uvm_pdaemon.c revision 1.15 1 1.15 mycroft /* $NetBSD: uvm_pdaemon.c,v 1.15 1999/03/30 10:12:01 mycroft Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.1 mrg * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.1 mrg *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.1 mrg *
54 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.1 mrg *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.7 mrg #include "opt_uvmhist.h"
70 1.7 mrg
71 1.1 mrg /*
72 1.1 mrg * uvm_pdaemon.c: the page daemon
73 1.1 mrg */
74 1.1 mrg
75 1.1 mrg #include <sys/param.h>
76 1.1 mrg #include <sys/proc.h>
77 1.1 mrg #include <sys/systm.h>
78 1.1 mrg #include <sys/kernel.h>
79 1.9 pk #include <sys/pool.h>
80 1.1 mrg
81 1.1 mrg #include <vm/vm.h>
82 1.1 mrg #include <vm/vm_page.h>
83 1.1 mrg #include <vm/vm_kern.h>
84 1.1 mrg
85 1.1 mrg #include <uvm/uvm.h>
86 1.1 mrg
87 1.1 mrg /*
88 1.14 chs * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
89 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
90 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
91 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
92 1.14 chs */
93 1.14 chs
94 1.14 chs #define UVMPD_NUMDIRTYREACTS 16
95 1.14 chs
96 1.14 chs
97 1.14 chs /*
98 1.1 mrg * local prototypes
99 1.1 mrg */
100 1.1 mrg
101 1.1 mrg static void uvmpd_scan __P((void));
102 1.1 mrg static boolean_t uvmpd_scan_inactive __P((struct pglist *));
103 1.1 mrg static void uvmpd_tune __P((void));
104 1.1 mrg
105 1.1 mrg
106 1.1 mrg /*
107 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
108 1.1 mrg *
109 1.1 mrg * => should be called with all locks released
110 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
111 1.1 mrg */
112 1.1 mrg
113 1.1 mrg void uvm_wait(wmsg)
114 1.8 mrg char *wmsg;
115 1.8 mrg {
116 1.8 mrg int timo = 0;
117 1.8 mrg int s = splbio();
118 1.1 mrg
119 1.8 mrg /*
120 1.8 mrg * check for page daemon going to sleep (waiting for itself)
121 1.8 mrg */
122 1.1 mrg
123 1.8 mrg if (curproc == uvm.pagedaemon_proc) {
124 1.8 mrg /*
125 1.8 mrg * now we have a problem: the pagedaemon wants to go to
126 1.8 mrg * sleep until it frees more memory. but how can it
127 1.8 mrg * free more memory if it is asleep? that is a deadlock.
128 1.8 mrg * we have two options:
129 1.8 mrg * [1] panic now
130 1.8 mrg * [2] put a timeout on the sleep, thus causing the
131 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
132 1.8 mrg *
133 1.8 mrg * note that option [2] will only help us if we get lucky
134 1.8 mrg * and some other process on the system breaks the deadlock
135 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
136 1.8 mrg * to continue). for now we panic if DEBUG is defined,
137 1.8 mrg * otherwise we hope for the best with option [2] (better
138 1.8 mrg * yet, this should never happen in the first place!).
139 1.8 mrg */
140 1.1 mrg
141 1.8 mrg printf("pagedaemon: deadlock detected!\n");
142 1.8 mrg timo = hz >> 3; /* set timeout */
143 1.1 mrg #if defined(DEBUG)
144 1.8 mrg /* DEBUG: panic so we can debug it */
145 1.8 mrg panic("pagedaemon deadlock");
146 1.1 mrg #endif
147 1.8 mrg }
148 1.1 mrg
149 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
150 1.8 mrg thread_wakeup(&uvm.pagedaemon); /* wake the daemon! */
151 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
152 1.8 mrg timo);
153 1.1 mrg
154 1.8 mrg splx(s);
155 1.1 mrg }
156 1.1 mrg
157 1.1 mrg
158 1.1 mrg /*
159 1.1 mrg * uvmpd_tune: tune paging parameters
160 1.1 mrg *
161 1.1 mrg * => called when ever memory is added (or removed?) to the system
162 1.1 mrg * => caller must call with page queues locked
163 1.1 mrg */
164 1.1 mrg
165 1.8 mrg static void
166 1.8 mrg uvmpd_tune()
167 1.8 mrg {
168 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
169 1.1 mrg
170 1.8 mrg uvmexp.freemin = uvmexp.npages / 20;
171 1.1 mrg
172 1.8 mrg /* between 16k and 256k */
173 1.8 mrg /* XXX: what are these values good for? */
174 1.11 chs uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
175 1.11 chs uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
176 1.1 mrg
177 1.8 mrg uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
178 1.8 mrg if (uvmexp.freetarg <= uvmexp.freemin)
179 1.8 mrg uvmexp.freetarg = uvmexp.freemin + 1;
180 1.1 mrg
181 1.8 mrg /* uvmexp.inactarg: computed in main daemon loop */
182 1.1 mrg
183 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
184 1.8 mrg UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
185 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
186 1.1 mrg }
187 1.1 mrg
188 1.1 mrg /*
189 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
190 1.1 mrg */
191 1.1 mrg
192 1.8 mrg void
193 1.8 mrg uvm_pageout()
194 1.8 mrg {
195 1.8 mrg int npages = 0;
196 1.8 mrg int s;
197 1.8 mrg struct uvm_aiodesc *aio, *nextaio;
198 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
199 1.8 mrg
200 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
201 1.8 mrg
202 1.8 mrg /*
203 1.8 mrg * ensure correct priority and set paging parameters...
204 1.8 mrg */
205 1.8 mrg
206 1.8 mrg uvm.pagedaemon_proc = curproc;
207 1.8 mrg (void) spl0();
208 1.8 mrg uvm_lock_pageq();
209 1.8 mrg npages = uvmexp.npages;
210 1.8 mrg uvmpd_tune();
211 1.8 mrg uvm_unlock_pageq();
212 1.8 mrg
213 1.8 mrg /*
214 1.8 mrg * main loop
215 1.8 mrg */
216 1.8 mrg while (TRUE) {
217 1.1 mrg
218 1.8 mrg /*
219 1.8 mrg * carefully attempt to go to sleep (without losing "wakeups"!).
220 1.8 mrg * we need splbio because we want to make sure the aio_done list
221 1.8 mrg * is totally empty before we go to sleep.
222 1.8 mrg */
223 1.8 mrg
224 1.8 mrg s = splbio();
225 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
226 1.8 mrg
227 1.8 mrg /*
228 1.8 mrg * if we've got done aio's, then bypass the sleep
229 1.8 mrg */
230 1.8 mrg
231 1.8 mrg if (uvm.aio_done.tqh_first == NULL) {
232 1.8 mrg UVMHIST_LOG(maphist," <<SLEEPING>>",0,0,0,0);
233 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
234 1.8 mrg &uvm.pagedaemon_lock, FALSE, "daemon_slp", 0);
235 1.8 mrg uvmexp.pdwoke++;
236 1.8 mrg UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
237 1.8 mrg
238 1.8 mrg /* relock pagedaemon_lock, still at splbio */
239 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
240 1.8 mrg }
241 1.8 mrg
242 1.8 mrg /*
243 1.8 mrg * check for done aio structures
244 1.8 mrg */
245 1.8 mrg
246 1.8 mrg aio = uvm.aio_done.tqh_first; /* save current list (if any)*/
247 1.8 mrg if (aio) {
248 1.8 mrg TAILQ_INIT(&uvm.aio_done); /* zero global list */
249 1.8 mrg }
250 1.1 mrg
251 1.8 mrg simple_unlock(&uvm.pagedaemon_lock); /* unlock */
252 1.8 mrg splx(s); /* drop splbio */
253 1.1 mrg
254 1.8 mrg /*
255 1.8 mrg * first clear out any pending aios (to free space in case we
256 1.8 mrg * want to pageout more stuff).
257 1.8 mrg */
258 1.8 mrg
259 1.8 mrg for (/*null*/; aio != NULL ; aio = nextaio) {
260 1.8 mrg
261 1.8 mrg uvmexp.paging -= aio->npages;
262 1.8 mrg nextaio = aio->aioq.tqe_next;
263 1.8 mrg aio->aiodone(aio);
264 1.8 mrg
265 1.8 mrg }
266 1.9 pk
267 1.9 pk /* Next, drain pool resources */
268 1.9 pk pool_drain(0);
269 1.8 mrg
270 1.8 mrg /*
271 1.8 mrg * now lock page queues and recompute inactive count
272 1.8 mrg */
273 1.8 mrg uvm_lock_pageq();
274 1.8 mrg
275 1.8 mrg if (npages != uvmexp.npages) { /* check for new pages? */
276 1.8 mrg npages = uvmexp.npages;
277 1.8 mrg uvmpd_tune();
278 1.8 mrg }
279 1.8 mrg
280 1.8 mrg uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
281 1.8 mrg if (uvmexp.inactarg <= uvmexp.freetarg)
282 1.8 mrg uvmexp.inactarg = uvmexp.freetarg + 1;
283 1.8 mrg
284 1.8 mrg UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
285 1.8 mrg uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
286 1.8 mrg uvmexp.inactarg);
287 1.8 mrg
288 1.8 mrg /*
289 1.8 mrg * scan if needed
290 1.8 mrg * [XXX: note we are reading uvm.free without locking]
291 1.8 mrg */
292 1.8 mrg if (uvmexp.free < uvmexp.freetarg ||
293 1.8 mrg uvmexp.inactive < uvmexp.inactarg)
294 1.8 mrg uvmpd_scan();
295 1.8 mrg
296 1.8 mrg /*
297 1.8 mrg * done scan. unlock page queues (the only lock we are holding)
298 1.8 mrg */
299 1.8 mrg uvm_unlock_pageq();
300 1.8 mrg
301 1.8 mrg /*
302 1.8 mrg * done! restart loop.
303 1.8 mrg */
304 1.15 mycroft if (uvmexp.free > uvmexp.reserve_kernel ||
305 1.14 chs uvmexp.paging == 0)
306 1.14 chs thread_wakeup(&uvmexp.free);
307 1.8 mrg }
308 1.8 mrg /*NOTREACHED*/
309 1.1 mrg }
310 1.1 mrg
311 1.1 mrg /*
312 1.1 mrg * uvmpd_scan_inactive: the first loop of uvmpd_scan broken out into
313 1.1 mrg * its own function for ease of reading.
314 1.1 mrg *
315 1.1 mrg * => called with page queues locked
316 1.1 mrg * => we work on meeting our free target by converting inactive pages
317 1.1 mrg * into free pages.
318 1.1 mrg * => we handle the building of swap-backed clusters
319 1.1 mrg * => we return TRUE if we are exiting because we met our target
320 1.1 mrg */
321 1.1 mrg
322 1.8 mrg static boolean_t
323 1.8 mrg uvmpd_scan_inactive(pglst)
324 1.8 mrg struct pglist *pglst;
325 1.8 mrg {
326 1.8 mrg boolean_t retval = FALSE; /* assume we haven't hit target */
327 1.8 mrg int s, free, result;
328 1.8 mrg struct vm_page *p, *nextpg;
329 1.8 mrg struct uvm_object *uobj;
330 1.11 chs struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
331 1.8 mrg int npages;
332 1.11 chs struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; /* XXX: see below */
333 1.8 mrg int swnpages, swcpages; /* XXX: see below */
334 1.14 chs int swslot;
335 1.8 mrg struct vm_anon *anon;
336 1.8 mrg boolean_t swap_backed;
337 1.10 eeh vaddr_t start;
338 1.14 chs int dirtyreacts;
339 1.8 mrg UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
340 1.1 mrg
341 1.8 mrg /*
342 1.8 mrg * note: we currently keep swap-backed pages on a seperate inactive
343 1.8 mrg * list from object-backed pages. however, merging the two lists
344 1.8 mrg * back together again hasn't been ruled out. thus, we keep our
345 1.8 mrg * swap cluster in "swpps" rather than in pps (allows us to mix
346 1.8 mrg * clustering types in the event of a mixed inactive queue).
347 1.8 mrg */
348 1.1 mrg
349 1.8 mrg /*
350 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
351 1.8 mrg * to stay in the loop while we have a page to scan or we have
352 1.8 mrg * a swap-cluster to build.
353 1.8 mrg */
354 1.8 mrg swslot = 0;
355 1.8 mrg swnpages = swcpages = 0;
356 1.8 mrg free = 0;
357 1.14 chs dirtyreacts = 0;
358 1.8 mrg
359 1.8 mrg for (p = pglst->tqh_first ; p != NULL || swslot != 0 ; p = nextpg) {
360 1.8 mrg
361 1.8 mrg /*
362 1.8 mrg * note that p can be NULL iff we have traversed the whole
363 1.8 mrg * list and need to do one final swap-backed clustered pageout.
364 1.8 mrg */
365 1.8 mrg if (p) {
366 1.8 mrg /*
367 1.8 mrg * update our copy of "free" and see if we've met
368 1.8 mrg * our target
369 1.8 mrg */
370 1.8 mrg s = splimp();
371 1.8 mrg uvm_lock_fpageq();
372 1.8 mrg free = uvmexp.free;
373 1.8 mrg uvm_unlock_fpageq();
374 1.8 mrg splx(s);
375 1.8 mrg
376 1.14 chs if (free + uvmexp.paging >= uvmexp.freetarg << 2 ||
377 1.14 chs dirtyreacts == UVMPD_NUMDIRTYREACTS) {
378 1.8 mrg UVMHIST_LOG(pdhist," met free target: "
379 1.8 mrg "exit loop", 0, 0, 0, 0);
380 1.8 mrg retval = TRUE; /* hit the target! */
381 1.8 mrg
382 1.8 mrg if (swslot == 0)
383 1.8 mrg /* exit now if no swap-i/o pending */
384 1.8 mrg break;
385 1.8 mrg
386 1.8 mrg /* set p to null to signal final swap i/o */
387 1.8 mrg p = NULL;
388 1.8 mrg }
389 1.8 mrg }
390 1.8 mrg
391 1.8 mrg uobj = NULL; /* be safe and shut gcc up */
392 1.8 mrg anon = NULL; /* be safe and shut gcc up */
393 1.8 mrg
394 1.8 mrg if (p) { /* if (we have a new page to consider) */
395 1.8 mrg /*
396 1.8 mrg * we are below target and have a new page to consider.
397 1.8 mrg */
398 1.8 mrg uvmexp.pdscans++;
399 1.8 mrg nextpg = p->pageq.tqe_next;
400 1.8 mrg
401 1.8 mrg /*
402 1.8 mrg * move referenced pages back to active queue and
403 1.8 mrg * skip to next page (unlikely to happen since
404 1.8 mrg * inactive pages shouldn't have any valid mappings
405 1.8 mrg * and we cleared reference before deactivating).
406 1.8 mrg */
407 1.8 mrg if (pmap_is_referenced(PMAP_PGARG(p))) {
408 1.8 mrg uvm_pageactivate(p);
409 1.8 mrg uvmexp.pdreact++;
410 1.8 mrg continue;
411 1.8 mrg }
412 1.8 mrg
413 1.8 mrg /*
414 1.8 mrg * first we attempt to lock the object that this page
415 1.8 mrg * belongs to. if our attempt fails we skip on to
416 1.8 mrg * the next page (no harm done). it is important to
417 1.8 mrg * "try" locking the object as we are locking in the
418 1.8 mrg * wrong order (pageq -> object) and we don't want to
419 1.8 mrg * get deadlocked.
420 1.8 mrg *
421 1.8 mrg * the only time we exepct to see an ownerless page
422 1.8 mrg * (i.e. a page with no uobject and !PQ_ANON) is if an
423 1.8 mrg * anon has loaned a page from a uvm_object and the
424 1.8 mrg * uvm_object has dropped the ownership. in that
425 1.8 mrg * case, the anon can "take over" the loaned page
426 1.8 mrg * and make it its own.
427 1.8 mrg */
428 1.8 mrg
429 1.8 mrg /* is page part of an anon or ownerless ? */
430 1.8 mrg if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
431 1.1 mrg
432 1.8 mrg anon = p->uanon;
433 1.1 mrg
434 1.1 mrg #ifdef DIAGNOSTIC
435 1.8 mrg /* to be on inactive q, page must be part
436 1.8 mrg * of _something_ */
437 1.8 mrg if (anon == NULL)
438 1.8 mrg panic("pagedaemon: page with no anon "
439 1.8 mrg "or object detected - loop 1");
440 1.1 mrg #endif
441 1.1 mrg
442 1.8 mrg if (!simple_lock_try(&anon->an_lock))
443 1.8 mrg /* lock failed, skip this page */
444 1.8 mrg continue;
445 1.8 mrg
446 1.8 mrg /*
447 1.8 mrg * if the page is ownerless, claim it in the
448 1.8 mrg * name of "anon"!
449 1.8 mrg */
450 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
451 1.1 mrg #ifdef DIAGNOSTIC
452 1.8 mrg if (p->loan_count < 1)
453 1.8 mrg panic("pagedaemon: non-loaned "
454 1.8 mrg "ownerless page detected -"
455 1.8 mrg " loop 1");
456 1.1 mrg #endif
457 1.8 mrg p->loan_count--;
458 1.8 mrg p->pqflags |= PQ_ANON; /* anon now owns it */
459 1.8 mrg }
460 1.8 mrg
461 1.8 mrg if (p->flags & PG_BUSY) {
462 1.8 mrg simple_unlock(&anon->an_lock);
463 1.8 mrg uvmexp.pdbusy++;
464 1.8 mrg /* someone else owns page, skip it */
465 1.8 mrg continue;
466 1.8 mrg }
467 1.8 mrg
468 1.8 mrg uvmexp.pdanscan++;
469 1.8 mrg
470 1.8 mrg } else {
471 1.8 mrg
472 1.8 mrg uobj = p->uobject;
473 1.8 mrg
474 1.8 mrg if (!simple_lock_try(&uobj->vmobjlock))
475 1.8 mrg /* lock failed, skip this page */
476 1.8 mrg continue;
477 1.8 mrg
478 1.8 mrg if (p->flags & PG_BUSY) {
479 1.8 mrg simple_unlock(&uobj->vmobjlock);
480 1.8 mrg uvmexp.pdbusy++;
481 1.8 mrg /* someone else owns page, skip it */
482 1.8 mrg continue;
483 1.8 mrg }
484 1.8 mrg
485 1.8 mrg uvmexp.pdobscan++;
486 1.8 mrg }
487 1.8 mrg
488 1.8 mrg /*
489 1.8 mrg * we now have the object and the page queues locked.
490 1.8 mrg * the page is not busy. if the page is clean we
491 1.8 mrg * can free it now and continue.
492 1.8 mrg */
493 1.8 mrg
494 1.8 mrg if (p->flags & PG_CLEAN) {
495 1.14 chs if (p->pqflags & PQ_SWAPBACKED) {
496 1.14 chs /* this page now lives only in swap */
497 1.14 chs simple_lock(&uvm.swap_data_lock);
498 1.14 chs uvmexp.swpgonly++;
499 1.14 chs simple_unlock(&uvm.swap_data_lock);
500 1.14 chs }
501 1.14 chs
502 1.8 mrg /* zap all mappings with pmap_page_protect... */
503 1.8 mrg pmap_page_protect(PMAP_PGARG(p), VM_PROT_NONE);
504 1.8 mrg uvm_pagefree(p);
505 1.8 mrg uvmexp.pdfreed++;
506 1.8 mrg
507 1.8 mrg if (anon) {
508 1.1 mrg #ifdef DIAGNOSTIC
509 1.8 mrg /*
510 1.8 mrg * an anonymous page can only be clean
511 1.8 mrg * if it has valid backing store.
512 1.8 mrg */
513 1.8 mrg if (anon->an_swslot == 0)
514 1.8 mrg panic("pagedaemon: clean anon "
515 1.8 mrg "page without backing store?");
516 1.1 mrg #endif
517 1.8 mrg /* remove from object */
518 1.8 mrg anon->u.an_page = NULL;
519 1.8 mrg simple_unlock(&anon->an_lock);
520 1.8 mrg } else {
521 1.8 mrg /* pagefree has already removed the
522 1.8 mrg * page from the object */
523 1.8 mrg simple_unlock(&uobj->vmobjlock);
524 1.8 mrg }
525 1.8 mrg continue;
526 1.8 mrg }
527 1.8 mrg
528 1.8 mrg /*
529 1.8 mrg * this page is dirty, skip it if we'll have met our
530 1.8 mrg * free target when all the current pageouts complete.
531 1.8 mrg */
532 1.14 chs if (free + uvmexp.paging > uvmexp.freetarg << 2) {
533 1.8 mrg if (anon) {
534 1.8 mrg simple_unlock(&anon->an_lock);
535 1.8 mrg } else {
536 1.8 mrg simple_unlock(&uobj->vmobjlock);
537 1.8 mrg }
538 1.8 mrg continue;
539 1.8 mrg }
540 1.8 mrg
541 1.8 mrg /*
542 1.14 chs * this page is dirty, but we can't page it out
543 1.14 chs * since all pages in swap are only in swap.
544 1.14 chs * reactivate it so that we eventually cycle
545 1.14 chs * all pages thru the inactive queue.
546 1.14 chs */
547 1.14 chs #ifdef DIAGNOSTIC
548 1.14 chs if (uvmexp.swpgonly > uvmexp.swpages) {
549 1.14 chs panic("uvmexp.swpgonly botch");
550 1.14 chs }
551 1.14 chs #endif
552 1.14 chs if ((p->pqflags & PQ_SWAPBACKED) &&
553 1.14 chs uvmexp.swpgonly == uvmexp.swpages) {
554 1.14 chs dirtyreacts++;
555 1.14 chs uvm_pageactivate(p);
556 1.14 chs if (anon) {
557 1.14 chs simple_unlock(&anon->an_lock);
558 1.14 chs } else {
559 1.14 chs simple_unlock(&uobj->vmobjlock);
560 1.14 chs }
561 1.14 chs continue;
562 1.14 chs }
563 1.14 chs
564 1.14 chs /*
565 1.14 chs * if the page is swap-backed and dirty and swap space
566 1.14 chs * is full, free any swap allocated to the page
567 1.14 chs * so that other pages can be paged out.
568 1.14 chs */
569 1.14 chs #ifdef DIAGNOSTIC
570 1.14 chs if (uvmexp.swpginuse > uvmexp.swpages) {
571 1.14 chs panic("uvmexp.swpginuse botch");
572 1.14 chs }
573 1.14 chs #endif
574 1.14 chs if ((p->pqflags & PQ_SWAPBACKED) &&
575 1.14 chs uvmexp.swpginuse == uvmexp.swpages) {
576 1.14 chs
577 1.14 chs if ((p->pqflags & PQ_ANON) &&
578 1.14 chs p->uanon->an_swslot) {
579 1.14 chs uvm_swap_free(p->uanon->an_swslot, 1);
580 1.14 chs p->uanon->an_swslot = 0;
581 1.14 chs }
582 1.14 chs if (p->pqflags & PQ_AOBJ) {
583 1.14 chs uao_dropswap(p->uobject,
584 1.14 chs p->offset >> PAGE_SHIFT);
585 1.14 chs }
586 1.14 chs }
587 1.14 chs
588 1.14 chs /*
589 1.8 mrg * the page we are looking at is dirty. we must
590 1.8 mrg * clean it before it can be freed. to do this we
591 1.8 mrg * first mark the page busy so that no one else will
592 1.8 mrg * touch the page. we write protect all the mappings
593 1.8 mrg * of the page so that no one touches it while it is
594 1.8 mrg * in I/O.
595 1.8 mrg */
596 1.8 mrg
597 1.8 mrg swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
598 1.8 mrg p->flags |= PG_BUSY; /* now we own it */
599 1.8 mrg UVM_PAGE_OWN(p, "scan_inactive");
600 1.8 mrg pmap_page_protect(PMAP_PGARG(p), VM_PROT_READ);
601 1.8 mrg uvmexp.pgswapout++;
602 1.8 mrg
603 1.8 mrg /*
604 1.8 mrg * for swap-backed pages we need to (re)allocate
605 1.8 mrg * swap space.
606 1.8 mrg */
607 1.8 mrg if (swap_backed) {
608 1.8 mrg
609 1.8 mrg /*
610 1.8 mrg * free old swap slot (if any)
611 1.8 mrg */
612 1.8 mrg if (anon) {
613 1.8 mrg if (anon->an_swslot) {
614 1.8 mrg uvm_swap_free(anon->an_swslot,
615 1.8 mrg 1);
616 1.8 mrg anon->an_swslot = 0;
617 1.8 mrg }
618 1.8 mrg } else {
619 1.14 chs uao_dropswap(uobj,
620 1.14 chs p->offset >> PAGE_SHIFT);
621 1.8 mrg }
622 1.8 mrg
623 1.8 mrg /*
624 1.8 mrg * start new cluster (if necessary)
625 1.8 mrg */
626 1.8 mrg if (swslot == 0) {
627 1.8 mrg /* want this much */
628 1.11 chs swnpages = MAXBSIZE >> PAGE_SHIFT;
629 1.8 mrg
630 1.8 mrg swslot = uvm_swap_alloc(&swnpages,
631 1.8 mrg TRUE);
632 1.8 mrg
633 1.8 mrg if (swslot == 0) {
634 1.8 mrg /* no swap? give up! */
635 1.8 mrg p->flags &= ~PG_BUSY;
636 1.8 mrg UVM_PAGE_OWN(p, NULL);
637 1.8 mrg if (anon)
638 1.8 mrg simple_unlock(
639 1.8 mrg &anon->an_lock);
640 1.8 mrg else
641 1.8 mrg simple_unlock(
642 1.8 mrg &uobj->vmobjlock);
643 1.8 mrg continue;
644 1.8 mrg }
645 1.8 mrg swcpages = 0; /* cluster is empty */
646 1.8 mrg }
647 1.8 mrg
648 1.8 mrg /*
649 1.8 mrg * add block to cluster
650 1.8 mrg */
651 1.8 mrg swpps[swcpages] = p;
652 1.8 mrg if (anon)
653 1.8 mrg anon->an_swslot = swslot + swcpages;
654 1.8 mrg else
655 1.8 mrg uao_set_swslot(uobj,
656 1.11 chs p->offset >> PAGE_SHIFT,
657 1.8 mrg swslot + swcpages);
658 1.8 mrg swcpages++;
659 1.8 mrg
660 1.8 mrg /* done (swap-backed) */
661 1.8 mrg }
662 1.8 mrg
663 1.8 mrg /* end: if (p) ["if we have new page to consider"] */
664 1.8 mrg } else {
665 1.8 mrg
666 1.8 mrg /* if p == NULL we must be doing a last swap i/o */
667 1.8 mrg swap_backed = TRUE;
668 1.8 mrg }
669 1.8 mrg
670 1.8 mrg /*
671 1.8 mrg * now consider doing the pageout.
672 1.8 mrg *
673 1.8 mrg * for swap-backed pages, we do the pageout if we have either
674 1.8 mrg * filled the cluster (in which case (swnpages == swcpages) or
675 1.8 mrg * run out of pages (p == NULL).
676 1.8 mrg *
677 1.8 mrg * for object pages, we always do the pageout.
678 1.8 mrg */
679 1.8 mrg if (swap_backed) {
680 1.8 mrg
681 1.8 mrg if (p) { /* if we just added a page to cluster */
682 1.8 mrg if (anon)
683 1.8 mrg simple_unlock(&anon->an_lock);
684 1.8 mrg else
685 1.8 mrg simple_unlock(&uobj->vmobjlock);
686 1.8 mrg
687 1.8 mrg /* cluster not full yet? */
688 1.8 mrg if (swcpages < swnpages)
689 1.8 mrg continue;
690 1.8 mrg }
691 1.8 mrg
692 1.8 mrg /* starting I/O now... set up for it */
693 1.8 mrg npages = swcpages;
694 1.8 mrg ppsp = swpps;
695 1.8 mrg /* for swap-backed pages only */
696 1.10 eeh start = (vaddr_t) swslot;
697 1.8 mrg
698 1.8 mrg /* if this is final pageout we could have a few
699 1.8 mrg * extra swap blocks */
700 1.8 mrg if (swcpages < swnpages) {
701 1.8 mrg uvm_swap_free(swslot + swcpages,
702 1.8 mrg (swnpages - swcpages));
703 1.8 mrg }
704 1.1 mrg
705 1.8 mrg } else {
706 1.1 mrg
707 1.8 mrg /* normal object pageout */
708 1.8 mrg ppsp = pps;
709 1.8 mrg npages = sizeof(pps) / sizeof(struct vm_page *);
710 1.8 mrg /* not looked at because PGO_ALLPAGES is set */
711 1.8 mrg start = 0;
712 1.8 mrg
713 1.8 mrg }
714 1.8 mrg
715 1.8 mrg /*
716 1.8 mrg * now do the pageout.
717 1.8 mrg *
718 1.8 mrg * for swap_backed pages we have already built the cluster.
719 1.8 mrg * for !swap_backed pages, uvm_pager_put will call the object's
720 1.8 mrg * "make put cluster" function to build a cluster on our behalf.
721 1.8 mrg *
722 1.8 mrg * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
723 1.8 mrg * it to free the cluster pages for us on a successful I/O (it
724 1.8 mrg * always does this for un-successful I/O requests). this
725 1.8 mrg * allows us to do clustered pageout without having to deal
726 1.8 mrg * with cluster pages at this level.
727 1.8 mrg *
728 1.8 mrg * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
729 1.8 mrg * IN: locked: uobj (if !swap_backed), page queues
730 1.8 mrg * OUT: locked: uobj (if !swap_backed && result !=VM_PAGER_PEND)
731 1.8 mrg * !locked: pageqs, uobj (if swap_backed || VM_PAGER_PEND)
732 1.8 mrg *
733 1.8 mrg * [the bit about VM_PAGER_PEND saves us one lock-unlock pair]
734 1.8 mrg */
735 1.8 mrg
736 1.8 mrg /* locked: uobj (if !swap_backed), page queues */
737 1.8 mrg uvmexp.pdpageouts++;
738 1.8 mrg result = uvm_pager_put((swap_backed) ? NULL : uobj, p,
739 1.8 mrg &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
740 1.8 mrg /* locked: uobj (if !swap_backed && result != PEND) */
741 1.8 mrg /* unlocked: pageqs, object (if swap_backed ||result == PEND) */
742 1.8 mrg
743 1.8 mrg /*
744 1.8 mrg * if we did i/o to swap, zero swslot to indicate that we are
745 1.8 mrg * no longer building a swap-backed cluster.
746 1.8 mrg */
747 1.8 mrg
748 1.8 mrg if (swap_backed)
749 1.8 mrg swslot = 0; /* done with this cluster */
750 1.8 mrg
751 1.8 mrg /*
752 1.8 mrg * first, we check for VM_PAGER_PEND which means that the
753 1.8 mrg * async I/O is in progress and the async I/O done routine
754 1.8 mrg * will clean up after us. in this case we move on to the
755 1.8 mrg * next page.
756 1.8 mrg *
757 1.8 mrg * there is a very remote chance that the pending async i/o can
758 1.8 mrg * finish _before_ we get here. if that happens, our page "p"
759 1.8 mrg * may no longer be on the inactive queue. so we verify this
760 1.8 mrg * when determining the next page (starting over at the head if
761 1.8 mrg * we've lost our inactive page).
762 1.8 mrg */
763 1.8 mrg
764 1.8 mrg if (result == VM_PAGER_PEND) {
765 1.8 mrg uvmexp.paging += npages;
766 1.8 mrg uvm_lock_pageq(); /* relock page queues */
767 1.8 mrg uvmexp.pdpending++;
768 1.8 mrg if (p) {
769 1.8 mrg if (p->pqflags & PQ_INACTIVE)
770 1.8 mrg /* reload! */
771 1.8 mrg nextpg = p->pageq.tqe_next;
772 1.8 mrg else
773 1.8 mrg /* reload! */
774 1.8 mrg nextpg = pglst->tqh_first;
775 1.8 mrg } else {
776 1.8 mrg nextpg = NULL; /* done list */
777 1.8 mrg }
778 1.8 mrg continue;
779 1.8 mrg }
780 1.8 mrg
781 1.8 mrg /*
782 1.8 mrg * clean up "p" if we have one
783 1.8 mrg */
784 1.8 mrg
785 1.8 mrg if (p) {
786 1.8 mrg /*
787 1.8 mrg * the I/O request to "p" is done and uvm_pager_put
788 1.8 mrg * has freed any cluster pages it may have allocated
789 1.8 mrg * during I/O. all that is left for us to do is
790 1.8 mrg * clean up page "p" (which is still PG_BUSY).
791 1.8 mrg *
792 1.8 mrg * our result could be one of the following:
793 1.8 mrg * VM_PAGER_OK: successful pageout
794 1.8 mrg *
795 1.8 mrg * VM_PAGER_AGAIN: tmp resource shortage, we skip
796 1.8 mrg * to next page
797 1.8 mrg * VM_PAGER_{FAIL,ERROR,BAD}: an error. we
798 1.8 mrg * "reactivate" page to get it out of the way (it
799 1.8 mrg * will eventually drift back into the inactive
800 1.8 mrg * queue for a retry).
801 1.8 mrg * VM_PAGER_UNLOCK: should never see this as it is
802 1.8 mrg * only valid for "get" operations
803 1.8 mrg */
804 1.8 mrg
805 1.8 mrg /* relock p's object: page queues not lock yet, so
806 1.8 mrg * no need for "try" */
807 1.8 mrg
808 1.8 mrg /* !swap_backed case: already locked... */
809 1.8 mrg if (swap_backed) {
810 1.8 mrg if (anon)
811 1.8 mrg simple_lock(&anon->an_lock);
812 1.8 mrg else
813 1.8 mrg simple_lock(&uobj->vmobjlock);
814 1.8 mrg }
815 1.1 mrg
816 1.1 mrg #ifdef DIAGNOSTIC
817 1.8 mrg if (result == VM_PAGER_UNLOCK)
818 1.8 mrg panic("pagedaemon: pageout returned "
819 1.8 mrg "invalid 'unlock' code");
820 1.1 mrg #endif
821 1.1 mrg
822 1.8 mrg /* handle PG_WANTED now */
823 1.8 mrg if (p->flags & PG_WANTED)
824 1.8 mrg /* still holding object lock */
825 1.8 mrg thread_wakeup(p);
826 1.8 mrg
827 1.8 mrg p->flags &= ~(PG_BUSY|PG_WANTED);
828 1.8 mrg UVM_PAGE_OWN(p, NULL);
829 1.8 mrg
830 1.8 mrg /* released during I/O? */
831 1.8 mrg if (p->flags & PG_RELEASED) {
832 1.8 mrg if (anon) {
833 1.8 mrg /* remove page so we can get nextpg */
834 1.8 mrg anon->u.an_page = NULL;
835 1.8 mrg
836 1.8 mrg simple_unlock(&anon->an_lock);
837 1.8 mrg uvm_anfree(anon); /* kills anon */
838 1.8 mrg pmap_page_protect(PMAP_PGARG(p),
839 1.8 mrg VM_PROT_NONE);
840 1.8 mrg anon = NULL;
841 1.8 mrg uvm_lock_pageq();
842 1.8 mrg nextpg = p->pageq.tqe_next;
843 1.8 mrg /* free released page */
844 1.8 mrg uvm_pagefree(p);
845 1.1 mrg
846 1.8 mrg } else {
847 1.1 mrg
848 1.1 mrg #ifdef DIAGNOSTIC
849 1.8 mrg if (uobj->pgops->pgo_releasepg == NULL)
850 1.8 mrg panic("pagedaemon: no "
851 1.8 mrg "pgo_releasepg function");
852 1.1 mrg #endif
853 1.1 mrg
854 1.8 mrg /*
855 1.8 mrg * pgo_releasepg nukes the page and
856 1.8 mrg * gets "nextpg" for us. it returns
857 1.8 mrg * with the page queues locked (when
858 1.8 mrg * given nextpg ptr).
859 1.8 mrg */
860 1.8 mrg if (!uobj->pgops->pgo_releasepg(p,
861 1.8 mrg &nextpg))
862 1.8 mrg /* uobj died after release */
863 1.8 mrg uobj = NULL;
864 1.8 mrg
865 1.8 mrg /*
866 1.8 mrg * lock page queues here so that they're
867 1.8 mrg * always locked at the end of the loop.
868 1.8 mrg */
869 1.8 mrg uvm_lock_pageq();
870 1.8 mrg }
871 1.8 mrg
872 1.8 mrg } else { /* page was not released during I/O */
873 1.8 mrg
874 1.8 mrg uvm_lock_pageq();
875 1.8 mrg nextpg = p->pageq.tqe_next;
876 1.8 mrg
877 1.8 mrg if (result != VM_PAGER_OK) {
878 1.8 mrg
879 1.8 mrg /* pageout was a failure... */
880 1.8 mrg if (result != VM_PAGER_AGAIN)
881 1.8 mrg uvm_pageactivate(p);
882 1.8 mrg pmap_clear_reference(PMAP_PGARG(p));
883 1.8 mrg /* XXXCDC: if (swap_backed) FREE p's
884 1.8 mrg * swap block? */
885 1.8 mrg
886 1.8 mrg } else {
887 1.8 mrg
888 1.8 mrg /* pageout was a success... */
889 1.8 mrg pmap_clear_reference(PMAP_PGARG(p));
890 1.8 mrg pmap_clear_modify(PMAP_PGARG(p));
891 1.8 mrg p->flags |= PG_CLEAN;
892 1.8 mrg /* XXX: could free page here, but old
893 1.8 mrg * pagedaemon does not */
894 1.8 mrg
895 1.8 mrg }
896 1.8 mrg }
897 1.8 mrg
898 1.8 mrg /*
899 1.8 mrg * drop object lock (if there is an object left). do
900 1.8 mrg * a safety check of nextpg to make sure it is on the
901 1.8 mrg * inactive queue (it should be since PG_BUSY pages on
902 1.8 mrg * the inactive queue can't be re-queued [note: not
903 1.8 mrg * true for active queue]).
904 1.8 mrg */
905 1.8 mrg
906 1.8 mrg if (anon)
907 1.8 mrg simple_unlock(&anon->an_lock);
908 1.8 mrg else if (uobj)
909 1.8 mrg simple_unlock(&uobj->vmobjlock);
910 1.8 mrg
911 1.8 mrg } /* if (p) */ else {
912 1.8 mrg
913 1.8 mrg /* if p is null in this loop, make sure it stays null
914 1.8 mrg * in next loop */
915 1.8 mrg nextpg = NULL;
916 1.8 mrg
917 1.8 mrg /*
918 1.8 mrg * lock page queues here just so they're always locked
919 1.8 mrg * at the end of the loop.
920 1.8 mrg */
921 1.8 mrg uvm_lock_pageq();
922 1.8 mrg }
923 1.8 mrg
924 1.8 mrg if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
925 1.8 mrg printf("pagedaemon: invalid nextpg! reverting to "
926 1.8 mrg "queue head\n");
927 1.8 mrg nextpg = pglst->tqh_first; /* reload! */
928 1.8 mrg }
929 1.1 mrg
930 1.8 mrg } /* end of "inactive" 'for' loop */
931 1.8 mrg return (retval);
932 1.1 mrg }
933 1.1 mrg
934 1.1 mrg /*
935 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
936 1.1 mrg *
937 1.1 mrg * => called with pageq's locked
938 1.1 mrg */
939 1.1 mrg
940 1.8 mrg void
941 1.8 mrg uvmpd_scan()
942 1.1 mrg {
943 1.14 chs int s, free, inactive_shortage, swap_shortage, pages_freed;
944 1.8 mrg struct vm_page *p, *nextpg;
945 1.8 mrg struct uvm_object *uobj;
946 1.8 mrg boolean_t got_it;
947 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
948 1.1 mrg
949 1.8 mrg uvmexp.pdrevs++; /* counter */
950 1.1 mrg
951 1.1 mrg #ifdef __GNUC__
952 1.8 mrg uobj = NULL; /* XXX gcc */
953 1.1 mrg #endif
954 1.8 mrg /*
955 1.8 mrg * get current "free" page count
956 1.8 mrg */
957 1.8 mrg s = splimp();
958 1.8 mrg uvm_lock_fpageq();
959 1.8 mrg free = uvmexp.free;
960 1.8 mrg uvm_unlock_fpageq();
961 1.8 mrg splx(s);
962 1.1 mrg
963 1.1 mrg #ifndef __SWAP_BROKEN
964 1.8 mrg /*
965 1.8 mrg * swap out some processes if we are below our free target.
966 1.8 mrg * we need to unlock the page queues for this.
967 1.8 mrg */
968 1.8 mrg if (free < uvmexp.freetarg) {
969 1.8 mrg
970 1.8 mrg uvmexp.pdswout++;
971 1.8 mrg UVMHIST_LOG(pdhist," free %d < target %d: swapout", free,
972 1.8 mrg uvmexp.freetarg, 0, 0);
973 1.8 mrg uvm_unlock_pageq();
974 1.8 mrg uvm_swapout_threads();
975 1.8 mrg pmap_update(); /* update so we can scan inactive q */
976 1.8 mrg uvm_lock_pageq();
977 1.1 mrg
978 1.8 mrg }
979 1.1 mrg #endif
980 1.1 mrg
981 1.8 mrg /*
982 1.8 mrg * now we want to work on meeting our targets. first we work on our
983 1.8 mrg * free target by converting inactive pages into free pages. then
984 1.8 mrg * we work on meeting our inactive target by converting active pages
985 1.8 mrg * to inactive ones.
986 1.8 mrg */
987 1.8 mrg
988 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
989 1.8 mrg
990 1.8 mrg /*
991 1.8 mrg * do loop #1! alternate starting queue between swap and object based
992 1.8 mrg * on the low bit of uvmexp.pdrevs (which we bump by one each call).
993 1.8 mrg */
994 1.8 mrg
995 1.8 mrg got_it = FALSE;
996 1.14 chs pages_freed = uvmexp.pdfreed;
997 1.8 mrg if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
998 1.8 mrg got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
999 1.8 mrg if (!got_it)
1000 1.8 mrg got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
1001 1.8 mrg if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
1002 1.8 mrg (void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
1003 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
1004 1.8 mrg
1005 1.8 mrg /*
1006 1.8 mrg * we have done the scan to get free pages. now we work on meeting
1007 1.8 mrg * our inactive target.
1008 1.8 mrg */
1009 1.8 mrg
1010 1.14 chs inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
1011 1.14 chs
1012 1.14 chs /*
1013 1.14 chs * detect if we're not going to be able to page anything out
1014 1.14 chs * until we free some swap resources from active pages.
1015 1.14 chs */
1016 1.14 chs swap_shortage = 0;
1017 1.14 chs if (uvmexp.free < uvmexp.freetarg &&
1018 1.14 chs uvmexp.swpginuse == uvmexp.swpages &&
1019 1.14 chs uvmexp.swpgonly < uvmexp.swpages &&
1020 1.14 chs pages_freed == 0) {
1021 1.14 chs swap_shortage = uvmexp.freetarg - uvmexp.free;
1022 1.14 chs }
1023 1.14 chs
1024 1.14 chs UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
1025 1.14 chs inactive_shortage, swap_shortage,0,0);
1026 1.14 chs for (p = TAILQ_FIRST(&uvm.page_active);
1027 1.14 chs p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
1028 1.14 chs p = nextpg) {
1029 1.8 mrg nextpg = p->pageq.tqe_next;
1030 1.8 mrg if (p->flags & PG_BUSY)
1031 1.8 mrg continue; /* quick check before trying to lock */
1032 1.8 mrg
1033 1.8 mrg /*
1034 1.14 chs * lock the page's owner.
1035 1.8 mrg */
1036 1.8 mrg /* is page anon owned or ownerless? */
1037 1.8 mrg if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
1038 1.1 mrg
1039 1.1 mrg #ifdef DIAGNOSTIC
1040 1.8 mrg if (p->uanon == NULL)
1041 1.8 mrg panic("pagedaemon: page with no anon or "
1042 1.8 mrg "object detected - loop 2");
1043 1.1 mrg #endif
1044 1.8 mrg if (!simple_lock_try(&p->uanon->an_lock))
1045 1.8 mrg continue;
1046 1.1 mrg
1047 1.8 mrg /* take over the page? */
1048 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
1049 1.1 mrg #ifdef DIAGNOSTIC
1050 1.8 mrg if (p->loan_count < 1)
1051 1.8 mrg panic("pagedaemon: non-loaned "
1052 1.8 mrg "ownerless page detected - loop 2");
1053 1.1 mrg #endif
1054 1.8 mrg p->loan_count--;
1055 1.8 mrg p->pqflags |= PQ_ANON;
1056 1.8 mrg }
1057 1.8 mrg } else {
1058 1.8 mrg if (!simple_lock_try(&p->uobject->vmobjlock))
1059 1.8 mrg continue;
1060 1.8 mrg }
1061 1.14 chs /*
1062 1.14 chs * skip this page if it's busy.
1063 1.14 chs */
1064 1.14 chs if ((p->flags & PG_BUSY) != 0) {
1065 1.14 chs if (p->pqflags & PQ_ANON)
1066 1.14 chs simple_unlock(&p->uanon->an_lock);
1067 1.14 chs else
1068 1.14 chs simple_unlock(&p->uobject->vmobjlock);
1069 1.14 chs continue;
1070 1.14 chs }
1071 1.14 chs
1072 1.14 chs /*
1073 1.14 chs * if there's a shortage of swap, free any swap allocated
1074 1.14 chs * to this page so that other pages can be paged out.
1075 1.14 chs */
1076 1.14 chs if (swap_shortage > 0) {
1077 1.14 chs if ((p->pqflags & PQ_ANON) && p->uanon->an_swslot) {
1078 1.14 chs uvm_swap_free(p->uanon->an_swslot, 1);
1079 1.14 chs p->uanon->an_swslot = 0;
1080 1.14 chs p->flags &= ~PG_CLEAN;
1081 1.14 chs swap_shortage--;
1082 1.14 chs }
1083 1.14 chs if (p->pqflags & PQ_AOBJ) {
1084 1.14 chs int slot = uao_set_swslot(p->uobject,
1085 1.14 chs p->offset >> PAGE_SHIFT, 0);
1086 1.14 chs if (slot) {
1087 1.14 chs uvm_swap_free(slot, 1);
1088 1.14 chs p->flags &= ~PG_CLEAN;
1089 1.14 chs swap_shortage--;
1090 1.14 chs }
1091 1.14 chs }
1092 1.14 chs }
1093 1.14 chs
1094 1.14 chs /*
1095 1.14 chs * deactivate this page if there's a shortage of
1096 1.14 chs * inactive pages.
1097 1.14 chs */
1098 1.14 chs if (inactive_shortage > 0) {
1099 1.8 mrg pmap_page_protect(PMAP_PGARG(p), VM_PROT_NONE);
1100 1.8 mrg /* no need to check wire_count as pg is "active" */
1101 1.8 mrg uvm_pagedeactivate(p);
1102 1.8 mrg uvmexp.pddeact++;
1103 1.14 chs inactive_shortage--;
1104 1.8 mrg }
1105 1.8 mrg
1106 1.8 mrg if (p->pqflags & PQ_ANON)
1107 1.8 mrg simple_unlock(&p->uanon->an_lock);
1108 1.8 mrg else
1109 1.8 mrg simple_unlock(&p->uobject->vmobjlock);
1110 1.8 mrg }
1111 1.1 mrg }
1112