uvm_pdaemon.c revision 1.134 1 1.134 ad /* $NetBSD: uvm_pdaemon.c,v 1.134 2023/09/10 15:01:11 ad Exp $ */
2 1.1 mrg
3 1.34 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.34 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.102 chuck * 3. Neither the name of the University nor the names of its contributors
21 1.1 mrg * may be used to endorse or promote products derived from this software
22 1.1 mrg * without specific prior written permission.
23 1.1 mrg *
24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 mrg * SUCH DAMAGE.
35 1.1 mrg *
36 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
37 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
38 1.1 mrg *
39 1.1 mrg *
40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 mrg * All rights reserved.
42 1.34 chs *
43 1.1 mrg * Permission to use, copy, modify and distribute this software and
44 1.1 mrg * its documentation is hereby granted, provided that both the copyright
45 1.1 mrg * notice and this permission notice appear in all copies of the
46 1.1 mrg * software, derivative works or modified versions, and any portions
47 1.1 mrg * thereof, and that both notices appear in supporting documentation.
48 1.34 chs *
49 1.34 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.34 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.34 chs *
53 1.1 mrg * Carnegie Mellon requests users of this software to return to
54 1.1 mrg *
55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 mrg * School of Computer Science
57 1.1 mrg * Carnegie Mellon University
58 1.1 mrg * Pittsburgh PA 15213-3890
59 1.1 mrg *
60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
61 1.1 mrg * rights to redistribute these changes.
62 1.1 mrg */
63 1.1 mrg
64 1.1 mrg /*
65 1.1 mrg * uvm_pdaemon.c: the page daemon
66 1.1 mrg */
67 1.42 lukem
68 1.42 lukem #include <sys/cdefs.h>
69 1.134 ad __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.134 2023/09/10 15:01:11 ad Exp $");
70 1.42 lukem
71 1.42 lukem #include "opt_uvmhist.h"
72 1.69 yamt #include "opt_readahead.h"
73 1.1 mrg
74 1.125 ad #define __RWLOCK_PRIVATE
75 1.125 ad
76 1.1 mrg #include <sys/param.h>
77 1.1 mrg #include <sys/proc.h>
78 1.1 mrg #include <sys/systm.h>
79 1.1 mrg #include <sys/kernel.h>
80 1.9 pk #include <sys/pool.h>
81 1.24 chs #include <sys/buf.h>
82 1.94 ad #include <sys/module.h>
83 1.96 ad #include <sys/atomic.h>
84 1.110 chs #include <sys/kthread.h>
85 1.1 mrg
86 1.1 mrg #include <uvm/uvm.h>
87 1.77 yamt #include <uvm/uvm_pdpolicy.h>
88 1.119 ad #include <uvm/uvm_pgflcache.h>
89 1.1 mrg
90 1.107 matt #ifdef UVMHIST
91 1.133 mrg #ifndef UVMHIST_PDHIST_SIZE
92 1.133 mrg #define UVMHIST_PDHIST_SIZE 100
93 1.133 mrg #endif
94 1.132 mrg static struct kern_history_ent pdhistbuf[UVMHIST_PDHIST_SIZE];
95 1.132 mrg UVMHIST_DEFINE(pdhist) = UVMHIST_INITIALIZER(pdhisthist, pdhistbuf);
96 1.107 matt #endif
97 1.107 matt
98 1.1 mrg /*
99 1.45 wiz * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
100 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
101 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
102 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
103 1.14 chs */
104 1.14 chs
105 1.89 ad #define UVMPD_NUMDIRTYREACTS 16
106 1.14 chs
107 1.14 chs /*
108 1.1 mrg * local prototypes
109 1.1 mrg */
110 1.1 mrg
111 1.65 thorpej static void uvmpd_scan(void);
112 1.77 yamt static void uvmpd_scan_queue(void);
113 1.65 thorpej static void uvmpd_tune(void);
114 1.110 chs static void uvmpd_pool_drain_thread(void *);
115 1.110 chs static void uvmpd_pool_drain_wakeup(void);
116 1.1 mrg
117 1.101 pooka static unsigned int uvm_pagedaemon_waiters;
118 1.89 ad
119 1.110 chs /* State for the pool drainer thread */
120 1.117 ad static kmutex_t uvmpd_lock __cacheline_aligned;
121 1.110 chs static kcondvar_t uvmpd_pool_drain_cv;
122 1.110 chs static bool uvmpd_pool_drain_run = false;
123 1.110 chs
124 1.1 mrg /*
125 1.61 chs * XXX hack to avoid hangs when large processes fork.
126 1.61 chs */
127 1.96 ad u_int uvm_extrapages;
128 1.61 chs
129 1.61 chs /*
130 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
131 1.1 mrg *
132 1.1 mrg * => should be called with all locks released
133 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
134 1.1 mrg */
135 1.1 mrg
136 1.19 thorpej void
137 1.65 thorpej uvm_wait(const char *wmsg)
138 1.8 mrg {
139 1.8 mrg int timo = 0;
140 1.89 ad
141 1.111 chs if (uvm.pagedaemon_lwp == NULL)
142 1.111 chs panic("out of memory before the pagedaemon thread exists");
143 1.111 chs
144 1.117 ad mutex_spin_enter(&uvmpd_lock);
145 1.1 mrg
146 1.8 mrg /*
147 1.8 mrg * check for page daemon going to sleep (waiting for itself)
148 1.8 mrg */
149 1.1 mrg
150 1.86 ad if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
151 1.8 mrg /*
152 1.8 mrg * now we have a problem: the pagedaemon wants to go to
153 1.8 mrg * sleep until it frees more memory. but how can it
154 1.8 mrg * free more memory if it is asleep? that is a deadlock.
155 1.8 mrg * we have two options:
156 1.8 mrg * [1] panic now
157 1.8 mrg * [2] put a timeout on the sleep, thus causing the
158 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
159 1.8 mrg *
160 1.8 mrg * note that option [2] will only help us if we get lucky
161 1.8 mrg * and some other process on the system breaks the deadlock
162 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
163 1.8 mrg * to continue). for now we panic if DEBUG is defined,
164 1.8 mrg * otherwise we hope for the best with option [2] (better
165 1.8 mrg * yet, this should never happen in the first place!).
166 1.8 mrg */
167 1.1 mrg
168 1.8 mrg printf("pagedaemon: deadlock detected!\n");
169 1.8 mrg timo = hz >> 3; /* set timeout */
170 1.1 mrg #if defined(DEBUG)
171 1.8 mrg /* DEBUG: panic so we can debug it */
172 1.8 mrg panic("pagedaemon deadlock");
173 1.1 mrg #endif
174 1.8 mrg }
175 1.1 mrg
176 1.89 ad uvm_pagedaemon_waiters++;
177 1.17 thorpej wakeup(&uvm.pagedaemon); /* wake the daemon! */
178 1.117 ad UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvmpd_lock, false, wmsg, timo);
179 1.1 mrg }
180 1.1 mrg
181 1.77 yamt /*
182 1.77 yamt * uvm_kick_pdaemon: perform checks to determine if we need to
183 1.77 yamt * give the pagedaemon a nudge, and do so if necessary.
184 1.77 yamt */
185 1.77 yamt
186 1.77 yamt void
187 1.77 yamt uvm_kick_pdaemon(void)
188 1.77 yamt {
189 1.128 ad int fpages = uvm_availmem(false);
190 1.77 yamt
191 1.117 ad if (fpages + uvmexp.paging < uvmexp.freemin ||
192 1.117 ad (fpages + uvmexp.paging < uvmexp.freetarg &&
193 1.105 para uvmpdpol_needsscan_p()) ||
194 1.105 para uvm_km_va_starved_p()) {
195 1.117 ad mutex_spin_enter(&uvmpd_lock);
196 1.77 yamt wakeup(&uvm.pagedaemon);
197 1.117 ad mutex_spin_exit(&uvmpd_lock);
198 1.77 yamt }
199 1.77 yamt }
200 1.1 mrg
201 1.1 mrg /*
202 1.1 mrg * uvmpd_tune: tune paging parameters
203 1.1 mrg *
204 1.1 mrg * => called when ever memory is added (or removed?) to the system
205 1.1 mrg */
206 1.1 mrg
207 1.65 thorpej static void
208 1.37 chs uvmpd_tune(void)
209 1.8 mrg {
210 1.95 ad int val;
211 1.95 ad
212 1.130 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
213 1.1 mrg
214 1.93 ad /*
215 1.93 ad * try to keep 0.5% of available RAM free, but limit to between
216 1.93 ad * 128k and 1024k per-CPU. XXX: what are these values good for?
217 1.93 ad */
218 1.95 ad val = uvmexp.npages / 200;
219 1.95 ad val = MAX(val, (128*1024) >> PAGE_SHIFT);
220 1.95 ad val = MIN(val, (1024*1024) >> PAGE_SHIFT);
221 1.95 ad val *= ncpu;
222 1.23 bjh21
223 1.23 bjh21 /* Make sure there's always a user page free. */
224 1.95 ad if (val < uvmexp.reserve_kernel + 1)
225 1.95 ad val = uvmexp.reserve_kernel + 1;
226 1.95 ad uvmexp.freemin = val;
227 1.95 ad
228 1.96 ad /* Calculate free target. */
229 1.95 ad val = (uvmexp.freemin * 4) / 3;
230 1.95 ad if (val <= uvmexp.freemin)
231 1.95 ad val = uvmexp.freemin + 1;
232 1.96 ad uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
233 1.61 chs
234 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
235 1.109 pgoyette UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
236 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
237 1.1 mrg }
238 1.1 mrg
239 1.1 mrg /*
240 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
241 1.1 mrg */
242 1.1 mrg
243 1.8 mrg void
244 1.80 yamt uvm_pageout(void *arg)
245 1.8 mrg {
246 1.110 chs int npages = 0;
247 1.61 chs int extrapages = 0;
248 1.117 ad int fpages;
249 1.130 skrll
250 1.130 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
251 1.24 chs
252 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
253 1.8 mrg
254 1.117 ad mutex_init(&uvmpd_lock, MUTEX_DEFAULT, IPL_VM);
255 1.110 chs cv_init(&uvmpd_pool_drain_cv, "pooldrain");
256 1.110 chs
257 1.110 chs /* Create the pool drainer kernel thread. */
258 1.110 chs if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL,
259 1.110 chs uvmpd_pool_drain_thread, NULL, NULL, "pooldrain"))
260 1.110 chs panic("fork pooldrain");
261 1.110 chs
262 1.8 mrg /*
263 1.8 mrg * ensure correct priority and set paging parameters...
264 1.8 mrg */
265 1.8 mrg
266 1.86 ad uvm.pagedaemon_lwp = curlwp;
267 1.8 mrg npages = uvmexp.npages;
268 1.8 mrg uvmpd_tune();
269 1.8 mrg
270 1.8 mrg /*
271 1.8 mrg * main loop
272 1.8 mrg */
273 1.24 chs
274 1.24 chs for (;;) {
275 1.105 para bool needsscan, needsfree, kmem_va_starved;
276 1.105 para
277 1.105 para kmem_va_starved = uvm_km_va_starved_p();
278 1.24 chs
279 1.117 ad mutex_spin_enter(&uvmpd_lock);
280 1.105 para if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
281 1.105 para !kmem_va_starved) {
282 1.89 ad UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
283 1.89 ad UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
284 1.117 ad &uvmpd_lock, false, "pgdaemon", 0);
285 1.89 ad uvmexp.pdwoke++;
286 1.89 ad UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
287 1.89 ad } else {
288 1.117 ad mutex_spin_exit(&uvmpd_lock);
289 1.89 ad }
290 1.24 chs
291 1.8 mrg /*
292 1.113 ad * now recompute inactive count
293 1.8 mrg */
294 1.8 mrg
295 1.61 chs if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
296 1.24 chs npages = uvmexp.npages;
297 1.61 chs extrapages = uvm_extrapages;
298 1.24 chs uvmpd_tune();
299 1.24 chs }
300 1.24 chs
301 1.77 yamt uvmpdpol_tune();
302 1.24 chs
303 1.60 enami /*
304 1.60 enami * Estimate a hint. Note that bufmem are returned to
305 1.60 enami * system only when entire pool page is empty.
306 1.60 enami */
307 1.128 ad fpages = uvm_availmem(false);
308 1.109 pgoyette UVMHIST_LOG(pdhist," free/ftarg=%jd/%jd",
309 1.117 ad fpages, uvmexp.freetarg, 0,0);
310 1.8 mrg
311 1.117 ad needsfree = fpages + uvmexp.paging < uvmexp.freetarg;
312 1.93 ad needsscan = needsfree || uvmpdpol_needsscan_p();
313 1.89 ad
314 1.8 mrg /*
315 1.24 chs * scan if needed
316 1.8 mrg */
317 1.97 ad if (needsscan) {
318 1.24 chs uvmpd_scan();
319 1.97 ad }
320 1.8 mrg
321 1.8 mrg /*
322 1.24 chs * if there's any free memory to be had,
323 1.24 chs * wake up any waiters.
324 1.8 mrg */
325 1.128 ad if (uvm_availmem(false) > uvmexp.reserve_kernel ||
326 1.121 ad uvmexp.paging == 0) {
327 1.117 ad mutex_spin_enter(&uvmpd_lock);
328 1.24 chs wakeup(&uvmexp.free);
329 1.89 ad uvm_pagedaemon_waiters = 0;
330 1.117 ad mutex_spin_exit(&uvmpd_lock);
331 1.8 mrg }
332 1.1 mrg
333 1.8 mrg /*
334 1.113 ad * scan done. if we don't need free memory, we're done.
335 1.93 ad */
336 1.93 ad
337 1.105 para if (!needsfree && !kmem_va_starved)
338 1.93 ad continue;
339 1.93 ad
340 1.93 ad /*
341 1.110 chs * kick the pool drainer thread.
342 1.38 chs */
343 1.57 jdolecek
344 1.110 chs uvmpd_pool_drain_wakeup();
345 1.24 chs }
346 1.24 chs /*NOTREACHED*/
347 1.24 chs }
348 1.24 chs
349 1.89 ad void
350 1.89 ad uvm_pageout_start(int npages)
351 1.89 ad {
352 1.89 ad
353 1.113 ad atomic_add_int(&uvmexp.paging, npages);
354 1.89 ad }
355 1.89 ad
356 1.89 ad void
357 1.89 ad uvm_pageout_done(int npages)
358 1.89 ad {
359 1.89 ad
360 1.127 ad KASSERT(atomic_load_relaxed(&uvmexp.paging) >= npages);
361 1.127 ad
362 1.127 ad if (npages == 0) {
363 1.127 ad return;
364 1.127 ad }
365 1.127 ad
366 1.113 ad atomic_add_int(&uvmexp.paging, -npages);
367 1.89 ad
368 1.89 ad /*
369 1.89 ad * wake up either of pagedaemon or LWPs waiting for it.
370 1.89 ad */
371 1.89 ad
372 1.117 ad mutex_spin_enter(&uvmpd_lock);
373 1.128 ad if (uvm_availmem(false) <= uvmexp.reserve_kernel) {
374 1.81 yamt wakeup(&uvm.pagedaemon);
375 1.117 ad } else if (uvm_pagedaemon_waiters != 0) {
376 1.81 yamt wakeup(&uvmexp.free);
377 1.89 ad uvm_pagedaemon_waiters = 0;
378 1.8 mrg }
379 1.117 ad mutex_spin_exit(&uvmpd_lock);
380 1.1 mrg }
381 1.1 mrg
382 1.131 chs static krwlock_t *
383 1.131 chs uvmpd_page_owner_lock(struct vm_page *pg)
384 1.131 chs {
385 1.131 chs struct uvm_object *uobj = pg->uobject;
386 1.131 chs struct vm_anon *anon = pg->uanon;
387 1.131 chs krwlock_t *slock;
388 1.131 chs
389 1.131 chs KASSERT(mutex_owned(&pg->interlock));
390 1.131 chs
391 1.131 chs #ifdef DEBUG
392 1.131 chs if (uobj == (void *)0xdeadbeef || anon == (void *)0xdeadbeef) {
393 1.131 chs return NULL;
394 1.131 chs }
395 1.131 chs #endif
396 1.131 chs if (uobj != NULL) {
397 1.131 chs slock = uobj->vmobjlock;
398 1.131 chs KASSERTMSG(slock != NULL, "pg %p uobj %p, NULL lock", pg, uobj);
399 1.131 chs } else if (anon != NULL) {
400 1.131 chs slock = anon->an_lock;
401 1.131 chs KASSERTMSG(slock != NULL, "pg %p anon %p, NULL lock", pg, anon);
402 1.131 chs } else {
403 1.131 chs slock = NULL;
404 1.131 chs }
405 1.131 chs return slock;
406 1.131 chs }
407 1.131 chs
408 1.76 yamt /*
409 1.76 yamt * uvmpd_trylockowner: trylock the page's owner.
410 1.76 yamt *
411 1.113 ad * => called with page interlock held.
412 1.76 yamt * => resolve orphaned O->A loaned page.
413 1.89 ad * => return the locked mutex on success. otherwise, return NULL.
414 1.76 yamt */
415 1.76 yamt
416 1.125 ad krwlock_t *
417 1.76 yamt uvmpd_trylockowner(struct vm_page *pg)
418 1.76 yamt {
419 1.134 ad krwlock_t *slock, *heldslock = NULL;
420 1.89 ad
421 1.113 ad KASSERT(mutex_owned(&pg->interlock));
422 1.76 yamt
423 1.131 chs slock = uvmpd_page_owner_lock(pg);
424 1.131 chs if (slock == NULL) {
425 1.113 ad /* Page may be in state of flux - ignore. */
426 1.113 ad mutex_exit(&pg->interlock);
427 1.113 ad return NULL;
428 1.76 yamt }
429 1.76 yamt
430 1.131 chs if (rw_tryenter(slock, RW_WRITER)) {
431 1.131 chs goto success;
432 1.131 chs }
433 1.131 chs
434 1.113 ad /*
435 1.131 chs * The try-lock didn't work, so now do a blocking lock after
436 1.131 chs * dropping the page interlock. Prevent the owner lock from
437 1.131 chs * being freed by taking a hold on it first.
438 1.113 ad */
439 1.131 chs
440 1.131 chs rw_obj_hold(slock);
441 1.131 chs mutex_exit(&pg->interlock);
442 1.131 chs rw_enter(slock, RW_WRITER);
443 1.131 chs heldslock = slock;
444 1.76 yamt
445 1.113 ad /*
446 1.131 chs * Now we hold some owner lock. Check if the lock we hold
447 1.131 chs * is still the lock for the owner of the page.
448 1.131 chs * If it is then return it, otherwise release it and return NULL.
449 1.113 ad */
450 1.131 chs
451 1.131 chs mutex_enter(&pg->interlock);
452 1.131 chs slock = uvmpd_page_owner_lock(pg);
453 1.131 chs if (heldslock != slock) {
454 1.131 chs rw_exit(heldslock);
455 1.131 chs slock = NULL;
456 1.134 ad } else {
457 1.131 chs success:
458 1.131 chs /*
459 1.131 chs * Set PG_ANON if it isn't set already.
460 1.131 chs */
461 1.131 chs if (pg->uobject == NULL && (pg->flags & PG_ANON) == 0) {
462 1.131 chs KASSERT(pg->loan_count > 0);
463 1.131 chs pg->loan_count--;
464 1.131 chs pg->flags |= PG_ANON;
465 1.131 chs /* anon now owns it */
466 1.76 yamt }
467 1.76 yamt }
468 1.131 chs mutex_exit(&pg->interlock);
469 1.134 ad if (heldslock != NULL) {
470 1.134 ad rw_obj_free(heldslock);
471 1.134 ad }
472 1.131 chs return slock;
473 1.76 yamt }
474 1.76 yamt
475 1.73 yamt #if defined(VMSWAP)
476 1.73 yamt struct swapcluster {
477 1.73 yamt int swc_slot;
478 1.73 yamt int swc_nallocated;
479 1.73 yamt int swc_nused;
480 1.75 yamt struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
481 1.73 yamt };
482 1.73 yamt
483 1.73 yamt static void
484 1.73 yamt swapcluster_init(struct swapcluster *swc)
485 1.73 yamt {
486 1.73 yamt
487 1.73 yamt swc->swc_slot = 0;
488 1.89 ad swc->swc_nused = 0;
489 1.73 yamt }
490 1.73 yamt
491 1.73 yamt static int
492 1.73 yamt swapcluster_allocslots(struct swapcluster *swc)
493 1.73 yamt {
494 1.73 yamt int slot;
495 1.73 yamt int npages;
496 1.73 yamt
497 1.73 yamt if (swc->swc_slot != 0) {
498 1.73 yamt return 0;
499 1.73 yamt }
500 1.73 yamt
501 1.73 yamt /* Even with strange MAXPHYS, the shift
502 1.73 yamt implicitly rounds down to a page. */
503 1.73 yamt npages = MAXPHYS >> PAGE_SHIFT;
504 1.84 thorpej slot = uvm_swap_alloc(&npages, true);
505 1.73 yamt if (slot == 0) {
506 1.73 yamt return ENOMEM;
507 1.73 yamt }
508 1.73 yamt swc->swc_slot = slot;
509 1.73 yamt swc->swc_nallocated = npages;
510 1.73 yamt swc->swc_nused = 0;
511 1.73 yamt
512 1.73 yamt return 0;
513 1.73 yamt }
514 1.73 yamt
515 1.73 yamt static int
516 1.73 yamt swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
517 1.73 yamt {
518 1.73 yamt int slot;
519 1.73 yamt struct uvm_object *uobj;
520 1.73 yamt
521 1.73 yamt KASSERT(swc->swc_slot != 0);
522 1.73 yamt KASSERT(swc->swc_nused < swc->swc_nallocated);
523 1.113 ad KASSERT((pg->flags & PG_SWAPBACKED) != 0);
524 1.73 yamt
525 1.73 yamt slot = swc->swc_slot + swc->swc_nused;
526 1.73 yamt uobj = pg->uobject;
527 1.73 yamt if (uobj == NULL) {
528 1.125 ad KASSERT(rw_write_held(pg->uanon->an_lock));
529 1.73 yamt pg->uanon->an_swslot = slot;
530 1.73 yamt } else {
531 1.73 yamt int result;
532 1.73 yamt
533 1.125 ad KASSERT(rw_write_held(uobj->vmobjlock));
534 1.73 yamt result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
535 1.73 yamt if (result == -1) {
536 1.73 yamt return ENOMEM;
537 1.73 yamt }
538 1.73 yamt }
539 1.73 yamt swc->swc_pages[swc->swc_nused] = pg;
540 1.73 yamt swc->swc_nused++;
541 1.73 yamt
542 1.73 yamt return 0;
543 1.73 yamt }
544 1.73 yamt
545 1.73 yamt static void
546 1.83 thorpej swapcluster_flush(struct swapcluster *swc, bool now)
547 1.73 yamt {
548 1.73 yamt int slot;
549 1.73 yamt int nused;
550 1.73 yamt int nallocated;
551 1.108 martin int error __diagused;
552 1.73 yamt
553 1.73 yamt if (swc->swc_slot == 0) {
554 1.73 yamt return;
555 1.73 yamt }
556 1.73 yamt KASSERT(swc->swc_nused <= swc->swc_nallocated);
557 1.73 yamt
558 1.73 yamt slot = swc->swc_slot;
559 1.73 yamt nused = swc->swc_nused;
560 1.73 yamt nallocated = swc->swc_nallocated;
561 1.73 yamt
562 1.73 yamt /*
563 1.73 yamt * if this is the final pageout we could have a few
564 1.73 yamt * unused swap blocks. if so, free them now.
565 1.73 yamt */
566 1.73 yamt
567 1.73 yamt if (nused < nallocated) {
568 1.73 yamt if (!now) {
569 1.73 yamt return;
570 1.73 yamt }
571 1.73 yamt uvm_swap_free(slot + nused, nallocated - nused);
572 1.73 yamt }
573 1.73 yamt
574 1.73 yamt /*
575 1.73 yamt * now start the pageout.
576 1.73 yamt */
577 1.73 yamt
578 1.91 yamt if (nused > 0) {
579 1.91 yamt uvmexp.pdpageouts++;
580 1.91 yamt uvm_pageout_start(nused);
581 1.91 yamt error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
582 1.92 yamt KASSERT(error == 0 || error == ENOMEM);
583 1.91 yamt }
584 1.73 yamt
585 1.73 yamt /*
586 1.73 yamt * zero swslot to indicate that we are
587 1.73 yamt * no longer building a swap-backed cluster.
588 1.73 yamt */
589 1.73 yamt
590 1.73 yamt swc->swc_slot = 0;
591 1.89 ad swc->swc_nused = 0;
592 1.89 ad }
593 1.89 ad
594 1.89 ad static int
595 1.89 ad swapcluster_nused(struct swapcluster *swc)
596 1.89 ad {
597 1.89 ad
598 1.89 ad return swc->swc_nused;
599 1.73 yamt }
600 1.77 yamt
601 1.77 yamt /*
602 1.77 yamt * uvmpd_dropswap: free any swap allocated to this page.
603 1.77 yamt *
604 1.77 yamt * => called with owner locked.
605 1.84 thorpej * => return true if a page had an associated slot.
606 1.77 yamt */
607 1.77 yamt
608 1.119 ad bool
609 1.77 yamt uvmpd_dropswap(struct vm_page *pg)
610 1.77 yamt {
611 1.84 thorpej bool result = false;
612 1.77 yamt struct vm_anon *anon = pg->uanon;
613 1.77 yamt
614 1.113 ad if ((pg->flags & PG_ANON) && anon->an_swslot) {
615 1.77 yamt uvm_swap_free(anon->an_swslot, 1);
616 1.77 yamt anon->an_swslot = 0;
617 1.123 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
618 1.84 thorpej result = true;
619 1.113 ad } else if (pg->flags & PG_AOBJ) {
620 1.77 yamt int slot = uao_set_swslot(pg->uobject,
621 1.77 yamt pg->offset >> PAGE_SHIFT, 0);
622 1.77 yamt if (slot) {
623 1.77 yamt uvm_swap_free(slot, 1);
624 1.123 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
625 1.84 thorpej result = true;
626 1.77 yamt }
627 1.77 yamt }
628 1.77 yamt
629 1.77 yamt return result;
630 1.77 yamt }
631 1.77 yamt
632 1.73 yamt #endif /* defined(VMSWAP) */
633 1.73 yamt
634 1.1 mrg /*
635 1.77 yamt * uvmpd_scan_queue: scan an replace candidate list for pages
636 1.77 yamt * to clean or free.
637 1.1 mrg *
638 1.1 mrg * => we work on meeting our free target by converting inactive pages
639 1.1 mrg * into free pages.
640 1.1 mrg * => we handle the building of swap-backed clusters
641 1.1 mrg */
642 1.1 mrg
643 1.65 thorpej static void
644 1.77 yamt uvmpd_scan_queue(void)
645 1.8 mrg {
646 1.77 yamt struct vm_page *p;
647 1.8 mrg struct uvm_object *uobj;
648 1.37 chs struct vm_anon *anon;
649 1.68 yamt #if defined(VMSWAP)
650 1.73 yamt struct swapcluster swc;
651 1.68 yamt #endif /* defined(VMSWAP) */
652 1.77 yamt int dirtyreacts;
653 1.125 ad krwlock_t *slock;
654 1.130 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
655 1.1 mrg
656 1.8 mrg /*
657 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
658 1.24 chs * to stay in the loop while we have a page to scan or we have
659 1.8 mrg * a swap-cluster to build.
660 1.8 mrg */
661 1.24 chs
662 1.73 yamt #if defined(VMSWAP)
663 1.73 yamt swapcluster_init(&swc);
664 1.73 yamt #endif /* defined(VMSWAP) */
665 1.77 yamt
666 1.14 chs dirtyreacts = 0;
667 1.77 yamt uvmpdpol_scaninit();
668 1.43 chs
669 1.77 yamt while (/* CONSTCOND */ 1) {
670 1.24 chs
671 1.73 yamt /*
672 1.73 yamt * see if we've met the free target.
673 1.73 yamt */
674 1.73 yamt
675 1.128 ad if (uvm_availmem(false) + uvmexp.paging
676 1.89 ad #if defined(VMSWAP)
677 1.89 ad + swapcluster_nused(&swc)
678 1.89 ad #endif /* defined(VMSWAP) */
679 1.89 ad >= uvmexp.freetarg << 2 ||
680 1.73 yamt dirtyreacts == UVMPD_NUMDIRTYREACTS) {
681 1.73 yamt UVMHIST_LOG(pdhist," met free target: "
682 1.73 yamt "exit loop", 0, 0, 0, 0);
683 1.73 yamt break;
684 1.73 yamt }
685 1.24 chs
686 1.73 yamt /*
687 1.113 ad * first we have the pdpolicy select a victim page
688 1.113 ad * and attempt to lock the object that the page
689 1.73 yamt * belongs to. if our attempt fails we skip on to
690 1.73 yamt * the next page (no harm done). it is important to
691 1.73 yamt * "try" locking the object as we are locking in the
692 1.73 yamt * wrong order (pageq -> object) and we don't want to
693 1.73 yamt * deadlock.
694 1.73 yamt *
695 1.73 yamt * the only time we expect to see an ownerless page
696 1.113 ad * (i.e. a page with no uobject and !PG_ANON) is if an
697 1.73 yamt * anon has loaned a page from a uvm_object and the
698 1.73 yamt * uvm_object has dropped the ownership. in that
699 1.73 yamt * case, the anon can "take over" the loaned page
700 1.73 yamt * and make it its own.
701 1.73 yamt */
702 1.30 chs
703 1.113 ad p = uvmpdpol_selectvictim(&slock);
704 1.113 ad if (p == NULL) {
705 1.113 ad break;
706 1.76 yamt }
707 1.113 ad KASSERT(uvmpdpol_pageisqueued_p(p));
708 1.125 ad KASSERT(uvm_page_owner_locked_p(p, true));
709 1.113 ad KASSERT(p->wire_count == 0);
710 1.113 ad
711 1.113 ad /*
712 1.113 ad * we are below target and have a new page to consider.
713 1.113 ad */
714 1.113 ad
715 1.113 ad anon = p->uanon;
716 1.113 ad uobj = p->uobject;
717 1.113 ad
718 1.76 yamt if (p->flags & PG_BUSY) {
719 1.125 ad rw_exit(slock);
720 1.76 yamt uvmexp.pdbusy++;
721 1.76 yamt continue;
722 1.76 yamt }
723 1.76 yamt
724 1.73 yamt /* does the page belong to an object? */
725 1.73 yamt if (uobj != NULL) {
726 1.73 yamt uvmexp.pdobscan++;
727 1.73 yamt } else {
728 1.73 yamt #if defined(VMSWAP)
729 1.73 yamt KASSERT(anon != NULL);
730 1.73 yamt uvmexp.pdanscan++;
731 1.68 yamt #else /* defined(VMSWAP) */
732 1.73 yamt panic("%s: anon", __func__);
733 1.68 yamt #endif /* defined(VMSWAP) */
734 1.73 yamt }
735 1.8 mrg
736 1.37 chs
737 1.73 yamt /*
738 1.113 ad * we now have the object locked.
739 1.73 yamt * if the page is not swap-backed, call the object's
740 1.73 yamt * pager to flush and free the page.
741 1.73 yamt */
742 1.37 chs
743 1.69 yamt #if defined(READAHEAD_STATS)
744 1.113 ad if ((p->flags & PG_READAHEAD) != 0) {
745 1.113 ad p->flags &= ~PG_READAHEAD;
746 1.73 yamt uvm_ra_miss.ev_count++;
747 1.73 yamt }
748 1.69 yamt #endif /* defined(READAHEAD_STATS) */
749 1.69 yamt
750 1.113 ad if ((p->flags & PG_SWAPBACKED) == 0) {
751 1.82 alc KASSERT(uobj != NULL);
752 1.73 yamt (void) (uobj->pgops->pgo_put)(uobj, p->offset,
753 1.73 yamt p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
754 1.73 yamt continue;
755 1.73 yamt }
756 1.37 chs
757 1.73 yamt /*
758 1.73 yamt * the page is swap-backed. remove all the permissions
759 1.73 yamt * from the page so we can sync the modified info
760 1.73 yamt * without any race conditions. if the page is clean
761 1.73 yamt * we can free it now and continue.
762 1.73 yamt */
763 1.8 mrg
764 1.73 yamt pmap_page_protect(p, VM_PROT_NONE);
765 1.123 ad if (uvm_pagegetdirty(p) == UVM_PAGE_STATUS_UNKNOWN) {
766 1.123 ad if (pmap_clear_modify(p)) {
767 1.123 ad uvm_pagemarkdirty(p, UVM_PAGE_STATUS_DIRTY);
768 1.123 ad } else {
769 1.123 ad uvm_pagemarkdirty(p, UVM_PAGE_STATUS_CLEAN);
770 1.123 ad }
771 1.73 yamt }
772 1.123 ad if (uvm_pagegetdirty(p) != UVM_PAGE_STATUS_DIRTY) {
773 1.73 yamt int slot;
774 1.73 yamt int pageidx;
775 1.73 yamt
776 1.73 yamt pageidx = p->offset >> PAGE_SHIFT;
777 1.73 yamt uvm_pagefree(p);
778 1.113 ad atomic_inc_uint(&uvmexp.pdfreed);
779 1.8 mrg
780 1.8 mrg /*
781 1.73 yamt * for anons, we need to remove the page
782 1.73 yamt * from the anon ourselves. for aobjs,
783 1.73 yamt * pagefree did that for us.
784 1.8 mrg */
785 1.24 chs
786 1.73 yamt if (anon) {
787 1.73 yamt KASSERT(anon->an_swslot != 0);
788 1.73 yamt anon->an_page = NULL;
789 1.73 yamt slot = anon->an_swslot;
790 1.73 yamt } else {
791 1.73 yamt slot = uao_find_swslot(uobj, pageidx);
792 1.8 mrg }
793 1.73 yamt if (slot > 0) {
794 1.73 yamt /* this page is now only in swap. */
795 1.73 yamt KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
796 1.112 ad atomic_inc_uint(&uvmexp.swpgonly);
797 1.37 chs }
798 1.125 ad rw_exit(slock);
799 1.73 yamt continue;
800 1.73 yamt }
801 1.37 chs
802 1.77 yamt #if defined(VMSWAP)
803 1.73 yamt /*
804 1.73 yamt * this page is dirty, skip it if we'll have met our
805 1.73 yamt * free target when all the current pageouts complete.
806 1.73 yamt */
807 1.24 chs
808 1.128 ad if (uvm_availmem(false) + uvmexp.paging >
809 1.128 ad uvmexp.freetarg << 2) {
810 1.125 ad rw_exit(slock);
811 1.73 yamt continue;
812 1.73 yamt }
813 1.14 chs
814 1.73 yamt /*
815 1.73 yamt * free any swap space allocated to the page since
816 1.73 yamt * we'll have to write it again with its new data.
817 1.73 yamt */
818 1.24 chs
819 1.77 yamt uvmpd_dropswap(p);
820 1.14 chs
821 1.73 yamt /*
822 1.97 ad * start new swap pageout cluster (if necessary).
823 1.97 ad *
824 1.97 ad * if swap is full reactivate this page so that
825 1.97 ad * we eventually cycle all pages through the
826 1.97 ad * inactive queue.
827 1.73 yamt */
828 1.68 yamt
829 1.97 ad if (swapcluster_allocslots(&swc)) {
830 1.73 yamt dirtyreacts++;
831 1.122 ad uvm_pagelock(p);
832 1.73 yamt uvm_pageactivate(p);
833 1.122 ad uvm_pageunlock(p);
834 1.125 ad rw_exit(slock);
835 1.73 yamt continue;
836 1.8 mrg }
837 1.8 mrg
838 1.8 mrg /*
839 1.73 yamt * at this point, we're definitely going reuse this
840 1.73 yamt * page. mark the page busy and delayed-free.
841 1.73 yamt * we should remove the page from the page queues
842 1.73 yamt * so we don't ever look at it again.
843 1.73 yamt * adjust counters and such.
844 1.8 mrg */
845 1.8 mrg
846 1.73 yamt p->flags |= PG_BUSY;
847 1.77 yamt UVM_PAGE_OWN(p, "scan_queue");
848 1.113 ad p->flags |= PG_PAGEOUT;
849 1.113 ad uvmexp.pgswapout++;
850 1.73 yamt
851 1.122 ad uvm_pagelock(p);
852 1.73 yamt uvm_pagedequeue(p);
853 1.122 ad uvm_pageunlock(p);
854 1.73 yamt
855 1.8 mrg /*
856 1.73 yamt * add the new page to the cluster.
857 1.8 mrg */
858 1.8 mrg
859 1.73 yamt if (swapcluster_add(&swc, p)) {
860 1.73 yamt p->flags &= ~(PG_BUSY|PG_PAGEOUT);
861 1.73 yamt UVM_PAGE_OWN(p, NULL);
862 1.77 yamt dirtyreacts++;
863 1.122 ad uvm_pagelock(p);
864 1.73 yamt uvm_pageactivate(p);
865 1.122 ad uvm_pageunlock(p);
866 1.125 ad rw_exit(slock);
867 1.73 yamt continue;
868 1.73 yamt }
869 1.125 ad rw_exit(slock);
870 1.73 yamt
871 1.115 ad swapcluster_flush(&swc, false);
872 1.115 ad
873 1.8 mrg /*
874 1.115 ad * the pageout is in progress. bump counters and set up
875 1.31 chs * for the next loop.
876 1.8 mrg */
877 1.8 mrg
878 1.115 ad atomic_inc_uint(&uvmexp.pdpending);
879 1.77 yamt
880 1.77 yamt #else /* defined(VMSWAP) */
881 1.122 ad uvm_pagelock(p);
882 1.77 yamt uvm_pageactivate(p);
883 1.122 ad uvm_pageunlock(p);
884 1.125 ad rw_exit(slock);
885 1.77 yamt #endif /* defined(VMSWAP) */
886 1.73 yamt }
887 1.73 yamt
888 1.119 ad uvmpdpol_scanfini();
889 1.119 ad
890 1.73 yamt #if defined(VMSWAP)
891 1.84 thorpej swapcluster_flush(&swc, true);
892 1.68 yamt #endif /* defined(VMSWAP) */
893 1.1 mrg }
894 1.1 mrg
895 1.1 mrg /*
896 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
897 1.1 mrg */
898 1.1 mrg
899 1.65 thorpej static void
900 1.37 chs uvmpd_scan(void)
901 1.1 mrg {
902 1.117 ad int swap_shortage, pages_freed, fpages;
903 1.130 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
904 1.1 mrg
905 1.37 chs uvmexp.pdrevs++;
906 1.1 mrg
907 1.8 mrg /*
908 1.93 ad * work on meeting our targets. first we work on our free target
909 1.93 ad * by converting inactive pages into free pages. then we work on
910 1.93 ad * meeting our inactive target by converting active pages to
911 1.93 ad * inactive ones.
912 1.8 mrg */
913 1.8 mrg
914 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
915 1.8 mrg
916 1.14 chs pages_freed = uvmexp.pdfreed;
917 1.77 yamt uvmpd_scan_queue();
918 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
919 1.8 mrg
920 1.8 mrg /*
921 1.14 chs * detect if we're not going to be able to page anything out
922 1.14 chs * until we free some swap resources from active pages.
923 1.14 chs */
924 1.24 chs
925 1.14 chs swap_shortage = 0;
926 1.128 ad fpages = uvm_availmem(false);
927 1.117 ad if (fpages < uvmexp.freetarg &&
928 1.52 pk uvmexp.swpginuse >= uvmexp.swpgavail &&
929 1.52 pk !uvm_swapisfull() &&
930 1.14 chs pages_freed == 0) {
931 1.117 ad swap_shortage = uvmexp.freetarg - fpages;
932 1.14 chs }
933 1.24 chs
934 1.77 yamt uvmpdpol_balancequeue(swap_shortage);
935 1.93 ad
936 1.93 ad /*
937 1.94 ad * if still below the minimum target, try unloading kernel
938 1.94 ad * modules.
939 1.94 ad */
940 1.93 ad
941 1.128 ad if (uvm_availmem(false) < uvmexp.freemin) {
942 1.94 ad module_thread_kick();
943 1.93 ad }
944 1.1 mrg }
945 1.62 yamt
946 1.62 yamt /*
947 1.62 yamt * uvm_reclaimable: decide whether to wait for pagedaemon.
948 1.62 yamt *
949 1.84 thorpej * => return true if it seems to be worth to do uvm_wait.
950 1.62 yamt *
951 1.62 yamt * XXX should be tunable.
952 1.62 yamt * XXX should consider pools, etc?
953 1.62 yamt */
954 1.62 yamt
955 1.83 thorpej bool
956 1.62 yamt uvm_reclaimable(void)
957 1.62 yamt {
958 1.62 yamt int filepages;
959 1.77 yamt int active, inactive;
960 1.62 yamt
961 1.62 yamt /*
962 1.62 yamt * if swap is not full, no problem.
963 1.62 yamt */
964 1.62 yamt
965 1.62 yamt if (!uvm_swapisfull()) {
966 1.84 thorpej return true;
967 1.62 yamt }
968 1.62 yamt
969 1.62 yamt /*
970 1.62 yamt * file-backed pages can be reclaimed even when swap is full.
971 1.62 yamt * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
972 1.129 ad * NB: filepages calculation does not exclude EXECPAGES - intentional.
973 1.62 yamt *
974 1.62 yamt * XXX assume the worst case, ie. all wired pages are file-backed.
975 1.63 yamt *
976 1.63 yamt * XXX should consider about other reclaimable memory.
977 1.63 yamt * XXX ie. pools, traditional buffer cache.
978 1.62 yamt */
979 1.62 yamt
980 1.129 ad cpu_count_sync(false);
981 1.129 ad filepages = (int)(cpu_count_get(CPU_COUNT_FILECLEAN) +
982 1.129 ad cpu_count_get(CPU_COUNT_FILEUNKNOWN) +
983 1.129 ad cpu_count_get(CPU_COUNT_FILEDIRTY) - uvmexp.wired);
984 1.77 yamt uvm_estimatepageable(&active, &inactive);
985 1.77 yamt if (filepages >= MIN((active + inactive) >> 4,
986 1.62 yamt 5 * 1024 * 1024 >> PAGE_SHIFT)) {
987 1.84 thorpej return true;
988 1.62 yamt }
989 1.62 yamt
990 1.62 yamt /*
991 1.62 yamt * kill the process, fail allocation, etc..
992 1.62 yamt */
993 1.62 yamt
994 1.84 thorpej return false;
995 1.62 yamt }
996 1.77 yamt
997 1.77 yamt void
998 1.77 yamt uvm_estimatepageable(int *active, int *inactive)
999 1.77 yamt {
1000 1.77 yamt
1001 1.77 yamt uvmpdpol_estimatepageable(active, inactive);
1002 1.77 yamt }
1003 1.98 haad
1004 1.110 chs
1005 1.110 chs /*
1006 1.110 chs * Use a separate thread for draining pools.
1007 1.110 chs * This work can't done from the main pagedaemon thread because
1008 1.110 chs * some pool allocators need to take vm_map locks.
1009 1.110 chs */
1010 1.110 chs
1011 1.110 chs static void
1012 1.110 chs uvmpd_pool_drain_thread(void *arg)
1013 1.110 chs {
1014 1.119 ad struct pool *firstpool, *curpool;
1015 1.119 ad int bufcnt, lastslept;
1016 1.119 ad bool cycled;
1017 1.110 chs
1018 1.119 ad firstpool = NULL;
1019 1.119 ad cycled = true;
1020 1.110 chs for (;;) {
1021 1.119 ad /*
1022 1.119 ad * sleep until awoken by the pagedaemon.
1023 1.119 ad */
1024 1.117 ad mutex_enter(&uvmpd_lock);
1025 1.110 chs if (!uvmpd_pool_drain_run) {
1026 1.126 maxv lastslept = getticks();
1027 1.117 ad cv_wait(&uvmpd_pool_drain_cv, &uvmpd_lock);
1028 1.126 maxv if (getticks() != lastslept) {
1029 1.119 ad cycled = false;
1030 1.119 ad firstpool = NULL;
1031 1.119 ad }
1032 1.110 chs }
1033 1.110 chs uvmpd_pool_drain_run = false;
1034 1.117 ad mutex_exit(&uvmpd_lock);
1035 1.110 chs
1036 1.110 chs /*
1037 1.119 ad * rate limit draining, otherwise in desperate circumstances
1038 1.119 ad * this can totally saturate the system with xcall activity.
1039 1.119 ad */
1040 1.119 ad if (cycled) {
1041 1.119 ad kpause("uvmpdlmt", false, 1, NULL);
1042 1.119 ad cycled = false;
1043 1.119 ad firstpool = NULL;
1044 1.119 ad }
1045 1.119 ad
1046 1.119 ad /*
1047 1.119 ad * drain and temporarily disable the freelist cache.
1048 1.119 ad */
1049 1.119 ad uvm_pgflcache_pause();
1050 1.119 ad
1051 1.119 ad /*
1052 1.110 chs * kill unused metadata buffers.
1053 1.110 chs */
1054 1.128 ad bufcnt = uvmexp.freetarg - uvm_availmem(false);
1055 1.110 chs if (bufcnt < 0)
1056 1.110 chs bufcnt = 0;
1057 1.110 chs
1058 1.110 chs mutex_enter(&bufcache_lock);
1059 1.110 chs buf_drain(bufcnt << PAGE_SHIFT);
1060 1.110 chs mutex_exit(&bufcache_lock);
1061 1.110 chs
1062 1.110 chs /*
1063 1.130 skrll * drain a pool, and then re-enable the freelist cache.
1064 1.110 chs */
1065 1.119 ad (void)pool_drain(&curpool);
1066 1.119 ad KASSERT(curpool != NULL);
1067 1.119 ad if (firstpool == NULL) {
1068 1.119 ad firstpool = curpool;
1069 1.119 ad } else if (firstpool == curpool) {
1070 1.119 ad cycled = true;
1071 1.119 ad }
1072 1.119 ad uvm_pgflcache_resume();
1073 1.110 chs }
1074 1.110 chs /*NOTREACHED*/
1075 1.110 chs }
1076 1.110 chs
1077 1.110 chs static void
1078 1.110 chs uvmpd_pool_drain_wakeup(void)
1079 1.110 chs {
1080 1.110 chs
1081 1.117 ad mutex_enter(&uvmpd_lock);
1082 1.110 chs uvmpd_pool_drain_run = true;
1083 1.110 chs cv_signal(&uvmpd_pool_drain_cv);
1084 1.117 ad mutex_exit(&uvmpd_lock);
1085 1.110 chs }
1086