    397  1.131       chs 		KASSERTMSG(slock != NULL, "pg %p anon %p, NULL lock", pg, anon);
    398  1.131       chs 	} else {
    399  1.131       chs 		slock = NULL;
    400  1.131       chs 	}
    401  1.131       chs 	return slock;
    402  1.131       chs }
    403  1.131       chs 
    404   1.76      yamt /*
    405   1.76      yamt  * uvmpd_trylockowner: trylock the page's owner.
    406   1.76      yamt  *
    407  1.113        ad  * => called with page interlock held.
    408   1.76      yamt  * => resolve orphaned O->A loaned page.
    409   1.89        ad  * => return the locked mutex on success.  otherwise, return NULL.
    410   1.76      yamt  */
    411   1.76      yamt 
    412  1.125        ad krwlock_t *
    413   1.76      yamt uvmpd_trylockowner(struct vm_page *pg)
    414   1.76      yamt {
    415  1.131       chs 	krwlock_t *slock, *heldslock;
    416   1.89        ad 
    417  1.113        ad 	KASSERT(mutex_owned(&pg->interlock));
    418   1.76      yamt 
    419  1.131       chs 	slock = uvmpd_page_owner_lock(pg);
    420  1.131       chs 	if (slock == NULL) {
    421  1.113        ad 		/* Page may be in state of flux - ignore. */
    422  1.113        ad 		mutex_exit(&pg->interlock);
    423  1.113        ad 		return NULL;
    424   1.76      yamt 	}
    425   1.76      yamt 
    426  1.131       chs 	if (rw_tryenter(slock, RW_WRITER)) {
    427  1.131       chs 		goto success;
    428  1.131       chs 	}
    429  1.131       chs 
    430  1.113        ad 	/*
    431  1.131       chs 	 * The try-lock didn't work, so now do a blocking lock after
    432  1.131       chs 	 * dropping the page interlock.  Prevent the owner lock from
    433  1.131       chs 	 * being freed by taking a hold on it first.
    434  1.113        ad 	 */
    435  1.131       chs 
    436  1.131       chs 	rw_obj_hold(slock);
    437  1.131       chs 	mutex_exit(&pg->interlock);
    438  1.131       chs 	rw_enter(slock, RW_WRITER);
    439  1.131       chs 	heldslock = slock;
    440   1.76      yamt 
    441  1.113        ad 	/*
    442  1.131       chs 	 * Now we hold some owner lock.  Check if the lock we hold
    443  1.131       chs 	 * is still the lock for the owner of the page.
    444  1.131       chs 	 * If it is then return it, otherwise release it and return NULL.
    445  1.113        ad 	 */
    446  1.131       chs 
    447  1.131       chs 	mutex_enter(&pg->interlock);
    448  1.131       chs 	slock = uvmpd_page_owner_lock(pg);
    449  1.131       chs 	if (heldslock != slock) {
    450  1.131       chs 		rw_exit(heldslock);
    451  1.131       chs 		slock = NULL;
    452  1.131       chs 	}
    453  1.131       chs 	rw_obj_free(heldslock);
    454  1.131       chs 	if (slock != NULL) {
    455  1.131       chs success:
    456  1.131       chs 		/*
    457  1.131       chs 		 * Set PG_ANON if it isn't set already.
    458  1.131       chs 		 */
    459  1.131       chs 		if (pg->uobject == NULL && (pg->flags & PG_ANON) == 0) {
    460  1.131       chs 			KASSERT(pg->loan_count > 0);
    461  1.131       chs 			pg->loan_count--;
    462  1.131       chs 			pg->flags |= PG_ANON;
    463  1.131       chs 			/* anon now owns it */
    464   1.76      yamt 		}
    465   1.76      yamt 	}
    466  1.131       chs 	mutex_exit(&pg->interlock);
    467  1.131       chs 	return slock;
    468   1.76      yamt }
    469   1.76      yamt 
    470   1.73      yamt #if defined(VMSWAP)
    471   1.73      yamt struct swapcluster {
    472   1.73      yamt 	int swc_slot;
    473   1.73      yamt 	int swc_nallocated;
    474   1.73      yamt 	int swc_nused;
    475   1.75      yamt 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    476   1.73      yamt };
    477   1.73      yamt 
    478   1.73      yamt static void
    479   1.73      yamt swapcluster_init(struct swapcluster *swc)
    480   1.73      yamt {
    481   1.73      yamt 
    482   1.73      yamt 	swc->swc_slot = 0;
    483   1.89        ad 	swc->swc_nused = 0;
    484   1.73      yamt }
    485   1.73      yamt 
    486   1.73      yamt static int
    487   1.73      yamt swapcluster_allocslots(struct swapcluster *swc)
    488   1.73      yamt {
    489   1.73      yamt 	int slot;
    490   1.73      yamt 	int npages;
    491   1.73      yamt 
    492   1.73      yamt 	if (swc->swc_slot != 0) {
    493   1.73      yamt 		return 0;
    494   1.73      yamt 	}
    495   1.73      yamt 
    496   1.73      yamt 	/* Even with strange MAXPHYS, the shift
    497   1.73      yamt 	   implicitly rounds down to a page. */
    498   1.73      yamt 	npages = MAXPHYS >> PAGE_SHIFT;
    499   1.84   thorpej 	slot = uvm_swap_alloc(&npages, true);
    500   1.73      yamt 	if (slot == 0) {
    501   1.73      yamt 		return ENOMEM;
    502   1.73      yamt 	}
    503   1.73      yamt 	swc->swc_slot = slot;
    504   1.73      yamt 	swc->swc_nallocated = npages;
    505   1.73      yamt 	swc->swc_nused = 0;
    506   1.73      yamt 
    507   1.73      yamt 	return 0;
    508   1.73      yamt }
    509   1.73      yamt 
    510   1.73      yamt static int
    511   1.73      yamt swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    512   1.73      yamt {
    513   1.73      yamt 	int slot;
    514   1.73      yamt 	struct uvm_object *uobj;
    515   1.73      yamt 
    516   1.73      yamt 	KASSERT(swc->swc_slot != 0);
    517   1.73      yamt 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    518  1.113        ad 	KASSERT((pg->flags & PG_SWAPBACKED) != 0);
    519   1.73      yamt 
    520   1.73      yamt 	slot = swc->swc_slot + swc->swc_nused;
    521   1.73      yamt 	uobj = pg->uobject;
    522   1.73      yamt 	if (uobj == NULL) {
    523  1.125        ad 		KASSERT(rw_write_held(pg->uanon->an_lock));
    524   1.73      yamt 		pg->uanon->an_swslot = slot;
    525   1.73      yamt 	} else {
    526   1.73      yamt 		int result;
    527   1.73      yamt 
    528  1.125        ad 		KASSERT(rw_write_held(uobj->vmobjlock));
    529   1.73      yamt 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    530   1.73      yamt 		if (result == -1) {
    531   1.73      yamt 			return ENOMEM;
    532   1.73      yamt 		}
    533   1.73      yamt 	}
    534   1.73      yamt 	swc->swc_pages[swc->swc_nused] = pg;
    535   1.73      yamt 	swc->swc_nused++;
    536   1.73      yamt 
    537   1.73      yamt 	return 0;
    538   1.73      yamt }
    539   1.73      yamt 
    540   1.73      yamt static void
    541   1.83   thorpej swapcluster_flush(struct swapcluster *swc, bool now)
    542   1.73      yamt {
    543   1.73      yamt 	int slot;
    544   1.73      yamt 	int nused;
    545   1.73      yamt 	int nallocated;
    546  1.108    martin 	int error __diagused;
    547   1.73      yamt 
    548   1.73      yamt 	if (swc->swc_slot == 0) {
    549   1.73      yamt 		return;
    550   1.73      yamt 	}
    551   1.73      yamt 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    552   1.73      yamt 
    553   1.73      yamt 	slot = swc->swc_slot;
    554   1.73      yamt 	nused = swc->swc_nused;
    555   1.73      yamt 	nallocated = swc->swc_nallocated;
    556   1.73      yamt 
    557   1.73      yamt 	/*
    558   1.73      yamt 	 * if this is the final pageout we could have a few
    559   1.73      yamt 	 * unused swap blocks.  if so, free them now.
    560   1.73      yamt 	 */
    561   1.73      yamt 
    562   1.73      yamt 	if (nused < nallocated) {
    563   1.73      yamt 		if (!now) {
    564   1.73      yamt 			return;
    565   1.73      yamt 		}
    566   1.73      yamt 		uvm_swap_free(slot + nused, nallocated - nused);
    567   1.73      yamt 	}
    568   1.73      yamt 
    569   1.73      yamt 	/*
    570   1.73      yamt 	 * now start the pageout.
    571   1.73      yamt 	 */
    572   1.73      yamt 
    573   1.91      yamt 	if (nused > 0) {
    574   1.91      yamt 		uvmexp.pdpageouts++;
    575   1.91      yamt 		uvm_pageout_start(nused);
    576   1.91      yamt 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    577   1.92      yamt 		KASSERT(error == 0 || error == ENOMEM);
    578   1.91      yamt 	}
    579   1.73      yamt 
    580   1.73      yamt 	/*
    581   1.73      yamt 	 * zero swslot to indicate that we are
    582   1.73      yamt 	 * no longer building a swap-backed cluster.
    583   1.73      yamt 	 */
    584   1.73      yamt 
    585   1.73      yamt 	swc->swc_slot = 0;
    586   1.89        ad 	swc->swc_nused = 0;
    587   1.89        ad }
    588   1.89        ad 
    589   1.89        ad static int
    590   1.89        ad swapcluster_nused(struct swapcluster *swc)
    591   1.89        ad {
    592   1.89        ad 
    593   1.89        ad 	return swc->swc_nused;
    594   1.73      yamt }
    595   1.77      yamt 
    596   1.77      yamt /*
    597   1.77      yamt  * uvmpd_dropswap: free any swap allocated to this page.
    598   1.77      yamt  *
    599   1.77      yamt  * => called with owner locked.
    600   1.84   thorpej  * => return true if a page had an associated slot.
    601   1.77      yamt  */
    602   1.77      yamt 
    603  1.119        ad bool
    604   1.77      yamt uvmpd_dropswap(struct vm_page *pg)
    605   1.77      yamt {
    606   1.84   thorpej 	bool result = false;
    607   1.77      yamt 	struct vm_anon *anon = pg->uanon;
    608   1.77      yamt 
    609  1.113        ad 	if ((pg->flags & PG_ANON) && anon->an_swslot) {
    610   1.77      yamt 		uvm_swap_free(anon->an_swslot, 1);
    611   1.77      yamt 		anon->an_swslot = 0;
    612  1.123        ad 		uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    613   1.84   thorpej 		result = true;
    614  1.113        ad 	} else if (pg->flags & PG_AOBJ) {
    615   1.77      yamt 		int slot = uao_set_swslot(pg->uobject,
    616   1.77      yamt 		    pg->offset >> PAGE_SHIFT, 0);
    617   1.77      yamt 		if (slot) {
    618   1.77      yamt 			uvm_swap_free(slot, 1);
    619  1.123        ad 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    620   1.84   thorpej 			result = true;
    621   1.77      yamt 		}
    622   1.77      yamt 	}
    623   1.77      yamt 
    624   1.77      yamt 	return result;
    625   1.77      yamt }
    626   1.77      yamt 
    627   1.73      yamt #endif /* defined(VMSWAP) */
    628   1.73      yamt 
    629    1.1       mrg /*
    630   1.77      yamt  * uvmpd_scan_queue: scan an replace candidate list for pages
    631   1.77      yamt  * to clean or free.
    632    1.1       mrg  *
    633    1.1       mrg  * => we work on meeting our free target by converting inactive pages
    634    1.1       mrg  *    into free pages.
    635    1.1       mrg  * => we handle the building of swap-backed clusters
    636    1.1       mrg  */
    637    1.1       mrg 
    638   1.65   thorpej static void
    639   1.77      yamt uvmpd_scan_queue(void)
    640    1.8       mrg {
    641   1.77      yamt 	struct vm_page *p;
    642    1.8       mrg 	struct uvm_object *uobj;
    643   1.37       chs 	struct vm_anon *anon;
    644   1.68      yamt #if defined(VMSWAP)
    645   1.73      yamt 	struct swapcluster swc;
    646   1.68      yamt #endif /* defined(VMSWAP) */
    647   1.77      yamt 	int dirtyreacts;
    648  1.125        ad 	krwlock_t *slock;
    649  1.130     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    650    1.1       mrg 
    651    1.8       mrg 	/*
    652    1.8       mrg 	 * swslot is non-zero if we are building a swap cluster.  we want
    653   1.24       chs 	 * to stay in the loop while we have a page to scan or we have
    654    1.8       mrg 	 * a swap-cluster to build.
    655    1.8       mrg 	 */
    656   1.24       chs 
    657   1.73      yamt #if defined(VMSWAP)
    658   1.73      yamt 	swapcluster_init(&swc);
    659   1.73      yamt #endif /* defined(VMSWAP) */
    660   1.77      yamt 
    661   1.14       chs 	dirtyreacts = 0;
    662   1.77      yamt 	uvmpdpol_scaninit();
    663   1.43       chs 
    664   1.77      yamt 	while (/* CONSTCOND */ 1) {
    665   1.24       chs 
    666   1.73      yamt 		/*
    667   1.73      yamt 		 * see if we've met the free target.
    668   1.73      yamt 		 */
    669   1.73      yamt 
    670  1.128        ad 		if (uvm_availmem(false) + uvmexp.paging
    671   1.89        ad #if defined(VMSWAP)
    672   1.89        ad 		    + swapcluster_nused(&swc)
    673   1.89        ad #endif /* defined(VMSWAP) */
    674   1.89        ad 		    >= uvmexp.freetarg << 2 ||
    675   1.73      yamt 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    676   1.73      yamt 			UVMHIST_LOG(pdhist,"  met free target: "
    677   1.73      yamt 				    "exit loop", 0, 0, 0, 0);
    678   1.73      yamt 			break;
    679   1.73      yamt 		}
    680   1.24       chs 
    681   1.73      yamt 		/*
    682  1.113        ad 		 * first we have the pdpolicy select a victim page
    683  1.113        ad 		 * and attempt to lock the object that the page
    684   1.73      yamt 		 * belongs to.  if our attempt fails we skip on to
    685   1.73      yamt 		 * the next page (no harm done).  it is important to
    686   1.73      yamt 		 * "try" locking the object as we are locking in the
    687   1.73      yamt 		 * wrong order (pageq -> object) and we don't want to
    688   1.73      yamt 		 * deadlock.
    689   1.73      yamt 		 *
    690   1.73      yamt 		 * the only time we expect to see an ownerless page
    691  1.113        ad 		 * (i.e. a page with no uobject and !PG_ANON) is if an
    692   1.73      yamt 		 * anon has loaned a page from a uvm_object and the
    693   1.73      yamt 		 * uvm_object has dropped the ownership.  in that
    694   1.73      yamt 		 * case, the anon can "take over" the loaned page
    695   1.73      yamt 		 * and make it its own.
    696   1.73      yamt 		 */
    697   1.30       chs 
    698  1.113        ad 		p = uvmpdpol_selectvictim(&slock);
    699  1.113        ad 		if (p == NULL) {
    700  1.113        ad 			break;
    701   1.76      yamt 		}
    702  1.113        ad 		KASSERT(uvmpdpol_pageisqueued_p(p));
    703  1.125        ad 		KASSERT(uvm_page_owner_locked_p(p, true));
    704  1.113        ad 		KASSERT(p->wire_count == 0);
    705  1.113        ad 
    706  1.113        ad 		/*
    707  1.113        ad 		 * we are below target and have a new page to consider.
    708  1.113        ad 		 */
    709  1.113        ad 
    710  1.113        ad 		anon = p->uanon;
    711  1.113        ad 		uobj = p->uobject;
    712  1.113        ad 
    713   1.76      yamt 		if (p->flags & PG_BUSY) {
    714  1.125        ad 			rw_exit(slock);
    715   1.76      yamt 			uvmexp.pdbusy++;
    716   1.76      yamt 			continue;
    717   1.76      yamt 		}
    718   1.76      yamt 
    719   1.73      yamt 		/* does the page belong to an object? */
    720   1.73      yamt 		if (uobj != NULL) {
    721   1.73      yamt 			uvmexp.pdobscan++;
    722   1.73      yamt 		} else {
    723   1.73      yamt #if defined(VMSWAP)
    724   1.73      yamt 			KASSERT(anon != NULL);
    725   1.73      yamt 			uvmexp.pdanscan++;
    726   1.68      yamt #else /* defined(VMSWAP) */
    727   1.73      yamt 			panic("%s: anon", __func__);
    728   1.68      yamt #endif /* defined(VMSWAP) */
    729   1.73      yamt 		}
    730    1.8       mrg 
    731   1.37       chs 
    732   1.73      yamt 		/*
    733  1.113        ad 		 * we now have the object locked.
    734   1.73      yamt 		 * if the page is not swap-backed, call the object's
    735   1.73      yamt 		 * pager to flush and free the page.
    736   1.73      yamt 		 */
    737   1.37       chs 
    738   1.69      yamt #if defined(READAHEAD_STATS)
    739  1.113        ad 		if ((p->flags & PG_READAHEAD) != 0) {
    740  1.113        ad 			p->flags &= ~PG_READAHEAD;
    741   1.73      yamt 			uvm_ra_miss.ev_count++;
    742   1.73      yamt 		}
    743   1.69      yamt #endif /* defined(READAHEAD_STATS) */
    744   1.69      yamt 
    745  1.113        ad 		if ((p->flags & PG_SWAPBACKED) == 0) {
    746   1.82       alc 			KASSERT(uobj != NULL);
    747   1.73      yamt 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    748   1.73      yamt 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    749   1.73      yamt 			continue;
    750   1.73      yamt 		}
    751   1.37       chs 
    752   1.73      yamt 		/*
    753   1.73      yamt 		 * the page is swap-backed.  remove all the permissions
    754   1.73      yamt 		 * from the page so we can sync the modified info
    755   1.73      yamt 		 * without any race conditions.  if the page is clean
    756   1.73      yamt 		 * we can free it now and continue.
    757   1.73      yamt 		 */
    758    1.8       mrg 
    759   1.73      yamt 		pmap_page_protect(p, VM_PROT_NONE);
    760  1.123        ad 		if (uvm_pagegetdirty(p) == UVM_PAGE_STATUS_UNKNOWN) {
    761  1.123        ad 			if (pmap_clear_modify(p)) {
    762  1.123        ad 				uvm_pagemarkdirty(p, UVM_PAGE_STATUS_DIRTY);
    763  1.123        ad 			} else {
    764  1.123        ad 				uvm_pagemarkdirty(p, UVM_PAGE_STATUS_CLEAN);
    765  1.123        ad 			}
    766   1.73      yamt 		}
    767  1.123        ad 		if (uvm_pagegetdirty(p) != UVM_PAGE_STATUS_DIRTY) {
    768   1.73      yamt 			int slot;
    769   1.73      yamt 			int pageidx;
    770   1.73      yamt 
    771   1.73      yamt 			pageidx = p->offset >> PAGE_SHIFT;
    772   1.73      yamt 			uvm_pagefree(p);
    773  1.113        ad 			atomic_inc_uint(&uvmexp.pdfreed);
    774    1.8       mrg 
    775    1.8       mrg 			/*
    776   1.73      yamt 			 * for anons, we need to remove the page
    777   1.73      yamt 			 * from the anon ourselves.  for aobjs,
    778   1.73      yamt 			 * pagefree did that for us.
    779    1.8       mrg 			 */
    780   1.24       chs 
    781   1.73      yamt 			if (anon) {
    782   1.73      yamt 				KASSERT(anon->an_swslot != 0);
    783   1.73      yamt 				anon->an_page = NULL;
    784   1.73      yamt 				slot = anon->an_swslot;
    785   1.73      yamt 			} else {
    786   1.73      yamt 				slot = uao_find_swslot(uobj, pageidx);
    787    1.8       mrg 			}
    788   1.73      yamt 			if (slot > 0) {
    789   1.73      yamt 				/* this page is now only in swap. */
    790   1.73      yamt 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    791  1.112        ad 				atomic_inc_uint(&uvmexp.swpgonly);
    792   1.37       chs 			}
    793  1.125        ad 			rw_exit(slock);
    794   1.73      yamt 			continue;
    795   1.73      yamt 		}
    796   1.37       chs 
    797   1.77      yamt #if defined(VMSWAP)
    798   1.73      yamt 		/*
    799   1.73      yamt 		 * this page is dirty, skip it if we'll have met our
    800   1.73      yamt 		 * free target when all the current pageouts complete.
    801   1.73      yamt 		 */
    802   1.24       chs 
    803  1.128        ad 		if (uvm_availmem(false) + uvmexp.paging >
    804  1.128        ad 		    uvmexp.freetarg << 2) {
    805  1.125        ad 			rw_exit(slock);
    806   1.73      yamt 			continue;
    807   1.73      yamt 		}
    808   1.14       chs 
    809   1.73      yamt 		/*
    810   1.73      yamt 		 * free any swap space allocated to the page since
    811   1.73      yamt 		 * we'll have to write it again with its new data.
    812   1.73      yamt 		 */
    813   1.24       chs 
    814   1.77      yamt 		uvmpd_dropswap(p);
    815   1.14       chs 
    816   1.73      yamt 		/*
    817   1.97        ad 		 * start new swap pageout cluster (if necessary).
    818   1.97        ad 		 *
    819   1.97        ad 		 * if swap is full reactivate this page so that
    820   1.97        ad 		 * we eventually cycle all pages through the
    821   1.97        ad 		 * inactive queue.
    822   1.73      yamt 		 */
    823   1.68      yamt 
    824   1.97        ad 		if (swapcluster_allocslots(&swc)) {
    825   1.73      yamt 			dirtyreacts++;
    826  1.122        ad 			uvm_pagelock(p);
    827   1.73      yamt 			uvm_pageactivate(p);
    828  1.122        ad 			uvm_pageunlock(p);
    829  1.125        ad 			rw_exit(slock);
    830   1.73      yamt 			continue;
    831    1.8       mrg 		}
    832    1.8       mrg 
    833    1.8       mrg 		/*
    834   1.73      yamt 		 * at this point, we're definitely going reuse this
    835   1.73      yamt 		 * page.  mark the page busy and delayed-free.
    836   1.73      yamt 		 * we should remove the page from the page queues
    837   1.73      yamt 		 * so we don't ever look at it again.
    838   1.73      yamt 		 * adjust counters and such.
    839    1.8       mrg 		 */
    840    1.8       mrg 
    841   1.73      yamt 		p->flags |= PG_BUSY;
    842   1.77      yamt 		UVM_PAGE_OWN(p, "scan_queue");
    843  1.113        ad 		p->flags |= PG_PAGEOUT;
    844  1.113        ad 		uvmexp.pgswapout++;
    845   1.73      yamt 
    846  1.122        ad 		uvm_pagelock(p);
    847   1.73      yamt 		uvm_pagedequeue(p);
    848  1.122        ad 		uvm_pageunlock(p);
    849   1.73      yamt 
    850    1.8       mrg 		/*
    851   1.73      yamt 		 * add the new page to the cluster.
    852    1.8       mrg 		 */
    853    1.8       mrg 
    854   1.73      yamt 		if (swapcluster_add(&swc, p)) {
    855   1.73      yamt 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    856   1.73      yamt 			UVM_PAGE_OWN(p, NULL);
    857   1.77      yamt 			dirtyreacts++;
    858  1.122        ad 			uvm_pagelock(p);
    859   1.73      yamt 			uvm_pageactivate(p);
    860  1.122        ad 			uvm_pageunlock(p);
    861  1.125        ad 			rw_exit(slock);
    862   1.73      yamt 			continue;
    863   1.73      yamt 		}
    864  1.125        ad 		rw_exit(slock);
    865   1.73      yamt 
    866  1.115        ad 		swapcluster_flush(&swc, false);
    867  1.115        ad 
    868    1.8       mrg 		/*
    869  1.115        ad 		 * the pageout is in progress.  bump counters and set up
    870   1.31       chs 		 * for the next loop.
    871    1.8       mrg 		 */
    872    1.8       mrg 
    873  1.115        ad 		atomic_inc_uint(&uvmexp.pdpending);
    874   1.77      yamt 
    875   1.77      yamt #else /* defined(VMSWAP) */
    876  1.122        ad 		uvm_pagelock(p);
    877   1.77      yamt 		uvm_pageactivate(p);
    878  1.122        ad 		uvm_pageunlock(p);
    879  1.125        ad 		rw_exit(slock);
    880   1.77      yamt #endif /* defined(VMSWAP) */
    881   1.73      yamt 	}
    882   1.73      yamt 
    883  1.119        ad 	uvmpdpol_scanfini();
    884  1.119        ad 
    885   1.73      yamt #if defined(VMSWAP)
    886   1.84   thorpej 	swapcluster_flush(&swc, true);
    887   1.68      yamt #endif /* defined(VMSWAP) */
    888    1.1       mrg }
    889    1.1       mrg 
    890    1.1       mrg /*
    891    1.1       mrg  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    892    1.1       mrg  */
    893    1.1       mrg 
    894   1.65   thorpej static void
    895   1.37       chs uvmpd_scan(void)
    896    1.1       mrg {
    897  1.117        ad 	int swap_shortage, pages_freed, fpages;
    898  1.130     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    899    1.1       mrg 
    900   1.37       chs 	uvmexp.pdrevs++;
    901    1.1       mrg 
    902    1.8       mrg 	/*
    903   1.93        ad 	 * work on meeting our targets.   first we work on our free target
    904   1.93        ad 	 * by converting inactive pages into free pages.  then we work on
    905   1.93        ad 	 * meeting our inactive target by converting active pages to
    906   1.93        ad 	 * inactive ones.
    907    1.8       mrg 	 */
    908    1.8       mrg 
    909    1.8       mrg 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    910    1.8       mrg 
    911   1.14       chs 	pages_freed = uvmexp.pdfreed;
    912   1.77      yamt 	uvmpd_scan_queue();
    913   1.14       chs 	pages_freed = uvmexp.pdfreed - pages_freed;
    914    1.8       mrg 
    915    1.8       mrg 	/*
    916   1.14       chs 	 * detect if we're not going to be able to page anything out
    917   1.14       chs 	 * until we free some swap resources from active pages.
    918   1.14       chs 	 */
    919   1.24       chs 
    920   1.14       chs 	swap_shortage = 0;
    921  1.128        ad 	fpages = uvm_availmem(false);
    922  1.117        ad 	if (fpages < uvmexp.freetarg &&
    923   1.52        pk 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    924   1.52        pk 	    !uvm_swapisfull() &&
    925   1.14       chs 	    pages_freed == 0) {
    926  1.117        ad 		swap_shortage = uvmexp.freetarg - fpages;
    927   1.14       chs 	}
    928   1.24       chs 
    929   1.77      yamt 	uvmpdpol_balancequeue(swap_shortage);
    930   1.93        ad 
    931   1.93        ad 	/*
    932   1.94        ad 	 * if still below the minimum target, try unloading kernel
    933   1.94        ad 	 * modules.
    934   1.94        ad 	 */
    935   1.93        ad 
    936  1.128        ad 	if (uvm_availmem(false) < uvmexp.freemin) {
    937   1.94        ad 		module_thread_kick();
    938   1.93        ad 	}
    939    1.1       mrg }
    940   1.62      yamt 
    941   1.62      yamt /*
    942   1.62      yamt  * uvm_reclaimable: decide whether to wait for pagedaemon.
    943   1.62      yamt  *
    944   1.84   thorpej  * => return true if it seems to be worth to do uvm_wait.
    945   1.62      yamt  *
    946   1.62      yamt  * XXX should be tunable.
    947   1.62      yamt  * XXX should consider pools, etc?
    948   1.62      yamt  */
    949   1.62      yamt 
    950   1.83   thorpej bool
    951   1.62      yamt uvm_reclaimable(void)
    952   1.62      yamt {
    953   1.62      yamt 	int filepages;
    954   1.77      yamt 	int active, inactive;
    955   1.62      yamt 
    956   1.62      yamt 	/*
    957   1.62      yamt 	 * if swap is not full, no problem.
    958   1.62      yamt 	 */
    959   1.62      yamt 
    960   1.62      yamt 	if (!uvm_swapisfull()) {
    961   1.84   thorpej 		return true;
    962   1.62      yamt 	}
    963   1.62      yamt 
    964   1.62      yamt 	/*
    965   1.62      yamt 	 * file-backed pages can be reclaimed even when swap is full.
    966   1.62      yamt 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    967  1.129        ad 	 * NB: filepages calculation does not exclude EXECPAGES - intentional.
    968   1.62      yamt 	 *
    969   1.62      yamt 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    970   1.63      yamt 	 *
    971   1.63      yamt 	 * XXX should consider about other reclaimable memory.
    972   1.63      yamt 	 * XXX ie. pools, traditional buffer cache.
    973   1.62      yamt 	 */
    974   1.62      yamt 
    975  1.129        ad 	cpu_count_sync(false);
    976  1.129        ad 	filepages = (int)(cpu_count_get(CPU_COUNT_FILECLEAN) +
    977  1.129        ad 	    cpu_count_get(CPU_COUNT_FILEUNKNOWN) +
    978  1.129        ad 	    cpu_count_get(CPU_COUNT_FILEDIRTY) - uvmexp.wired);
    979   1.77      yamt 	uvm_estimatepageable(&active, &inactive);
    980   1.77      yamt 	if (filepages >= MIN((active + inactive) >> 4,
    981   1.62      yamt 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
    982   1.84   thorpej 		return true;
    983   1.62      yamt 	}
    984   1.62      yamt 
    985   1.62      yamt 	/*
    986   1.62      yamt 	 * kill the process, fail allocation, etc..
    987   1.62      yamt 	 */
    988   1.62      yamt 
    989   1.84   thorpej 	return false;
    990   1.62      yamt }
    991   1.77      yamt 
    992   1.77      yamt void
    993   1.77      yamt uvm_estimatepageable(int *active, int *inactive)
    994   1.77      yamt {
    995   1.77      yamt 
    996   1.77      yamt 	uvmpdpol_estimatepageable(active, inactive);
    997   1.77      yamt }
    998   1.98      haad 
    999  1.110       chs 
   1000  1.110       chs /*
   1001  1.110       chs  * Use a separate thread for draining pools.
   1002  1.110       chs  * This work can't done from the main pagedaemon thread because
   1003  1.110       chs  * some pool allocators need to take vm_map locks.
   1004  1.110       chs  */
   1005  1.110       chs 
   1006  1.110       chs static void
   1007  1.110       chs uvmpd_pool_drain_thread(void *arg)
   1008  1.110       chs {
   1009  1.119        ad 	struct pool *firstpool, *curpool;
   1010  1.119        ad 	int bufcnt, lastslept;
   1011  1.119        ad 	bool cycled;
   1012  1.110       chs 
   1013  1.119        ad 	firstpool = NULL;
   1014  1.119        ad 	cycled = true;
   1015  1.110       chs 	for (;;) {
   1016  1.119        ad 		/*
   1017  1.119        ad 		 * sleep until awoken by the pagedaemon.
   1018  1.119        ad 		 */
   1019  1.117        ad 		mutex_enter(&uvmpd_lock);
   1020  1.110       chs 		if (!uvmpd_pool_drain_run) {
   1021  1.126      maxv 			lastslept = getticks();
   1022  1.117        ad 			cv_wait(&uvmpd_pool_drain_cv, &uvmpd_lock);
   1023  1.126      maxv 			if (getticks() != lastslept) {
   1024  1.119        ad 				cycled = false;
   1025  1.119        ad 				firstpool = NULL;
   1026  1.119        ad 			}
   1027  1.110       chs 		}
   1028  1.110       chs 		uvmpd_pool_drain_run = false;
   1029  1.117        ad 		mutex_exit(&uvmpd_lock);
   1030  1.110       chs 
   1031  1.110       chs 		/*
   1032  1.119        ad 		 * rate limit draining, otherwise in desperate circumstances
   1033  1.119        ad 		 * this can totally saturate the system with xcall activity.
   1034  1.119        ad 		 */
   1035  1.119        ad 		if (cycled) {
   1036  1.119        ad 			kpause("uvmpdlmt", false, 1, NULL);
   1037  1.119        ad 			cycled = false;
   1038  1.119        ad 			firstpool = NULL;
   1039  1.119        ad 		}
   1040  1.119        ad 
   1041  1.119        ad 		/*
   1042  1.119        ad 		 * drain and temporarily disable the freelist cache.
   1043  1.119        ad 		 */
   1044  1.119        ad 		uvm_pgflcache_pause();
   1045  1.119        ad 
   1046  1.119        ad 		/*
   1047  1.110       chs 		 * kill unused metadata buffers.
   1048  1.110       chs 		 */
   1049  1.128        ad 		bufcnt = uvmexp.freetarg - uvm_availmem(false);
   1050  1.110       chs 		if (bufcnt < 0)
   1051  1.110       chs 			bufcnt = 0;
   1052  1.110       chs 
   1053  1.110       chs 		mutex_enter(&bufcache_lock);
   1054  1.110       chs 		buf_drain(bufcnt << PAGE_SHIFT);
   1055  1.110       chs 		mutex_exit(&bufcache_lock);
   1056  1.110       chs 
   1057  1.110       chs 		/*
   1058  1.130     skrll 		 * drain a pool, and then re-enable the freelist cache.
   1059  1.110       chs 		 */
   1060  1.119        ad 		(void)pool_drain(&curpool);
   1061  1.119        ad 		KASSERT(curpool != NULL);
   1062  1.119        ad 		if (firstpool == NULL) {
   1063  1.119        ad 			firstpool = curpool;
   1064  1.119        ad 		} else if (firstpool == curpool) {
   1065  1.119        ad 			cycled = true;
   1066  1.119        ad 		}
   1067  1.119        ad 		uvm_pgflcache_resume();
   1068  1.110       chs 	}
   1069  1.110       chs 	/*NOTREACHED*/
   1070  1.110       chs }
   1071  1.110       chs 
   1072  1.110       chs static void
   1073  1.110       chs uvmpd_pool_drain_wakeup(void)
   1074  1.110       chs {
   1075  1.110       chs 
   1076  1.117        ad 	mutex_enter(&uvmpd_lock);
   1077  1.110       chs 	uvmpd_pool_drain_run = true;
   1078  1.110       chs 	cv_signal(&uvmpd_pool_drain_cv);
   1079  1.117        ad 	mutex_exit(&uvmpd_lock);
   1080  1.110       chs }
   1081