Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.18.2.3
      1  1.18.2.2   bouyer /*	$NetBSD: uvm_pdaemon.c,v 1.18.2.3 2001/01/05 17:37:03 bouyer Exp $	*/
      2       1.1      mrg 
      3       1.1      mrg /*
      4       1.1      mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5       1.1      mrg  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6       1.1      mrg  *
      7       1.1      mrg  * All rights reserved.
      8       1.1      mrg  *
      9       1.1      mrg  * This code is derived from software contributed to Berkeley by
     10       1.1      mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11       1.1      mrg  *
     12       1.1      mrg  * Redistribution and use in source and binary forms, with or without
     13       1.1      mrg  * modification, are permitted provided that the following conditions
     14       1.1      mrg  * are met:
     15       1.1      mrg  * 1. Redistributions of source code must retain the above copyright
     16       1.1      mrg  *    notice, this list of conditions and the following disclaimer.
     17       1.1      mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.1      mrg  *    notice, this list of conditions and the following disclaimer in the
     19       1.1      mrg  *    documentation and/or other materials provided with the distribution.
     20       1.1      mrg  * 3. All advertising materials mentioning features or use of this software
     21       1.1      mrg  *    must display the following acknowledgement:
     22       1.1      mrg  *	This product includes software developed by Charles D. Cranor,
     23       1.1      mrg  *      Washington University, the University of California, Berkeley and
     24       1.1      mrg  *      its contributors.
     25       1.1      mrg  * 4. Neither the name of the University nor the names of its contributors
     26       1.1      mrg  *    may be used to endorse or promote products derived from this software
     27       1.1      mrg  *    without specific prior written permission.
     28       1.1      mrg  *
     29       1.1      mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30       1.1      mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31       1.1      mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32       1.1      mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33       1.1      mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34       1.1      mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35       1.1      mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36       1.1      mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37       1.1      mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38       1.1      mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39       1.1      mrg  * SUCH DAMAGE.
     40       1.1      mrg  *
     41       1.1      mrg  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42       1.4      mrg  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43       1.1      mrg  *
     44       1.1      mrg  *
     45       1.1      mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46       1.1      mrg  * All rights reserved.
     47       1.1      mrg  *
     48       1.1      mrg  * Permission to use, copy, modify and distribute this software and
     49       1.1      mrg  * its documentation is hereby granted, provided that both the copyright
     50       1.1      mrg  * notice and this permission notice appear in all copies of the
     51       1.1      mrg  * software, derivative works or modified versions, and any portions
     52       1.1      mrg  * thereof, and that both notices appear in supporting documentation.
     53       1.1      mrg  *
     54       1.1      mrg  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55       1.1      mrg  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56       1.1      mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57       1.1      mrg  *
     58       1.1      mrg  * Carnegie Mellon requests users of this software to return to
     59       1.1      mrg  *
     60       1.1      mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61       1.1      mrg  *  School of Computer Science
     62       1.1      mrg  *  Carnegie Mellon University
     63       1.1      mrg  *  Pittsburgh PA 15213-3890
     64       1.1      mrg  *
     65       1.1      mrg  * any improvements or extensions that they make and grant Carnegie the
     66       1.1      mrg  * rights to redistribute these changes.
     67       1.1      mrg  */
     68       1.1      mrg 
     69       1.7      mrg #include "opt_uvmhist.h"
     70       1.7      mrg 
     71       1.1      mrg /*
     72       1.1      mrg  * uvm_pdaemon.c: the page daemon
     73       1.1      mrg  */
     74       1.1      mrg 
     75       1.1      mrg #include <sys/param.h>
     76       1.1      mrg #include <sys/proc.h>
     77       1.1      mrg #include <sys/systm.h>
     78       1.1      mrg #include <sys/kernel.h>
     79       1.9       pk #include <sys/pool.h>
     80  1.18.2.2   bouyer #include <sys/buf.h>
     81       1.1      mrg 
     82       1.1      mrg #include <uvm/uvm.h>
     83       1.1      mrg 
     84  1.18.2.2   bouyer extern struct uvm_pagerops uvm_vnodeops;
     85  1.18.2.2   bouyer 
     86       1.1      mrg /*
     87      1.14      chs  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
     88      1.14      chs  * in a pass thru the inactive list when swap is full.  the value should be
     89      1.14      chs  * "small"... if it's too large we'll cycle the active pages thru the inactive
     90      1.14      chs  * queue too quickly to for them to be referenced and avoid being freed.
     91      1.14      chs  */
     92      1.14      chs 
     93      1.14      chs #define UVMPD_NUMDIRTYREACTS 16
     94      1.14      chs 
     95      1.14      chs 
     96      1.14      chs /*
     97       1.1      mrg  * local prototypes
     98       1.1      mrg  */
     99       1.1      mrg 
    100       1.1      mrg static void		uvmpd_scan __P((void));
    101       1.1      mrg static boolean_t	uvmpd_scan_inactive __P((struct pglist *));
    102       1.1      mrg static void		uvmpd_tune __P((void));
    103       1.1      mrg 
    104       1.1      mrg 
    105       1.1      mrg /*
    106       1.1      mrg  * uvm_wait: wait (sleep) for the page daemon to free some pages
    107       1.1      mrg  *
    108       1.1      mrg  * => should be called with all locks released
    109       1.1      mrg  * => should _not_ be called by the page daemon (to avoid deadlock)
    110       1.1      mrg  */
    111       1.1      mrg 
    112  1.18.2.1   bouyer void
    113  1.18.2.1   bouyer uvm_wait(wmsg)
    114  1.18.2.1   bouyer 	const char *wmsg;
    115       1.8      mrg {
    116       1.8      mrg 	int timo = 0;
    117       1.8      mrg 	int s = splbio();
    118       1.1      mrg 
    119       1.8      mrg 	/*
    120       1.8      mrg 	 * check for page daemon going to sleep (waiting for itself)
    121       1.8      mrg 	 */
    122       1.1      mrg 
    123       1.8      mrg 	if (curproc == uvm.pagedaemon_proc) {
    124       1.8      mrg 		/*
    125       1.8      mrg 		 * now we have a problem: the pagedaemon wants to go to
    126       1.8      mrg 		 * sleep until it frees more memory.   but how can it
    127       1.8      mrg 		 * free more memory if it is asleep?  that is a deadlock.
    128       1.8      mrg 		 * we have two options:
    129       1.8      mrg 		 *  [1] panic now
    130       1.8      mrg 		 *  [2] put a timeout on the sleep, thus causing the
    131       1.8      mrg 		 *      pagedaemon to only pause (rather than sleep forever)
    132       1.8      mrg 		 *
    133       1.8      mrg 		 * note that option [2] will only help us if we get lucky
    134       1.8      mrg 		 * and some other process on the system breaks the deadlock
    135       1.8      mrg 		 * by exiting or freeing memory (thus allowing the pagedaemon
    136       1.8      mrg 		 * to continue).  for now we panic if DEBUG is defined,
    137       1.8      mrg 		 * otherwise we hope for the best with option [2] (better
    138       1.8      mrg 		 * yet, this should never happen in the first place!).
    139       1.8      mrg 		 */
    140       1.1      mrg 
    141       1.8      mrg 		printf("pagedaemon: deadlock detected!\n");
    142       1.8      mrg 		timo = hz >> 3;		/* set timeout */
    143       1.1      mrg #if defined(DEBUG)
    144       1.8      mrg 		/* DEBUG: panic so we can debug it */
    145       1.8      mrg 		panic("pagedaemon deadlock");
    146       1.1      mrg #endif
    147       1.8      mrg 	}
    148       1.1      mrg 
    149       1.8      mrg 	simple_lock(&uvm.pagedaemon_lock);
    150      1.17  thorpej 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    151       1.8      mrg 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    152       1.8      mrg 	    timo);
    153       1.1      mrg 
    154       1.8      mrg 	splx(s);
    155       1.1      mrg }
    156       1.1      mrg 
    157       1.1      mrg 
    158       1.1      mrg /*
    159       1.1      mrg  * uvmpd_tune: tune paging parameters
    160       1.1      mrg  *
    161       1.1      mrg  * => called when ever memory is added (or removed?) to the system
    162       1.1      mrg  * => caller must call with page queues locked
    163       1.1      mrg  */
    164       1.1      mrg 
    165       1.8      mrg static void
    166       1.8      mrg uvmpd_tune()
    167       1.8      mrg {
    168       1.8      mrg 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    169       1.1      mrg 
    170       1.8      mrg 	uvmexp.freemin = uvmexp.npages / 20;
    171       1.1      mrg 
    172       1.8      mrg 	/* between 16k and 256k */
    173       1.8      mrg 	/* XXX:  what are these values good for? */
    174      1.11      chs 	uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    175      1.11      chs 	uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    176       1.1      mrg 
    177  1.18.2.1   bouyer 	/* Make sure there's always a user page free. */
    178  1.18.2.1   bouyer 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    179  1.18.2.1   bouyer 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    180  1.18.2.1   bouyer 
    181       1.8      mrg 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    182       1.8      mrg 	if (uvmexp.freetarg <= uvmexp.freemin)
    183       1.8      mrg 		uvmexp.freetarg = uvmexp.freemin + 1;
    184       1.1      mrg 
    185       1.8      mrg 	/* uvmexp.inactarg: computed in main daemon loop */
    186       1.1      mrg 
    187       1.8      mrg 	uvmexp.wiredmax = uvmexp.npages / 3;
    188       1.8      mrg 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    189       1.1      mrg 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    190       1.1      mrg }
    191       1.1      mrg 
    192       1.1      mrg /*
    193       1.1      mrg  * uvm_pageout: the main loop for the pagedaemon
    194       1.1      mrg  */
    195       1.1      mrg 
    196       1.8      mrg void
    197  1.18.2.1   bouyer uvm_pageout(void *arg)
    198       1.8      mrg {
    199       1.8      mrg 	int npages = 0;
    200       1.8      mrg 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    201  1.18.2.2   bouyer 
    202       1.8      mrg 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    203       1.8      mrg 
    204       1.8      mrg 	/*
    205       1.8      mrg 	 * ensure correct priority and set paging parameters...
    206       1.8      mrg 	 */
    207       1.8      mrg 
    208       1.8      mrg 	uvm.pagedaemon_proc = curproc;
    209       1.8      mrg 	(void) spl0();
    210       1.8      mrg 	uvm_lock_pageq();
    211       1.8      mrg 	npages = uvmexp.npages;
    212       1.8      mrg 	uvmpd_tune();
    213       1.8      mrg 	uvm_unlock_pageq();
    214       1.8      mrg 
    215       1.8      mrg 	/*
    216       1.8      mrg 	 * main loop
    217       1.8      mrg 	 */
    218       1.8      mrg 
    219  1.18.2.2   bouyer 	for (;;) {
    220       1.8      mrg 		simple_lock(&uvm.pagedaemon_lock);
    221       1.8      mrg 
    222  1.18.2.2   bouyer 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    223  1.18.2.2   bouyer 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    224  1.18.2.2   bouyer 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    225  1.18.2.2   bouyer 		uvmexp.pdwoke++;
    226  1.18.2.2   bouyer 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    227       1.8      mrg 
    228  1.18.2.2   bouyer 		/* drain pool resources */
    229       1.9       pk 		pool_drain(0);
    230       1.8      mrg 
    231       1.8      mrg 		/*
    232       1.8      mrg 		 * now lock page queues and recompute inactive count
    233       1.8      mrg 		 */
    234       1.8      mrg 
    235  1.18.2.2   bouyer 		uvm_lock_pageq();
    236       1.8      mrg 		if (npages != uvmexp.npages) {	/* check for new pages? */
    237       1.8      mrg 			npages = uvmexp.npages;
    238       1.8      mrg 			uvmpd_tune();
    239       1.8      mrg 		}
    240       1.8      mrg 
    241       1.8      mrg 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    242  1.18.2.2   bouyer 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    243       1.8      mrg 			uvmexp.inactarg = uvmexp.freetarg + 1;
    244  1.18.2.2   bouyer 		}
    245       1.8      mrg 
    246       1.8      mrg 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    247       1.8      mrg 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    248       1.8      mrg 		    uvmexp.inactarg);
    249       1.8      mrg 
    250       1.8      mrg 		/*
    251       1.8      mrg 		 * scan if needed
    252       1.8      mrg 		 */
    253  1.18.2.2   bouyer 
    254  1.18.2.2   bouyer 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    255  1.18.2.2   bouyer 		    uvmexp.inactive < uvmexp.inactarg ||
    256  1.18.2.2   bouyer 		    uvmexp.vnodepages >
    257  1.18.2.2   bouyer 		    (uvmexp.active + uvmexp.inactive + uvmexp.wired +
    258  1.18.2.2   bouyer 		     uvmexp.free) * 13 / 16) {
    259       1.8      mrg 			uvmpd_scan();
    260  1.18.2.2   bouyer 		}
    261  1.18.2.2   bouyer 
    262  1.18.2.2   bouyer 		/*
    263  1.18.2.2   bouyer 		 * if there's any free memory to be had,
    264  1.18.2.2   bouyer 		 * wake up any waiters.
    265  1.18.2.2   bouyer 		 */
    266  1.18.2.2   bouyer 
    267  1.18.2.2   bouyer 		if (uvmexp.free > uvmexp.reserve_kernel ||
    268  1.18.2.2   bouyer 		    uvmexp.paging == 0) {
    269  1.18.2.2   bouyer 			wakeup(&uvmexp.free);
    270  1.18.2.2   bouyer 		}
    271       1.8      mrg 
    272       1.8      mrg 		/*
    273  1.18.2.2   bouyer 		 * scan done.  unlock page queues (the only lock we are holding)
    274       1.8      mrg 		 */
    275  1.18.2.2   bouyer 
    276       1.8      mrg 		uvm_unlock_pageq();
    277  1.18.2.2   bouyer 	}
    278  1.18.2.2   bouyer 	/*NOTREACHED*/
    279  1.18.2.2   bouyer }
    280  1.18.2.2   bouyer 
    281  1.18.2.2   bouyer 
    282  1.18.2.2   bouyer /*
    283  1.18.2.2   bouyer  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    284  1.18.2.2   bouyer  */
    285  1.18.2.2   bouyer 
    286  1.18.2.2   bouyer void
    287  1.18.2.2   bouyer uvm_aiodone_daemon(void *arg)
    288  1.18.2.2   bouyer {
    289  1.18.2.2   bouyer 	int s, free;
    290  1.18.2.2   bouyer 	struct buf *bp, *nbp;
    291  1.18.2.2   bouyer 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    292  1.18.2.2   bouyer 
    293  1.18.2.2   bouyer 	for (;;) {
    294       1.8      mrg 
    295       1.8      mrg 		/*
    296  1.18.2.2   bouyer 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    297  1.18.2.2   bouyer 		 * we need splbio because we want to make sure the aio_done list
    298  1.18.2.2   bouyer 		 * is totally empty before we go to sleep.
    299       1.8      mrg 		 */
    300  1.18.2.2   bouyer 
    301  1.18.2.2   bouyer 		s = splbio();
    302  1.18.2.2   bouyer 		simple_lock(&uvm.aiodoned_lock);
    303  1.18.2.2   bouyer 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    304  1.18.2.2   bouyer 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    305  1.18.2.2   bouyer 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    306  1.18.2.2   bouyer 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    307  1.18.2.2   bouyer 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    308  1.18.2.2   bouyer 
    309  1.18.2.2   bouyer 			/* relock aiodoned_lock, still at splbio */
    310  1.18.2.2   bouyer 			simple_lock(&uvm.aiodoned_lock);
    311  1.18.2.2   bouyer 		}
    312  1.18.2.2   bouyer 
    313  1.18.2.2   bouyer 		/*
    314  1.18.2.2   bouyer 		 * check for done aio structures
    315  1.18.2.2   bouyer 		 */
    316  1.18.2.2   bouyer 
    317  1.18.2.2   bouyer 		bp = TAILQ_FIRST(&uvm.aio_done);
    318  1.18.2.2   bouyer 		if (bp) {
    319  1.18.2.2   bouyer 			TAILQ_INIT(&uvm.aio_done);
    320  1.18.2.2   bouyer 		}
    321  1.18.2.2   bouyer 
    322  1.18.2.2   bouyer 		simple_unlock(&uvm.aiodoned_lock);
    323  1.18.2.2   bouyer 		splx(s);
    324  1.18.2.2   bouyer 
    325  1.18.2.2   bouyer 		/*
    326  1.18.2.2   bouyer 		 * process each i/o that's done.
    327  1.18.2.2   bouyer 		 */
    328  1.18.2.2   bouyer 
    329  1.18.2.2   bouyer 		free = uvmexp.free;
    330  1.18.2.2   bouyer 		while (bp != NULL) {
    331  1.18.2.2   bouyer 			if (bp->b_flags & B_PDAEMON) {
    332  1.18.2.2   bouyer 				uvmexp.paging -= bp->b_bufsize >> PAGE_SHIFT;
    333  1.18.2.2   bouyer 			}
    334  1.18.2.2   bouyer 			nbp = TAILQ_NEXT(bp, b_freelist);
    335  1.18.2.2   bouyer 			(*bp->b_iodone)(bp);
    336  1.18.2.2   bouyer 			bp = nbp;
    337  1.18.2.2   bouyer 		}
    338  1.18.2.2   bouyer 		if (free <= uvmexp.reserve_kernel) {
    339  1.18.2.2   bouyer 			s = uvm_lock_fpageq();
    340  1.18.2.2   bouyer 			wakeup(&uvm.pagedaemon);
    341  1.18.2.2   bouyer 			uvm_unlock_fpageq(s);
    342  1.18.2.2   bouyer 		} else {
    343  1.18.2.2   bouyer 			simple_lock(&uvm.pagedaemon_lock);
    344      1.17  thorpej 			wakeup(&uvmexp.free);
    345  1.18.2.2   bouyer 			simple_unlock(&uvm.pagedaemon_lock);
    346  1.18.2.2   bouyer 		}
    347       1.8      mrg 	}
    348       1.1      mrg }
    349       1.1      mrg 
    350  1.18.2.2   bouyer 
    351  1.18.2.2   bouyer 
    352       1.1      mrg /*
    353  1.18.2.2   bouyer  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    354       1.1      mrg  *
    355       1.1      mrg  * => called with page queues locked
    356       1.1      mrg  * => we work on meeting our free target by converting inactive pages
    357       1.1      mrg  *    into free pages.
    358       1.1      mrg  * => we handle the building of swap-backed clusters
    359       1.1      mrg  * => we return TRUE if we are exiting because we met our target
    360       1.1      mrg  */
    361       1.1      mrg 
    362       1.8      mrg static boolean_t
    363       1.8      mrg uvmpd_scan_inactive(pglst)
    364       1.8      mrg 	struct pglist *pglst;
    365       1.8      mrg {
    366       1.8      mrg 	boolean_t retval = FALSE;	/* assume we haven't hit target */
    367       1.8      mrg 	int s, free, result;
    368       1.8      mrg 	struct vm_page *p, *nextpg;
    369       1.8      mrg 	struct uvm_object *uobj;
    370      1.11      chs 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
    371       1.8      mrg 	int npages;
    372      1.11      chs 	struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; 	/* XXX: see below */
    373       1.8      mrg 	int swnpages, swcpages;				/* XXX: see below */
    374      1.14      chs 	int swslot;
    375       1.8      mrg 	struct vm_anon *anon;
    376  1.18.2.2   bouyer 	boolean_t swap_backed, vnode_only;
    377      1.10      eeh 	vaddr_t start;
    378  1.18.2.2   bouyer 	int dirtyreacts, vpgs;
    379       1.8      mrg 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    380       1.1      mrg 
    381       1.8      mrg 	/*
    382       1.8      mrg 	 * note: we currently keep swap-backed pages on a seperate inactive
    383       1.8      mrg 	 * list from object-backed pages.   however, merging the two lists
    384       1.8      mrg 	 * back together again hasn't been ruled out.   thus, we keep our
    385       1.8      mrg 	 * swap cluster in "swpps" rather than in pps (allows us to mix
    386       1.8      mrg 	 * clustering types in the event of a mixed inactive queue).
    387       1.8      mrg 	 */
    388       1.1      mrg 
    389       1.8      mrg 	/*
    390       1.8      mrg 	 * swslot is non-zero if we are building a swap cluster.  we want
    391  1.18.2.2   bouyer 	 * to stay in the loop while we have a page to scan or we have
    392       1.8      mrg 	 * a swap-cluster to build.
    393       1.8      mrg 	 */
    394  1.18.2.2   bouyer 
    395       1.8      mrg 	swslot = 0;
    396       1.8      mrg 	swnpages = swcpages = 0;
    397       1.8      mrg 	free = 0;
    398      1.14      chs 	dirtyreacts = 0;
    399  1.18.2.2   bouyer 	vnode_only = FALSE;
    400       1.8      mrg 
    401  1.18.2.2   bouyer 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
    402       1.8      mrg 
    403       1.8      mrg 		/*
    404       1.8      mrg 		 * note that p can be NULL iff we have traversed the whole
    405       1.8      mrg 		 * list and need to do one final swap-backed clustered pageout.
    406       1.8      mrg 		 */
    407  1.18.2.2   bouyer 
    408  1.18.2.2   bouyer 		uobj = NULL;
    409  1.18.2.2   bouyer 		anon = NULL;
    410  1.18.2.2   bouyer 
    411       1.8      mrg 		if (p) {
    412  1.18.2.2   bouyer 
    413       1.8      mrg 			/*
    414       1.8      mrg 			 * update our copy of "free" and see if we've met
    415       1.8      mrg 			 * our target
    416       1.8      mrg 			 */
    417  1.18.2.2   bouyer 
    418      1.16  thorpej 			s = uvm_lock_fpageq();
    419       1.8      mrg 			free = uvmexp.free;
    420      1.16  thorpej 			uvm_unlock_fpageq(s);
    421       1.8      mrg 
    422  1.18.2.2   bouyer 			/* XXXUBC */
    423  1.18.2.2   bouyer 			vpgs = uvmexp.vnodepages -
    424  1.18.2.2   bouyer 				(uvmexp.active + uvmexp.inactive +
    425  1.18.2.2   bouyer 				 uvmexp.wired + uvmexp.free) * 13 / 16;
    426  1.18.2.2   bouyer 
    427      1.14      chs 			if (free + uvmexp.paging >= uvmexp.freetarg << 2 ||
    428  1.18.2.3   bouyer 			    vpgs > 0 || dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    429  1.18.2.2   bouyer 				if (vpgs <= 0) {
    430  1.18.2.2   bouyer 					UVMHIST_LOG(pdhist,"  met free target: "
    431  1.18.2.2   bouyer 						    "exit loop", 0, 0, 0, 0);
    432  1.18.2.2   bouyer 					retval = TRUE;
    433  1.18.2.2   bouyer 
    434  1.18.2.2   bouyer 					if (swslot == 0)
    435  1.18.2.2   bouyer 						/* exit now if no
    436  1.18.2.2   bouyer                                                    swap-i/o pending */
    437  1.18.2.2   bouyer 						break;
    438  1.18.2.2   bouyer 
    439  1.18.2.2   bouyer 					/* set p to null to signal final
    440  1.18.2.2   bouyer                                            swap i/o */
    441  1.18.2.2   bouyer 					p = NULL;
    442  1.18.2.2   bouyer 				} else {
    443  1.18.2.2   bouyer 					vnode_only = TRUE;
    444  1.18.2.2   bouyer 				}
    445       1.8      mrg 			}
    446       1.8      mrg 		}
    447       1.8      mrg 
    448       1.8      mrg 		if (p) {	/* if (we have a new page to consider) */
    449  1.18.2.2   bouyer 
    450       1.8      mrg 			/*
    451       1.8      mrg 			 * we are below target and have a new page to consider.
    452       1.8      mrg 			 */
    453  1.18.2.2   bouyer 
    454       1.8      mrg 			uvmexp.pdscans++;
    455  1.18.2.2   bouyer 			nextpg = TAILQ_NEXT(p, pageq);
    456       1.8      mrg 
    457       1.8      mrg 			/*
    458       1.8      mrg 			 * first we attempt to lock the object that this page
    459       1.8      mrg 			 * belongs to.  if our attempt fails we skip on to
    460       1.8      mrg 			 * the next page (no harm done).  it is important to
    461       1.8      mrg 			 * "try" locking the object as we are locking in the
    462       1.8      mrg 			 * wrong order (pageq -> object) and we don't want to
    463  1.18.2.2   bouyer 			 * deadlock.
    464       1.8      mrg 			 *
    465  1.18.2.2   bouyer 			 * the only time we expect to see an ownerless page
    466       1.8      mrg 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    467       1.8      mrg 			 * anon has loaned a page from a uvm_object and the
    468       1.8      mrg 			 * uvm_object has dropped the ownership.  in that
    469       1.8      mrg 			 * case, the anon can "take over" the loaned page
    470       1.8      mrg 			 * and make it its own.
    471       1.8      mrg 			 */
    472       1.8      mrg 
    473       1.8      mrg 			/* is page part of an anon or ownerless ? */
    474       1.8      mrg 			if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
    475  1.18.2.2   bouyer 				if (vnode_only) {
    476  1.18.2.2   bouyer 					uvm_pageactivate(p);
    477  1.18.2.2   bouyer 					continue;
    478  1.18.2.2   bouyer 				}
    479       1.8      mrg 				anon = p->uanon;
    480  1.18.2.2   bouyer 				KASSERT(anon != NULL);
    481       1.8      mrg 				if (!simple_lock_try(&anon->an_lock))
    482       1.8      mrg 					/* lock failed, skip this page */
    483       1.8      mrg 					continue;
    484       1.8      mrg 
    485       1.8      mrg 				/*
    486       1.8      mrg 				 * if the page is ownerless, claim it in the
    487       1.8      mrg 				 * name of "anon"!
    488       1.8      mrg 				 */
    489  1.18.2.2   bouyer 
    490       1.8      mrg 				if ((p->pqflags & PQ_ANON) == 0) {
    491  1.18.2.2   bouyer 					KASSERT(p->loan_count > 0);
    492       1.8      mrg 					p->loan_count--;
    493  1.18.2.2   bouyer 					p->pqflags |= PQ_ANON;
    494  1.18.2.2   bouyer 					/* anon now owns it */
    495       1.8      mrg 				}
    496       1.8      mrg 				if (p->flags & PG_BUSY) {
    497       1.8      mrg 					simple_unlock(&anon->an_lock);
    498       1.8      mrg 					uvmexp.pdbusy++;
    499       1.8      mrg 					/* someone else owns page, skip it */
    500       1.8      mrg 					continue;
    501       1.8      mrg 				}
    502       1.8      mrg 				uvmexp.pdanscan++;
    503       1.8      mrg 			} else {
    504       1.8      mrg 				uobj = p->uobject;
    505  1.18.2.2   bouyer 				KASSERT(uobj != NULL);
    506  1.18.2.2   bouyer 				if (vnode_only &&
    507  1.18.2.2   bouyer 				    uobj->pgops != &uvm_vnodeops) {
    508  1.18.2.2   bouyer 					uvm_pageactivate(p);
    509  1.18.2.2   bouyer 					continue;
    510  1.18.2.2   bouyer 				}
    511       1.8      mrg 				if (!simple_lock_try(&uobj->vmobjlock))
    512       1.8      mrg 					/* lock failed, skip this page */
    513  1.18.2.2   bouyer 					continue;
    514       1.8      mrg 
    515       1.8      mrg 				if (p->flags & PG_BUSY) {
    516       1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    517       1.8      mrg 					uvmexp.pdbusy++;
    518       1.8      mrg 					/* someone else owns page, skip it */
    519  1.18.2.2   bouyer 					continue;
    520       1.8      mrg 				}
    521       1.8      mrg 				uvmexp.pdobscan++;
    522       1.8      mrg 			}
    523       1.8      mrg 
    524       1.8      mrg 			/*
    525       1.8      mrg 			 * we now have the object and the page queues locked.
    526       1.8      mrg 			 * the page is not busy.   if the page is clean we
    527       1.8      mrg 			 * can free it now and continue.
    528       1.8      mrg 			 */
    529       1.8      mrg 
    530       1.8      mrg 			if (p->flags & PG_CLEAN) {
    531      1.14      chs 				if (p->pqflags & PQ_SWAPBACKED) {
    532      1.14      chs 					/* this page now lives only in swap */
    533      1.14      chs 					simple_lock(&uvm.swap_data_lock);
    534      1.14      chs 					uvmexp.swpgonly++;
    535      1.14      chs 					simple_unlock(&uvm.swap_data_lock);
    536      1.14      chs 				}
    537      1.14      chs 
    538       1.8      mrg 				uvm_pagefree(p);
    539       1.8      mrg 				uvmexp.pdfreed++;
    540  1.18.2.2   bouyer 
    541       1.8      mrg 				if (anon) {
    542  1.18.2.2   bouyer 
    543       1.8      mrg 					/*
    544       1.8      mrg 					 * an anonymous page can only be clean
    545  1.18.2.2   bouyer 					 * if it has backing store assigned.
    546       1.8      mrg 					 */
    547  1.18.2.2   bouyer 
    548  1.18.2.2   bouyer 					KASSERT(anon->an_swslot != 0);
    549  1.18.2.2   bouyer 
    550       1.8      mrg 					/* remove from object */
    551       1.8      mrg 					anon->u.an_page = NULL;
    552       1.8      mrg 					simple_unlock(&anon->an_lock);
    553       1.8      mrg 				} else {
    554       1.8      mrg 					/* pagefree has already removed the
    555       1.8      mrg 					 * page from the object */
    556       1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    557       1.8      mrg 				}
    558       1.8      mrg 				continue;
    559       1.8      mrg 			}
    560       1.8      mrg 
    561       1.8      mrg 			/*
    562       1.8      mrg 			 * this page is dirty, skip it if we'll have met our
    563       1.8      mrg 			 * free target when all the current pageouts complete.
    564       1.8      mrg 			 */
    565  1.18.2.2   bouyer 
    566  1.18.2.3   bouyer 			if (free + uvmexp.paging > uvmexp.freetarg << 2 &&
    567  1.18.2.3   bouyer 			    !vnode_only) {
    568       1.8      mrg 				if (anon) {
    569       1.8      mrg 					simple_unlock(&anon->an_lock);
    570       1.8      mrg 				} else {
    571       1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    572       1.8      mrg 				}
    573       1.8      mrg 				continue;
    574       1.8      mrg 			}
    575       1.8      mrg 
    576       1.8      mrg 			/*
    577      1.14      chs 			 * this page is dirty, but we can't page it out
    578      1.14      chs 			 * since all pages in swap are only in swap.
    579      1.14      chs 			 * reactivate it so that we eventually cycle
    580      1.14      chs 			 * all pages thru the inactive queue.
    581      1.14      chs 			 */
    582  1.18.2.2   bouyer 
    583  1.18.2.2   bouyer 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
    584      1.14      chs 			if ((p->pqflags & PQ_SWAPBACKED) &&
    585      1.14      chs 			    uvmexp.swpgonly == uvmexp.swpages) {
    586      1.14      chs 				dirtyreacts++;
    587      1.14      chs 				uvm_pageactivate(p);
    588      1.14      chs 				if (anon) {
    589      1.14      chs 					simple_unlock(&anon->an_lock);
    590      1.14      chs 				} else {
    591      1.14      chs 					simple_unlock(&uobj->vmobjlock);
    592      1.14      chs 				}
    593      1.14      chs 				continue;
    594      1.14      chs 			}
    595      1.14      chs 
    596      1.14      chs 			/*
    597      1.14      chs 			 * if the page is swap-backed and dirty and swap space
    598      1.14      chs 			 * is full, free any swap allocated to the page
    599      1.14      chs 			 * so that other pages can be paged out.
    600      1.14      chs 			 */
    601  1.18.2.2   bouyer 
    602  1.18.2.2   bouyer 			KASSERT(uvmexp.swpginuse <= uvmexp.swpages);
    603      1.14      chs 			if ((p->pqflags & PQ_SWAPBACKED) &&
    604      1.14      chs 			    uvmexp.swpginuse == uvmexp.swpages) {
    605      1.14      chs 
    606      1.14      chs 				if ((p->pqflags & PQ_ANON) &&
    607      1.14      chs 				    p->uanon->an_swslot) {
    608      1.14      chs 					uvm_swap_free(p->uanon->an_swslot, 1);
    609      1.14      chs 					p->uanon->an_swslot = 0;
    610      1.14      chs 				}
    611      1.14      chs 				if (p->pqflags & PQ_AOBJ) {
    612      1.14      chs 					uao_dropswap(p->uobject,
    613      1.14      chs 						     p->offset >> PAGE_SHIFT);
    614      1.14      chs 				}
    615      1.14      chs 			}
    616      1.14      chs 
    617      1.14      chs 			/*
    618       1.8      mrg 			 * the page we are looking at is dirty.   we must
    619       1.8      mrg 			 * clean it before it can be freed.  to do this we
    620       1.8      mrg 			 * first mark the page busy so that no one else will
    621  1.18.2.2   bouyer 			 * touch the page.
    622       1.8      mrg 			 */
    623       1.8      mrg 
    624       1.8      mrg 			swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
    625       1.8      mrg 			p->flags |= PG_BUSY;		/* now we own it */
    626       1.8      mrg 			UVM_PAGE_OWN(p, "scan_inactive");
    627       1.8      mrg 			uvmexp.pgswapout++;
    628       1.8      mrg 
    629       1.8      mrg 			/*
    630       1.8      mrg 			 * for swap-backed pages we need to (re)allocate
    631       1.8      mrg 			 * swap space.
    632       1.8      mrg 			 */
    633  1.18.2.2   bouyer 
    634       1.8      mrg 			if (swap_backed) {
    635       1.8      mrg 
    636       1.8      mrg 				/*
    637       1.8      mrg 				 * free old swap slot (if any)
    638       1.8      mrg 				 */
    639  1.18.2.2   bouyer 
    640       1.8      mrg 				if (anon) {
    641       1.8      mrg 					if (anon->an_swslot) {
    642       1.8      mrg 						uvm_swap_free(anon->an_swslot,
    643       1.8      mrg 						    1);
    644       1.8      mrg 						anon->an_swslot = 0;
    645       1.8      mrg 					}
    646       1.8      mrg 				} else {
    647      1.14      chs 					uao_dropswap(uobj,
    648      1.14      chs 						     p->offset >> PAGE_SHIFT);
    649       1.8      mrg 				}
    650       1.8      mrg 
    651       1.8      mrg 				/*
    652       1.8      mrg 				 * start new cluster (if necessary)
    653       1.8      mrg 				 */
    654  1.18.2.2   bouyer 
    655       1.8      mrg 				if (swslot == 0) {
    656      1.11      chs 					swnpages = MAXBSIZE >> PAGE_SHIFT;
    657       1.8      mrg 					swslot = uvm_swap_alloc(&swnpages,
    658       1.8      mrg 					    TRUE);
    659       1.8      mrg 					if (swslot == 0) {
    660       1.8      mrg 						/* no swap?  give up! */
    661       1.8      mrg 						p->flags &= ~PG_BUSY;
    662       1.8      mrg 						UVM_PAGE_OWN(p, NULL);
    663       1.8      mrg 						if (anon)
    664       1.8      mrg 							simple_unlock(
    665       1.8      mrg 							    &anon->an_lock);
    666       1.8      mrg 						else
    667       1.8      mrg 							simple_unlock(
    668       1.8      mrg 							    &uobj->vmobjlock);
    669       1.8      mrg 						continue;
    670       1.8      mrg 					}
    671       1.8      mrg 					swcpages = 0;	/* cluster is empty */
    672       1.8      mrg 				}
    673       1.8      mrg 
    674       1.8      mrg 				/*
    675       1.8      mrg 				 * add block to cluster
    676       1.8      mrg 				 */
    677  1.18.2.2   bouyer 
    678       1.8      mrg 				swpps[swcpages] = p;
    679       1.8      mrg 				if (anon)
    680       1.8      mrg 					anon->an_swslot = swslot + swcpages;
    681       1.8      mrg 				else
    682       1.8      mrg 					uao_set_swslot(uobj,
    683      1.11      chs 					    p->offset >> PAGE_SHIFT,
    684       1.8      mrg 					    swslot + swcpages);
    685       1.8      mrg 				swcpages++;
    686       1.8      mrg 			}
    687       1.8      mrg 		} else {
    688       1.8      mrg 
    689       1.8      mrg 			/* if p == NULL we must be doing a last swap i/o */
    690       1.8      mrg 			swap_backed = TRUE;
    691       1.8      mrg 		}
    692       1.8      mrg 
    693       1.8      mrg 		/*
    694  1.18.2.2   bouyer 		 * now consider doing the pageout.
    695       1.8      mrg 		 *
    696  1.18.2.2   bouyer 		 * for swap-backed pages, we do the pageout if we have either
    697  1.18.2.2   bouyer 		 * filled the cluster (in which case (swnpages == swcpages) or
    698       1.8      mrg 		 * run out of pages (p == NULL).
    699       1.8      mrg 		 *
    700       1.8      mrg 		 * for object pages, we always do the pageout.
    701       1.8      mrg 		 */
    702       1.8      mrg 
    703  1.18.2.2   bouyer 		if (swap_backed) {
    704       1.8      mrg 			if (p) {	/* if we just added a page to cluster */
    705       1.8      mrg 				if (anon)
    706       1.8      mrg 					simple_unlock(&anon->an_lock);
    707       1.8      mrg 				else
    708       1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    709       1.8      mrg 
    710       1.8      mrg 				/* cluster not full yet? */
    711       1.8      mrg 				if (swcpages < swnpages)
    712       1.8      mrg 					continue;
    713       1.8      mrg 			}
    714       1.8      mrg 
    715       1.8      mrg 			/* starting I/O now... set up for it */
    716       1.8      mrg 			npages = swcpages;
    717       1.8      mrg 			ppsp = swpps;
    718       1.8      mrg 			/* for swap-backed pages only */
    719      1.10      eeh 			start = (vaddr_t) swslot;
    720       1.8      mrg 
    721       1.8      mrg 			/* if this is final pageout we could have a few
    722       1.8      mrg 			 * extra swap blocks */
    723       1.8      mrg 			if (swcpages < swnpages) {
    724       1.8      mrg 				uvm_swap_free(swslot + swcpages,
    725       1.8      mrg 				    (swnpages - swcpages));
    726  1.18.2.2   bouyer 			}
    727       1.8      mrg 		} else {
    728       1.8      mrg 			/* normal object pageout */
    729       1.8      mrg 			ppsp = pps;
    730       1.8      mrg 			npages = sizeof(pps) / sizeof(struct vm_page *);
    731       1.8      mrg 			/* not looked at because PGO_ALLPAGES is set */
    732       1.8      mrg 			start = 0;
    733       1.8      mrg 		}
    734       1.8      mrg 
    735       1.8      mrg 		/*
    736       1.8      mrg 		 * now do the pageout.
    737  1.18.2.2   bouyer 		 *
    738       1.8      mrg 		 * for swap_backed pages we have already built the cluster.
    739       1.8      mrg 		 * for !swap_backed pages, uvm_pager_put will call the object's
    740       1.8      mrg 		 * "make put cluster" function to build a cluster on our behalf.
    741       1.8      mrg 		 *
    742       1.8      mrg 		 * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
    743       1.8      mrg 		 * it to free the cluster pages for us on a successful I/O (it
    744       1.8      mrg 		 * always does this for un-successful I/O requests).  this
    745       1.8      mrg 		 * allows us to do clustered pageout without having to deal
    746       1.8      mrg 		 * with cluster pages at this level.
    747       1.8      mrg 		 *
    748       1.8      mrg 		 * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
    749       1.8      mrg 		 *  IN: locked: uobj (if !swap_backed), page queues
    750       1.8      mrg 		 * OUT: locked: uobj (if !swap_backed && result !=VM_PAGER_PEND)
    751       1.8      mrg 		 *     !locked: pageqs, uobj (if swap_backed || VM_PAGER_PEND)
    752       1.8      mrg 		 *
    753       1.8      mrg 		 * [the bit about VM_PAGER_PEND saves us one lock-unlock pair]
    754       1.8      mrg 		 */
    755       1.8      mrg 
    756       1.8      mrg 		/* locked: uobj (if !swap_backed), page queues */
    757       1.8      mrg 		uvmexp.pdpageouts++;
    758  1.18.2.2   bouyer 		result = uvm_pager_put(swap_backed ? NULL : uobj, p,
    759       1.8      mrg 		    &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
    760       1.8      mrg 		/* locked: uobj (if !swap_backed && result != PEND) */
    761       1.8      mrg 		/* unlocked: pageqs, object (if swap_backed ||result == PEND) */
    762       1.8      mrg 
    763       1.8      mrg 		/*
    764       1.8      mrg 		 * if we did i/o to swap, zero swslot to indicate that we are
    765       1.8      mrg 		 * no longer building a swap-backed cluster.
    766       1.8      mrg 		 */
    767       1.8      mrg 
    768       1.8      mrg 		if (swap_backed)
    769       1.8      mrg 			swslot = 0;		/* done with this cluster */
    770       1.8      mrg 
    771       1.8      mrg 		/*
    772       1.8      mrg 		 * first, we check for VM_PAGER_PEND which means that the
    773       1.8      mrg 		 * async I/O is in progress and the async I/O done routine
    774       1.8      mrg 		 * will clean up after us.   in this case we move on to the
    775       1.8      mrg 		 * next page.
    776       1.8      mrg 		 *
    777       1.8      mrg 		 * there is a very remote chance that the pending async i/o can
    778       1.8      mrg 		 * finish _before_ we get here.   if that happens, our page "p"
    779       1.8      mrg 		 * may no longer be on the inactive queue.   so we verify this
    780       1.8      mrg 		 * when determining the next page (starting over at the head if
    781       1.8      mrg 		 * we've lost our inactive page).
    782       1.8      mrg 		 */
    783       1.8      mrg 
    784       1.8      mrg 		if (result == VM_PAGER_PEND) {
    785       1.8      mrg 			uvmexp.paging += npages;
    786  1.18.2.2   bouyer 			uvm_lock_pageq();
    787       1.8      mrg 			uvmexp.pdpending++;
    788       1.8      mrg 			if (p) {
    789       1.8      mrg 				if (p->pqflags & PQ_INACTIVE)
    790  1.18.2.2   bouyer 					nextpg = TAILQ_NEXT(p, pageq);
    791       1.8      mrg 				else
    792  1.18.2.2   bouyer 					nextpg = TAILQ_FIRST(pglst);
    793  1.18.2.2   bouyer 			} else {
    794  1.18.2.2   bouyer 				nextpg = NULL;
    795       1.8      mrg 			}
    796       1.8      mrg 			continue;
    797       1.8      mrg 		}
    798       1.8      mrg 
    799  1.18.2.2   bouyer 		if (result == VM_PAGER_ERROR &&
    800  1.18.2.2   bouyer 		    curproc == uvm.pagedaemon_proc) {
    801  1.18.2.2   bouyer 			uvm_lock_pageq();
    802  1.18.2.2   bouyer 			nextpg = TAILQ_NEXT(p, pageq);
    803  1.18.2.2   bouyer 			uvm_pageactivate(p);
    804  1.18.2.2   bouyer 			continue;
    805  1.18.2.2   bouyer 		}
    806  1.18.2.2   bouyer 
    807       1.8      mrg 		/*
    808       1.8      mrg 		 * clean up "p" if we have one
    809       1.8      mrg 		 */
    810       1.8      mrg 
    811       1.8      mrg 		if (p) {
    812       1.8      mrg 			/*
    813       1.8      mrg 			 * the I/O request to "p" is done and uvm_pager_put
    814       1.8      mrg 			 * has freed any cluster pages it may have allocated
    815       1.8      mrg 			 * during I/O.  all that is left for us to do is
    816       1.8      mrg 			 * clean up page "p" (which is still PG_BUSY).
    817       1.8      mrg 			 *
    818       1.8      mrg 			 * our result could be one of the following:
    819       1.8      mrg 			 *   VM_PAGER_OK: successful pageout
    820       1.8      mrg 			 *
    821       1.8      mrg 			 *   VM_PAGER_AGAIN: tmp resource shortage, we skip
    822       1.8      mrg 			 *     to next page
    823       1.8      mrg 			 *   VM_PAGER_{FAIL,ERROR,BAD}: an error.   we
    824       1.8      mrg 			 *     "reactivate" page to get it out of the way (it
    825       1.8      mrg 			 *     will eventually drift back into the inactive
    826       1.8      mrg 			 *     queue for a retry).
    827       1.8      mrg 			 *   VM_PAGER_UNLOCK: should never see this as it is
    828       1.8      mrg 			 *     only valid for "get" operations
    829       1.8      mrg 			 */
    830       1.8      mrg 
    831       1.8      mrg 			/* relock p's object: page queues not lock yet, so
    832       1.8      mrg 			 * no need for "try" */
    833       1.8      mrg 
    834       1.8      mrg 			/* !swap_backed case: already locked... */
    835       1.8      mrg 			if (swap_backed) {
    836       1.8      mrg 				if (anon)
    837       1.8      mrg 					simple_lock(&anon->an_lock);
    838       1.8      mrg 				else
    839       1.8      mrg 					simple_lock(&uobj->vmobjlock);
    840       1.8      mrg 			}
    841       1.1      mrg 
    842       1.8      mrg 			/* handle PG_WANTED now */
    843       1.8      mrg 			if (p->flags & PG_WANTED)
    844       1.8      mrg 				/* still holding object lock */
    845      1.17  thorpej 				wakeup(p);
    846       1.8      mrg 
    847       1.8      mrg 			p->flags &= ~(PG_BUSY|PG_WANTED);
    848       1.8      mrg 			UVM_PAGE_OWN(p, NULL);
    849       1.8      mrg 
    850       1.8      mrg 			/* released during I/O? */
    851       1.8      mrg 			if (p->flags & PG_RELEASED) {
    852       1.8      mrg 				if (anon) {
    853       1.8      mrg 					/* remove page so we can get nextpg */
    854       1.8      mrg 					anon->u.an_page = NULL;
    855       1.8      mrg 
    856       1.8      mrg 					simple_unlock(&anon->an_lock);
    857       1.8      mrg 					uvm_anfree(anon);	/* kills anon */
    858      1.18      chs 					pmap_page_protect(p, VM_PROT_NONE);
    859       1.8      mrg 					anon = NULL;
    860       1.8      mrg 					uvm_lock_pageq();
    861  1.18.2.2   bouyer 					nextpg = TAILQ_NEXT(p, pageq);
    862       1.8      mrg 					/* free released page */
    863       1.8      mrg 					uvm_pagefree(p);
    864       1.1      mrg 
    865       1.8      mrg 				} else {
    866       1.1      mrg 
    867  1.18.2.2   bouyer 					/*
    868       1.8      mrg 					 * pgo_releasepg nukes the page and
    869       1.8      mrg 					 * gets "nextpg" for us.  it returns
    870       1.8      mrg 					 * with the page queues locked (when
    871       1.8      mrg 					 * given nextpg ptr).
    872       1.8      mrg 					 */
    873  1.18.2.2   bouyer 
    874       1.8      mrg 					if (!uobj->pgops->pgo_releasepg(p,
    875       1.8      mrg 					    &nextpg))
    876       1.8      mrg 						/* uobj died after release */
    877       1.8      mrg 						uobj = NULL;
    878       1.8      mrg 
    879       1.8      mrg 					/*
    880       1.8      mrg 					 * lock page queues here so that they're
    881       1.8      mrg 					 * always locked at the end of the loop.
    882       1.8      mrg 					 */
    883  1.18.2.2   bouyer 
    884       1.8      mrg 					uvm_lock_pageq();
    885       1.8      mrg 				}
    886       1.8      mrg 			} else {	/* page was not released during I/O */
    887       1.8      mrg 				uvm_lock_pageq();
    888  1.18.2.2   bouyer 				nextpg = TAILQ_NEXT(p, pageq);
    889       1.8      mrg 				if (result != VM_PAGER_OK) {
    890       1.8      mrg 					/* pageout was a failure... */
    891       1.8      mrg 					if (result != VM_PAGER_AGAIN)
    892       1.8      mrg 						uvm_pageactivate(p);
    893      1.18      chs 					pmap_clear_reference(p);
    894       1.8      mrg 					/* XXXCDC: if (swap_backed) FREE p's
    895       1.8      mrg 					 * swap block? */
    896       1.8      mrg 				} else {
    897       1.8      mrg 					/* pageout was a success... */
    898      1.18      chs 					pmap_clear_reference(p);
    899      1.18      chs 					pmap_clear_modify(p);
    900       1.8      mrg 					p->flags |= PG_CLEAN;
    901       1.8      mrg 				}
    902       1.8      mrg 			}
    903  1.18.2.2   bouyer 
    904       1.8      mrg 			/*
    905       1.8      mrg 			 * drop object lock (if there is an object left).   do
    906       1.8      mrg 			 * a safety check of nextpg to make sure it is on the
    907       1.8      mrg 			 * inactive queue (it should be since PG_BUSY pages on
    908       1.8      mrg 			 * the inactive queue can't be re-queued [note: not
    909       1.8      mrg 			 * true for active queue]).
    910       1.8      mrg 			 */
    911       1.8      mrg 
    912       1.8      mrg 			if (anon)
    913       1.8      mrg 				simple_unlock(&anon->an_lock);
    914       1.8      mrg 			else if (uobj)
    915       1.8      mrg 				simple_unlock(&uobj->vmobjlock);
    916       1.8      mrg 
    917  1.18.2.2   bouyer 		} else {
    918  1.18.2.2   bouyer 
    919  1.18.2.2   bouyer 			/*
    920  1.18.2.2   bouyer 			 * if p is null in this loop, make sure it stays null
    921  1.18.2.2   bouyer 			 * in the next loop.
    922  1.18.2.2   bouyer 			 */
    923       1.8      mrg 
    924       1.8      mrg 			nextpg = NULL;
    925       1.8      mrg 
    926       1.8      mrg 			/*
    927       1.8      mrg 			 * lock page queues here just so they're always locked
    928       1.8      mrg 			 * at the end of the loop.
    929       1.8      mrg 			 */
    930  1.18.2.2   bouyer 
    931       1.8      mrg 			uvm_lock_pageq();
    932       1.8      mrg 		}
    933       1.8      mrg 
    934       1.8      mrg 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    935  1.18.2.2   bouyer 			nextpg = TAILQ_FIRST(pglst);	/* reload! */
    936       1.8      mrg 		}
    937  1.18.2.2   bouyer 	}
    938       1.8      mrg 	return (retval);
    939       1.1      mrg }
    940       1.1      mrg 
    941       1.1      mrg /*
    942       1.1      mrg  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    943       1.1      mrg  *
    944       1.1      mrg  * => called with pageq's locked
    945       1.1      mrg  */
    946       1.1      mrg 
    947       1.8      mrg void
    948       1.8      mrg uvmpd_scan()
    949       1.1      mrg {
    950      1.14      chs 	int s, free, inactive_shortage, swap_shortage, pages_freed;
    951       1.8      mrg 	struct vm_page *p, *nextpg;
    952       1.8      mrg 	struct uvm_object *uobj;
    953       1.8      mrg 	boolean_t got_it;
    954       1.8      mrg 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    955       1.1      mrg 
    956       1.8      mrg 	uvmexp.pdrevs++;		/* counter */
    957  1.18.2.2   bouyer 	uobj = NULL;
    958       1.1      mrg 
    959       1.8      mrg 	/*
    960       1.8      mrg 	 * get current "free" page count
    961       1.8      mrg 	 */
    962      1.16  thorpej 	s = uvm_lock_fpageq();
    963       1.8      mrg 	free = uvmexp.free;
    964      1.16  thorpej 	uvm_unlock_fpageq(s);
    965       1.1      mrg 
    966       1.1      mrg #ifndef __SWAP_BROKEN
    967       1.8      mrg 	/*
    968       1.8      mrg 	 * swap out some processes if we are below our free target.
    969       1.8      mrg 	 * we need to unlock the page queues for this.
    970       1.8      mrg 	 */
    971       1.8      mrg 	if (free < uvmexp.freetarg) {
    972       1.8      mrg 		uvmexp.pdswout++;
    973       1.8      mrg 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout", free,
    974       1.8      mrg 		    uvmexp.freetarg, 0, 0);
    975       1.8      mrg 		uvm_unlock_pageq();
    976       1.8      mrg 		uvm_swapout_threads();
    977       1.8      mrg 		uvm_lock_pageq();
    978       1.1      mrg 
    979       1.8      mrg 	}
    980       1.1      mrg #endif
    981       1.1      mrg 
    982       1.8      mrg 	/*
    983       1.8      mrg 	 * now we want to work on meeting our targets.   first we work on our
    984       1.8      mrg 	 * free target by converting inactive pages into free pages.  then
    985       1.8      mrg 	 * we work on meeting our inactive target by converting active pages
    986       1.8      mrg 	 * to inactive ones.
    987       1.8      mrg 	 */
    988       1.8      mrg 
    989       1.8      mrg 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    990       1.8      mrg 
    991       1.8      mrg 	/*
    992  1.18.2.2   bouyer 	 * alternate starting queue between swap and object based on the
    993  1.18.2.2   bouyer 	 * low bit of uvmexp.pdrevs (which we bump by one each call).
    994       1.8      mrg 	 */
    995       1.8      mrg 
    996       1.8      mrg 	got_it = FALSE;
    997      1.14      chs 	pages_freed = uvmexp.pdfreed;
    998       1.8      mrg 	if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
    999       1.8      mrg 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
   1000       1.8      mrg 	if (!got_it)
   1001       1.8      mrg 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
   1002       1.8      mrg 	if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
   1003       1.8      mrg 		(void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
   1004      1.14      chs 	pages_freed = uvmexp.pdfreed - pages_freed;
   1005       1.8      mrg 
   1006       1.8      mrg 	/*
   1007       1.8      mrg 	 * we have done the scan to get free pages.   now we work on meeting
   1008       1.8      mrg 	 * our inactive target.
   1009       1.8      mrg 	 */
   1010       1.8      mrg 
   1011      1.14      chs 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
   1012      1.14      chs 
   1013      1.14      chs 	/*
   1014      1.14      chs 	 * detect if we're not going to be able to page anything out
   1015      1.14      chs 	 * until we free some swap resources from active pages.
   1016      1.14      chs 	 */
   1017  1.18.2.2   bouyer 
   1018      1.14      chs 	swap_shortage = 0;
   1019      1.14      chs 	if (uvmexp.free < uvmexp.freetarg &&
   1020      1.14      chs 	    uvmexp.swpginuse == uvmexp.swpages &&
   1021      1.14      chs 	    uvmexp.swpgonly < uvmexp.swpages &&
   1022      1.14      chs 	    pages_freed == 0) {
   1023      1.14      chs 		swap_shortage = uvmexp.freetarg - uvmexp.free;
   1024      1.14      chs 	}
   1025  1.18.2.2   bouyer 
   1026      1.14      chs 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
   1027      1.14      chs 		    inactive_shortage, swap_shortage,0,0);
   1028  1.18.2.2   bouyer 	for (p = TAILQ_FIRST(&uvm.page_active);
   1029      1.14      chs 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
   1030      1.14      chs 	     p = nextpg) {
   1031  1.18.2.2   bouyer 		nextpg = TAILQ_NEXT(p, pageq);
   1032       1.8      mrg 		if (p->flags & PG_BUSY)
   1033       1.8      mrg 			continue;	/* quick check before trying to lock */
   1034       1.8      mrg 
   1035       1.8      mrg 		/*
   1036      1.14      chs 		 * lock the page's owner.
   1037       1.8      mrg 		 */
   1038       1.8      mrg 		/* is page anon owned or ownerless? */
   1039       1.8      mrg 		if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
   1040  1.18.2.2   bouyer 			KASSERT(p->uanon != NULL);
   1041       1.8      mrg 			if (!simple_lock_try(&p->uanon->an_lock))
   1042       1.8      mrg 				continue;
   1043       1.1      mrg 
   1044       1.8      mrg 			/* take over the page? */
   1045       1.8      mrg 			if ((p->pqflags & PQ_ANON) == 0) {
   1046  1.18.2.2   bouyer 				KASSERT(p->loan_count > 0);
   1047       1.8      mrg 				p->loan_count--;
   1048       1.8      mrg 				p->pqflags |= PQ_ANON;
   1049       1.8      mrg 			}
   1050       1.8      mrg 		} else {
   1051       1.8      mrg 			if (!simple_lock_try(&p->uobject->vmobjlock))
   1052       1.8      mrg 				continue;
   1053       1.8      mrg 		}
   1054  1.18.2.2   bouyer 
   1055      1.14      chs 		/*
   1056      1.14      chs 		 * skip this page if it's busy.
   1057      1.14      chs 		 */
   1058  1.18.2.2   bouyer 
   1059      1.14      chs 		if ((p->flags & PG_BUSY) != 0) {
   1060      1.14      chs 			if (p->pqflags & PQ_ANON)
   1061      1.14      chs 				simple_unlock(&p->uanon->an_lock);
   1062      1.14      chs 			else
   1063      1.14      chs 				simple_unlock(&p->uobject->vmobjlock);
   1064      1.14      chs 			continue;
   1065      1.14      chs 		}
   1066  1.18.2.2   bouyer 
   1067      1.14      chs 		/*
   1068      1.14      chs 		 * if there's a shortage of swap, free any swap allocated
   1069      1.14      chs 		 * to this page so that other pages can be paged out.
   1070      1.14      chs 		 */
   1071  1.18.2.2   bouyer 
   1072      1.14      chs 		if (swap_shortage > 0) {
   1073      1.14      chs 			if ((p->pqflags & PQ_ANON) && p->uanon->an_swslot) {
   1074      1.14      chs 				uvm_swap_free(p->uanon->an_swslot, 1);
   1075      1.14      chs 				p->uanon->an_swslot = 0;
   1076      1.14      chs 				p->flags &= ~PG_CLEAN;
   1077      1.14      chs 				swap_shortage--;
   1078      1.14      chs 			}
   1079      1.14      chs 			if (p->pqflags & PQ_AOBJ) {
   1080      1.14      chs 				int slot = uao_set_swslot(p->uobject,
   1081      1.14      chs 					p->offset >> PAGE_SHIFT, 0);
   1082      1.14      chs 				if (slot) {
   1083      1.14      chs 					uvm_swap_free(slot, 1);
   1084      1.14      chs 					p->flags &= ~PG_CLEAN;
   1085      1.14      chs 					swap_shortage--;
   1086      1.14      chs 				}
   1087      1.14      chs 			}
   1088      1.14      chs 		}
   1089  1.18.2.2   bouyer 
   1090      1.14      chs 		/*
   1091      1.14      chs 		 * deactivate this page if there's a shortage of
   1092      1.14      chs 		 * inactive pages.
   1093      1.14      chs 		 */
   1094  1.18.2.2   bouyer 
   1095      1.14      chs 		if (inactive_shortage > 0) {
   1096      1.18      chs 			pmap_page_protect(p, VM_PROT_NONE);
   1097       1.8      mrg 			/* no need to check wire_count as pg is "active" */
   1098       1.8      mrg 			uvm_pagedeactivate(p);
   1099       1.8      mrg 			uvmexp.pddeact++;
   1100      1.14      chs 			inactive_shortage--;
   1101       1.8      mrg 		}
   1102       1.8      mrg 		if (p->pqflags & PQ_ANON)
   1103       1.8      mrg 			simple_unlock(&p->uanon->an_lock);
   1104       1.8      mrg 		else
   1105       1.8      mrg 			simple_unlock(&p->uobject->vmobjlock);
   1106       1.8      mrg 	}
   1107       1.1      mrg }
   1108