uvm_pdaemon.c revision 1.19 1 1.19 thorpej /* $NetBSD: uvm_pdaemon.c,v 1.19 1999/11/04 21:51:42 thorpej Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.1 mrg * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.1 mrg *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.1 mrg *
54 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.1 mrg *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.7 mrg #include "opt_uvmhist.h"
70 1.7 mrg
71 1.1 mrg /*
72 1.1 mrg * uvm_pdaemon.c: the page daemon
73 1.1 mrg */
74 1.1 mrg
75 1.1 mrg #include <sys/param.h>
76 1.1 mrg #include <sys/proc.h>
77 1.1 mrg #include <sys/systm.h>
78 1.1 mrg #include <sys/kernel.h>
79 1.9 pk #include <sys/pool.h>
80 1.1 mrg
81 1.1 mrg #include <vm/vm.h>
82 1.1 mrg #include <vm/vm_page.h>
83 1.1 mrg #include <vm/vm_kern.h>
84 1.1 mrg
85 1.1 mrg #include <uvm/uvm.h>
86 1.1 mrg
87 1.1 mrg /*
88 1.14 chs * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
89 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
90 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
91 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
92 1.14 chs */
93 1.14 chs
94 1.14 chs #define UVMPD_NUMDIRTYREACTS 16
95 1.14 chs
96 1.14 chs
97 1.14 chs /*
98 1.1 mrg * local prototypes
99 1.1 mrg */
100 1.1 mrg
101 1.1 mrg static void uvmpd_scan __P((void));
102 1.1 mrg static boolean_t uvmpd_scan_inactive __P((struct pglist *));
103 1.1 mrg static void uvmpd_tune __P((void));
104 1.1 mrg
105 1.1 mrg
106 1.1 mrg /*
107 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
108 1.1 mrg *
109 1.1 mrg * => should be called with all locks released
110 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
111 1.1 mrg */
112 1.1 mrg
113 1.19 thorpej void
114 1.19 thorpej uvm_wait(wmsg)
115 1.19 thorpej const char *wmsg;
116 1.8 mrg {
117 1.8 mrg int timo = 0;
118 1.8 mrg int s = splbio();
119 1.1 mrg
120 1.8 mrg /*
121 1.8 mrg * check for page daemon going to sleep (waiting for itself)
122 1.8 mrg */
123 1.1 mrg
124 1.8 mrg if (curproc == uvm.pagedaemon_proc) {
125 1.8 mrg /*
126 1.8 mrg * now we have a problem: the pagedaemon wants to go to
127 1.8 mrg * sleep until it frees more memory. but how can it
128 1.8 mrg * free more memory if it is asleep? that is a deadlock.
129 1.8 mrg * we have two options:
130 1.8 mrg * [1] panic now
131 1.8 mrg * [2] put a timeout on the sleep, thus causing the
132 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
133 1.8 mrg *
134 1.8 mrg * note that option [2] will only help us if we get lucky
135 1.8 mrg * and some other process on the system breaks the deadlock
136 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
137 1.8 mrg * to continue). for now we panic if DEBUG is defined,
138 1.8 mrg * otherwise we hope for the best with option [2] (better
139 1.8 mrg * yet, this should never happen in the first place!).
140 1.8 mrg */
141 1.1 mrg
142 1.8 mrg printf("pagedaemon: deadlock detected!\n");
143 1.8 mrg timo = hz >> 3; /* set timeout */
144 1.1 mrg #if defined(DEBUG)
145 1.8 mrg /* DEBUG: panic so we can debug it */
146 1.8 mrg panic("pagedaemon deadlock");
147 1.1 mrg #endif
148 1.8 mrg }
149 1.1 mrg
150 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
151 1.17 thorpej wakeup(&uvm.pagedaemon); /* wake the daemon! */
152 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
153 1.8 mrg timo);
154 1.1 mrg
155 1.8 mrg splx(s);
156 1.1 mrg }
157 1.1 mrg
158 1.1 mrg
159 1.1 mrg /*
160 1.1 mrg * uvmpd_tune: tune paging parameters
161 1.1 mrg *
162 1.1 mrg * => called when ever memory is added (or removed?) to the system
163 1.1 mrg * => caller must call with page queues locked
164 1.1 mrg */
165 1.1 mrg
166 1.8 mrg static void
167 1.8 mrg uvmpd_tune()
168 1.8 mrg {
169 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
170 1.1 mrg
171 1.8 mrg uvmexp.freemin = uvmexp.npages / 20;
172 1.1 mrg
173 1.8 mrg /* between 16k and 256k */
174 1.8 mrg /* XXX: what are these values good for? */
175 1.11 chs uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
176 1.11 chs uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
177 1.1 mrg
178 1.8 mrg uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
179 1.8 mrg if (uvmexp.freetarg <= uvmexp.freemin)
180 1.8 mrg uvmexp.freetarg = uvmexp.freemin + 1;
181 1.1 mrg
182 1.8 mrg /* uvmexp.inactarg: computed in main daemon loop */
183 1.1 mrg
184 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
185 1.8 mrg UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
186 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
187 1.1 mrg }
188 1.1 mrg
189 1.1 mrg /*
190 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
191 1.1 mrg */
192 1.1 mrg
193 1.8 mrg void
194 1.8 mrg uvm_pageout()
195 1.8 mrg {
196 1.8 mrg int npages = 0;
197 1.8 mrg int s;
198 1.8 mrg struct uvm_aiodesc *aio, *nextaio;
199 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
200 1.8 mrg
201 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
202 1.8 mrg
203 1.8 mrg /*
204 1.8 mrg * ensure correct priority and set paging parameters...
205 1.8 mrg */
206 1.8 mrg
207 1.8 mrg uvm.pagedaemon_proc = curproc;
208 1.8 mrg (void) spl0();
209 1.8 mrg uvm_lock_pageq();
210 1.8 mrg npages = uvmexp.npages;
211 1.8 mrg uvmpd_tune();
212 1.8 mrg uvm_unlock_pageq();
213 1.8 mrg
214 1.8 mrg /*
215 1.8 mrg * main loop
216 1.8 mrg */
217 1.8 mrg while (TRUE) {
218 1.1 mrg
219 1.8 mrg /*
220 1.8 mrg * carefully attempt to go to sleep (without losing "wakeups"!).
221 1.8 mrg * we need splbio because we want to make sure the aio_done list
222 1.8 mrg * is totally empty before we go to sleep.
223 1.8 mrg */
224 1.8 mrg
225 1.8 mrg s = splbio();
226 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
227 1.8 mrg
228 1.8 mrg /*
229 1.8 mrg * if we've got done aio's, then bypass the sleep
230 1.8 mrg */
231 1.8 mrg
232 1.8 mrg if (uvm.aio_done.tqh_first == NULL) {
233 1.8 mrg UVMHIST_LOG(maphist," <<SLEEPING>>",0,0,0,0);
234 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
235 1.8 mrg &uvm.pagedaemon_lock, FALSE, "daemon_slp", 0);
236 1.8 mrg uvmexp.pdwoke++;
237 1.8 mrg UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
238 1.8 mrg
239 1.8 mrg /* relock pagedaemon_lock, still at splbio */
240 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
241 1.8 mrg }
242 1.8 mrg
243 1.8 mrg /*
244 1.8 mrg * check for done aio structures
245 1.8 mrg */
246 1.8 mrg
247 1.8 mrg aio = uvm.aio_done.tqh_first; /* save current list (if any)*/
248 1.8 mrg if (aio) {
249 1.8 mrg TAILQ_INIT(&uvm.aio_done); /* zero global list */
250 1.8 mrg }
251 1.1 mrg
252 1.8 mrg simple_unlock(&uvm.pagedaemon_lock); /* unlock */
253 1.8 mrg splx(s); /* drop splbio */
254 1.1 mrg
255 1.8 mrg /*
256 1.8 mrg * first clear out any pending aios (to free space in case we
257 1.8 mrg * want to pageout more stuff).
258 1.8 mrg */
259 1.8 mrg
260 1.8 mrg for (/*null*/; aio != NULL ; aio = nextaio) {
261 1.8 mrg
262 1.8 mrg uvmexp.paging -= aio->npages;
263 1.8 mrg nextaio = aio->aioq.tqe_next;
264 1.8 mrg aio->aiodone(aio);
265 1.8 mrg
266 1.8 mrg }
267 1.9 pk
268 1.9 pk /* Next, drain pool resources */
269 1.9 pk pool_drain(0);
270 1.8 mrg
271 1.8 mrg /*
272 1.8 mrg * now lock page queues and recompute inactive count
273 1.8 mrg */
274 1.8 mrg uvm_lock_pageq();
275 1.8 mrg
276 1.8 mrg if (npages != uvmexp.npages) { /* check for new pages? */
277 1.8 mrg npages = uvmexp.npages;
278 1.8 mrg uvmpd_tune();
279 1.8 mrg }
280 1.8 mrg
281 1.8 mrg uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
282 1.8 mrg if (uvmexp.inactarg <= uvmexp.freetarg)
283 1.8 mrg uvmexp.inactarg = uvmexp.freetarg + 1;
284 1.8 mrg
285 1.8 mrg UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
286 1.8 mrg uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
287 1.8 mrg uvmexp.inactarg);
288 1.8 mrg
289 1.8 mrg /*
290 1.8 mrg * scan if needed
291 1.8 mrg * [XXX: note we are reading uvm.free without locking]
292 1.8 mrg */
293 1.8 mrg if (uvmexp.free < uvmexp.freetarg ||
294 1.8 mrg uvmexp.inactive < uvmexp.inactarg)
295 1.8 mrg uvmpd_scan();
296 1.8 mrg
297 1.8 mrg /*
298 1.8 mrg * done scan. unlock page queues (the only lock we are holding)
299 1.8 mrg */
300 1.8 mrg uvm_unlock_pageq();
301 1.8 mrg
302 1.8 mrg /*
303 1.8 mrg * done! restart loop.
304 1.8 mrg */
305 1.15 mycroft if (uvmexp.free > uvmexp.reserve_kernel ||
306 1.14 chs uvmexp.paging == 0)
307 1.17 thorpej wakeup(&uvmexp.free);
308 1.8 mrg }
309 1.8 mrg /*NOTREACHED*/
310 1.1 mrg }
311 1.1 mrg
312 1.1 mrg /*
313 1.1 mrg * uvmpd_scan_inactive: the first loop of uvmpd_scan broken out into
314 1.1 mrg * its own function for ease of reading.
315 1.1 mrg *
316 1.1 mrg * => called with page queues locked
317 1.1 mrg * => we work on meeting our free target by converting inactive pages
318 1.1 mrg * into free pages.
319 1.1 mrg * => we handle the building of swap-backed clusters
320 1.1 mrg * => we return TRUE if we are exiting because we met our target
321 1.1 mrg */
322 1.1 mrg
323 1.8 mrg static boolean_t
324 1.8 mrg uvmpd_scan_inactive(pglst)
325 1.8 mrg struct pglist *pglst;
326 1.8 mrg {
327 1.8 mrg boolean_t retval = FALSE; /* assume we haven't hit target */
328 1.8 mrg int s, free, result;
329 1.8 mrg struct vm_page *p, *nextpg;
330 1.8 mrg struct uvm_object *uobj;
331 1.11 chs struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
332 1.8 mrg int npages;
333 1.11 chs struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; /* XXX: see below */
334 1.8 mrg int swnpages, swcpages; /* XXX: see below */
335 1.14 chs int swslot;
336 1.8 mrg struct vm_anon *anon;
337 1.8 mrg boolean_t swap_backed;
338 1.10 eeh vaddr_t start;
339 1.14 chs int dirtyreacts;
340 1.8 mrg UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
341 1.1 mrg
342 1.8 mrg /*
343 1.8 mrg * note: we currently keep swap-backed pages on a seperate inactive
344 1.8 mrg * list from object-backed pages. however, merging the two lists
345 1.8 mrg * back together again hasn't been ruled out. thus, we keep our
346 1.8 mrg * swap cluster in "swpps" rather than in pps (allows us to mix
347 1.8 mrg * clustering types in the event of a mixed inactive queue).
348 1.8 mrg */
349 1.1 mrg
350 1.8 mrg /*
351 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
352 1.8 mrg * to stay in the loop while we have a page to scan or we have
353 1.8 mrg * a swap-cluster to build.
354 1.8 mrg */
355 1.8 mrg swslot = 0;
356 1.8 mrg swnpages = swcpages = 0;
357 1.8 mrg free = 0;
358 1.14 chs dirtyreacts = 0;
359 1.8 mrg
360 1.8 mrg for (p = pglst->tqh_first ; p != NULL || swslot != 0 ; p = nextpg) {
361 1.8 mrg
362 1.8 mrg /*
363 1.8 mrg * note that p can be NULL iff we have traversed the whole
364 1.8 mrg * list and need to do one final swap-backed clustered pageout.
365 1.8 mrg */
366 1.8 mrg if (p) {
367 1.8 mrg /*
368 1.8 mrg * update our copy of "free" and see if we've met
369 1.8 mrg * our target
370 1.8 mrg */
371 1.16 thorpej s = uvm_lock_fpageq();
372 1.8 mrg free = uvmexp.free;
373 1.16 thorpej uvm_unlock_fpageq(s);
374 1.8 mrg
375 1.14 chs if (free + uvmexp.paging >= uvmexp.freetarg << 2 ||
376 1.14 chs dirtyreacts == UVMPD_NUMDIRTYREACTS) {
377 1.8 mrg UVMHIST_LOG(pdhist," met free target: "
378 1.8 mrg "exit loop", 0, 0, 0, 0);
379 1.8 mrg retval = TRUE; /* hit the target! */
380 1.8 mrg
381 1.8 mrg if (swslot == 0)
382 1.8 mrg /* exit now if no swap-i/o pending */
383 1.8 mrg break;
384 1.8 mrg
385 1.8 mrg /* set p to null to signal final swap i/o */
386 1.8 mrg p = NULL;
387 1.8 mrg }
388 1.8 mrg }
389 1.8 mrg
390 1.8 mrg uobj = NULL; /* be safe and shut gcc up */
391 1.8 mrg anon = NULL; /* be safe and shut gcc up */
392 1.8 mrg
393 1.8 mrg if (p) { /* if (we have a new page to consider) */
394 1.8 mrg /*
395 1.8 mrg * we are below target and have a new page to consider.
396 1.8 mrg */
397 1.8 mrg uvmexp.pdscans++;
398 1.8 mrg nextpg = p->pageq.tqe_next;
399 1.8 mrg
400 1.8 mrg /*
401 1.8 mrg * move referenced pages back to active queue and
402 1.8 mrg * skip to next page (unlikely to happen since
403 1.8 mrg * inactive pages shouldn't have any valid mappings
404 1.8 mrg * and we cleared reference before deactivating).
405 1.8 mrg */
406 1.18 chs if (pmap_is_referenced(p)) {
407 1.8 mrg uvm_pageactivate(p);
408 1.8 mrg uvmexp.pdreact++;
409 1.8 mrg continue;
410 1.8 mrg }
411 1.8 mrg
412 1.8 mrg /*
413 1.8 mrg * first we attempt to lock the object that this page
414 1.8 mrg * belongs to. if our attempt fails we skip on to
415 1.8 mrg * the next page (no harm done). it is important to
416 1.8 mrg * "try" locking the object as we are locking in the
417 1.8 mrg * wrong order (pageq -> object) and we don't want to
418 1.8 mrg * get deadlocked.
419 1.8 mrg *
420 1.8 mrg * the only time we exepct to see an ownerless page
421 1.8 mrg * (i.e. a page with no uobject and !PQ_ANON) is if an
422 1.8 mrg * anon has loaned a page from a uvm_object and the
423 1.8 mrg * uvm_object has dropped the ownership. in that
424 1.8 mrg * case, the anon can "take over" the loaned page
425 1.8 mrg * and make it its own.
426 1.8 mrg */
427 1.8 mrg
428 1.8 mrg /* is page part of an anon or ownerless ? */
429 1.8 mrg if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
430 1.1 mrg
431 1.8 mrg anon = p->uanon;
432 1.1 mrg
433 1.1 mrg #ifdef DIAGNOSTIC
434 1.8 mrg /* to be on inactive q, page must be part
435 1.8 mrg * of _something_ */
436 1.8 mrg if (anon == NULL)
437 1.8 mrg panic("pagedaemon: page with no anon "
438 1.8 mrg "or object detected - loop 1");
439 1.1 mrg #endif
440 1.1 mrg
441 1.8 mrg if (!simple_lock_try(&anon->an_lock))
442 1.8 mrg /* lock failed, skip this page */
443 1.8 mrg continue;
444 1.8 mrg
445 1.8 mrg /*
446 1.8 mrg * if the page is ownerless, claim it in the
447 1.8 mrg * name of "anon"!
448 1.8 mrg */
449 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
450 1.1 mrg #ifdef DIAGNOSTIC
451 1.8 mrg if (p->loan_count < 1)
452 1.8 mrg panic("pagedaemon: non-loaned "
453 1.8 mrg "ownerless page detected -"
454 1.8 mrg " loop 1");
455 1.1 mrg #endif
456 1.8 mrg p->loan_count--;
457 1.8 mrg p->pqflags |= PQ_ANON; /* anon now owns it */
458 1.8 mrg }
459 1.8 mrg
460 1.8 mrg if (p->flags & PG_BUSY) {
461 1.8 mrg simple_unlock(&anon->an_lock);
462 1.8 mrg uvmexp.pdbusy++;
463 1.8 mrg /* someone else owns page, skip it */
464 1.8 mrg continue;
465 1.8 mrg }
466 1.8 mrg
467 1.8 mrg uvmexp.pdanscan++;
468 1.8 mrg
469 1.8 mrg } else {
470 1.8 mrg
471 1.8 mrg uobj = p->uobject;
472 1.8 mrg
473 1.8 mrg if (!simple_lock_try(&uobj->vmobjlock))
474 1.8 mrg /* lock failed, skip this page */
475 1.8 mrg continue;
476 1.8 mrg
477 1.8 mrg if (p->flags & PG_BUSY) {
478 1.8 mrg simple_unlock(&uobj->vmobjlock);
479 1.8 mrg uvmexp.pdbusy++;
480 1.8 mrg /* someone else owns page, skip it */
481 1.8 mrg continue;
482 1.8 mrg }
483 1.8 mrg
484 1.8 mrg uvmexp.pdobscan++;
485 1.8 mrg }
486 1.8 mrg
487 1.8 mrg /*
488 1.8 mrg * we now have the object and the page queues locked.
489 1.8 mrg * the page is not busy. if the page is clean we
490 1.8 mrg * can free it now and continue.
491 1.8 mrg */
492 1.8 mrg
493 1.8 mrg if (p->flags & PG_CLEAN) {
494 1.14 chs if (p->pqflags & PQ_SWAPBACKED) {
495 1.14 chs /* this page now lives only in swap */
496 1.14 chs simple_lock(&uvm.swap_data_lock);
497 1.14 chs uvmexp.swpgonly++;
498 1.14 chs simple_unlock(&uvm.swap_data_lock);
499 1.14 chs }
500 1.14 chs
501 1.8 mrg /* zap all mappings with pmap_page_protect... */
502 1.18 chs pmap_page_protect(p, VM_PROT_NONE);
503 1.8 mrg uvm_pagefree(p);
504 1.8 mrg uvmexp.pdfreed++;
505 1.8 mrg
506 1.8 mrg if (anon) {
507 1.1 mrg #ifdef DIAGNOSTIC
508 1.8 mrg /*
509 1.8 mrg * an anonymous page can only be clean
510 1.8 mrg * if it has valid backing store.
511 1.8 mrg */
512 1.8 mrg if (anon->an_swslot == 0)
513 1.8 mrg panic("pagedaemon: clean anon "
514 1.8 mrg "page without backing store?");
515 1.1 mrg #endif
516 1.8 mrg /* remove from object */
517 1.8 mrg anon->u.an_page = NULL;
518 1.8 mrg simple_unlock(&anon->an_lock);
519 1.8 mrg } else {
520 1.8 mrg /* pagefree has already removed the
521 1.8 mrg * page from the object */
522 1.8 mrg simple_unlock(&uobj->vmobjlock);
523 1.8 mrg }
524 1.8 mrg continue;
525 1.8 mrg }
526 1.8 mrg
527 1.8 mrg /*
528 1.8 mrg * this page is dirty, skip it if we'll have met our
529 1.8 mrg * free target when all the current pageouts complete.
530 1.8 mrg */
531 1.14 chs if (free + uvmexp.paging > uvmexp.freetarg << 2) {
532 1.8 mrg if (anon) {
533 1.8 mrg simple_unlock(&anon->an_lock);
534 1.8 mrg } else {
535 1.8 mrg simple_unlock(&uobj->vmobjlock);
536 1.8 mrg }
537 1.8 mrg continue;
538 1.8 mrg }
539 1.8 mrg
540 1.8 mrg /*
541 1.14 chs * this page is dirty, but we can't page it out
542 1.14 chs * since all pages in swap are only in swap.
543 1.14 chs * reactivate it so that we eventually cycle
544 1.14 chs * all pages thru the inactive queue.
545 1.14 chs */
546 1.14 chs #ifdef DIAGNOSTIC
547 1.14 chs if (uvmexp.swpgonly > uvmexp.swpages) {
548 1.14 chs panic("uvmexp.swpgonly botch");
549 1.14 chs }
550 1.14 chs #endif
551 1.14 chs if ((p->pqflags & PQ_SWAPBACKED) &&
552 1.14 chs uvmexp.swpgonly == uvmexp.swpages) {
553 1.14 chs dirtyreacts++;
554 1.14 chs uvm_pageactivate(p);
555 1.14 chs if (anon) {
556 1.14 chs simple_unlock(&anon->an_lock);
557 1.14 chs } else {
558 1.14 chs simple_unlock(&uobj->vmobjlock);
559 1.14 chs }
560 1.14 chs continue;
561 1.14 chs }
562 1.14 chs
563 1.14 chs /*
564 1.14 chs * if the page is swap-backed and dirty and swap space
565 1.14 chs * is full, free any swap allocated to the page
566 1.14 chs * so that other pages can be paged out.
567 1.14 chs */
568 1.14 chs #ifdef DIAGNOSTIC
569 1.14 chs if (uvmexp.swpginuse > uvmexp.swpages) {
570 1.14 chs panic("uvmexp.swpginuse botch");
571 1.14 chs }
572 1.14 chs #endif
573 1.14 chs if ((p->pqflags & PQ_SWAPBACKED) &&
574 1.14 chs uvmexp.swpginuse == uvmexp.swpages) {
575 1.14 chs
576 1.14 chs if ((p->pqflags & PQ_ANON) &&
577 1.14 chs p->uanon->an_swslot) {
578 1.14 chs uvm_swap_free(p->uanon->an_swslot, 1);
579 1.14 chs p->uanon->an_swslot = 0;
580 1.14 chs }
581 1.14 chs if (p->pqflags & PQ_AOBJ) {
582 1.14 chs uao_dropswap(p->uobject,
583 1.14 chs p->offset >> PAGE_SHIFT);
584 1.14 chs }
585 1.14 chs }
586 1.14 chs
587 1.14 chs /*
588 1.8 mrg * the page we are looking at is dirty. we must
589 1.8 mrg * clean it before it can be freed. to do this we
590 1.8 mrg * first mark the page busy so that no one else will
591 1.8 mrg * touch the page. we write protect all the mappings
592 1.8 mrg * of the page so that no one touches it while it is
593 1.8 mrg * in I/O.
594 1.8 mrg */
595 1.8 mrg
596 1.8 mrg swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
597 1.8 mrg p->flags |= PG_BUSY; /* now we own it */
598 1.8 mrg UVM_PAGE_OWN(p, "scan_inactive");
599 1.18 chs pmap_page_protect(p, VM_PROT_READ);
600 1.8 mrg uvmexp.pgswapout++;
601 1.8 mrg
602 1.8 mrg /*
603 1.8 mrg * for swap-backed pages we need to (re)allocate
604 1.8 mrg * swap space.
605 1.8 mrg */
606 1.8 mrg if (swap_backed) {
607 1.8 mrg
608 1.8 mrg /*
609 1.8 mrg * free old swap slot (if any)
610 1.8 mrg */
611 1.8 mrg if (anon) {
612 1.8 mrg if (anon->an_swslot) {
613 1.8 mrg uvm_swap_free(anon->an_swslot,
614 1.8 mrg 1);
615 1.8 mrg anon->an_swslot = 0;
616 1.8 mrg }
617 1.8 mrg } else {
618 1.14 chs uao_dropswap(uobj,
619 1.14 chs p->offset >> PAGE_SHIFT);
620 1.8 mrg }
621 1.8 mrg
622 1.8 mrg /*
623 1.8 mrg * start new cluster (if necessary)
624 1.8 mrg */
625 1.8 mrg if (swslot == 0) {
626 1.8 mrg /* want this much */
627 1.11 chs swnpages = MAXBSIZE >> PAGE_SHIFT;
628 1.8 mrg
629 1.8 mrg swslot = uvm_swap_alloc(&swnpages,
630 1.8 mrg TRUE);
631 1.8 mrg
632 1.8 mrg if (swslot == 0) {
633 1.8 mrg /* no swap? give up! */
634 1.8 mrg p->flags &= ~PG_BUSY;
635 1.8 mrg UVM_PAGE_OWN(p, NULL);
636 1.8 mrg if (anon)
637 1.8 mrg simple_unlock(
638 1.8 mrg &anon->an_lock);
639 1.8 mrg else
640 1.8 mrg simple_unlock(
641 1.8 mrg &uobj->vmobjlock);
642 1.8 mrg continue;
643 1.8 mrg }
644 1.8 mrg swcpages = 0; /* cluster is empty */
645 1.8 mrg }
646 1.8 mrg
647 1.8 mrg /*
648 1.8 mrg * add block to cluster
649 1.8 mrg */
650 1.8 mrg swpps[swcpages] = p;
651 1.8 mrg if (anon)
652 1.8 mrg anon->an_swslot = swslot + swcpages;
653 1.8 mrg else
654 1.8 mrg uao_set_swslot(uobj,
655 1.11 chs p->offset >> PAGE_SHIFT,
656 1.8 mrg swslot + swcpages);
657 1.8 mrg swcpages++;
658 1.8 mrg
659 1.8 mrg /* done (swap-backed) */
660 1.8 mrg }
661 1.8 mrg
662 1.8 mrg /* end: if (p) ["if we have new page to consider"] */
663 1.8 mrg } else {
664 1.8 mrg
665 1.8 mrg /* if p == NULL we must be doing a last swap i/o */
666 1.8 mrg swap_backed = TRUE;
667 1.8 mrg }
668 1.8 mrg
669 1.8 mrg /*
670 1.8 mrg * now consider doing the pageout.
671 1.8 mrg *
672 1.8 mrg * for swap-backed pages, we do the pageout if we have either
673 1.8 mrg * filled the cluster (in which case (swnpages == swcpages) or
674 1.8 mrg * run out of pages (p == NULL).
675 1.8 mrg *
676 1.8 mrg * for object pages, we always do the pageout.
677 1.8 mrg */
678 1.8 mrg if (swap_backed) {
679 1.8 mrg
680 1.8 mrg if (p) { /* if we just added a page to cluster */
681 1.8 mrg if (anon)
682 1.8 mrg simple_unlock(&anon->an_lock);
683 1.8 mrg else
684 1.8 mrg simple_unlock(&uobj->vmobjlock);
685 1.8 mrg
686 1.8 mrg /* cluster not full yet? */
687 1.8 mrg if (swcpages < swnpages)
688 1.8 mrg continue;
689 1.8 mrg }
690 1.8 mrg
691 1.8 mrg /* starting I/O now... set up for it */
692 1.8 mrg npages = swcpages;
693 1.8 mrg ppsp = swpps;
694 1.8 mrg /* for swap-backed pages only */
695 1.10 eeh start = (vaddr_t) swslot;
696 1.8 mrg
697 1.8 mrg /* if this is final pageout we could have a few
698 1.8 mrg * extra swap blocks */
699 1.8 mrg if (swcpages < swnpages) {
700 1.8 mrg uvm_swap_free(swslot + swcpages,
701 1.8 mrg (swnpages - swcpages));
702 1.8 mrg }
703 1.1 mrg
704 1.8 mrg } else {
705 1.1 mrg
706 1.8 mrg /* normal object pageout */
707 1.8 mrg ppsp = pps;
708 1.8 mrg npages = sizeof(pps) / sizeof(struct vm_page *);
709 1.8 mrg /* not looked at because PGO_ALLPAGES is set */
710 1.8 mrg start = 0;
711 1.8 mrg
712 1.8 mrg }
713 1.8 mrg
714 1.8 mrg /*
715 1.8 mrg * now do the pageout.
716 1.8 mrg *
717 1.8 mrg * for swap_backed pages we have already built the cluster.
718 1.8 mrg * for !swap_backed pages, uvm_pager_put will call the object's
719 1.8 mrg * "make put cluster" function to build a cluster on our behalf.
720 1.8 mrg *
721 1.8 mrg * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
722 1.8 mrg * it to free the cluster pages for us on a successful I/O (it
723 1.8 mrg * always does this for un-successful I/O requests). this
724 1.8 mrg * allows us to do clustered pageout without having to deal
725 1.8 mrg * with cluster pages at this level.
726 1.8 mrg *
727 1.8 mrg * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
728 1.8 mrg * IN: locked: uobj (if !swap_backed), page queues
729 1.8 mrg * OUT: locked: uobj (if !swap_backed && result !=VM_PAGER_PEND)
730 1.8 mrg * !locked: pageqs, uobj (if swap_backed || VM_PAGER_PEND)
731 1.8 mrg *
732 1.8 mrg * [the bit about VM_PAGER_PEND saves us one lock-unlock pair]
733 1.8 mrg */
734 1.8 mrg
735 1.8 mrg /* locked: uobj (if !swap_backed), page queues */
736 1.8 mrg uvmexp.pdpageouts++;
737 1.8 mrg result = uvm_pager_put((swap_backed) ? NULL : uobj, p,
738 1.8 mrg &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
739 1.8 mrg /* locked: uobj (if !swap_backed && result != PEND) */
740 1.8 mrg /* unlocked: pageqs, object (if swap_backed ||result == PEND) */
741 1.8 mrg
742 1.8 mrg /*
743 1.8 mrg * if we did i/o to swap, zero swslot to indicate that we are
744 1.8 mrg * no longer building a swap-backed cluster.
745 1.8 mrg */
746 1.8 mrg
747 1.8 mrg if (swap_backed)
748 1.8 mrg swslot = 0; /* done with this cluster */
749 1.8 mrg
750 1.8 mrg /*
751 1.8 mrg * first, we check for VM_PAGER_PEND which means that the
752 1.8 mrg * async I/O is in progress and the async I/O done routine
753 1.8 mrg * will clean up after us. in this case we move on to the
754 1.8 mrg * next page.
755 1.8 mrg *
756 1.8 mrg * there is a very remote chance that the pending async i/o can
757 1.8 mrg * finish _before_ we get here. if that happens, our page "p"
758 1.8 mrg * may no longer be on the inactive queue. so we verify this
759 1.8 mrg * when determining the next page (starting over at the head if
760 1.8 mrg * we've lost our inactive page).
761 1.8 mrg */
762 1.8 mrg
763 1.8 mrg if (result == VM_PAGER_PEND) {
764 1.8 mrg uvmexp.paging += npages;
765 1.8 mrg uvm_lock_pageq(); /* relock page queues */
766 1.8 mrg uvmexp.pdpending++;
767 1.8 mrg if (p) {
768 1.8 mrg if (p->pqflags & PQ_INACTIVE)
769 1.8 mrg /* reload! */
770 1.8 mrg nextpg = p->pageq.tqe_next;
771 1.8 mrg else
772 1.8 mrg /* reload! */
773 1.8 mrg nextpg = pglst->tqh_first;
774 1.8 mrg } else {
775 1.8 mrg nextpg = NULL; /* done list */
776 1.8 mrg }
777 1.8 mrg continue;
778 1.8 mrg }
779 1.8 mrg
780 1.8 mrg /*
781 1.8 mrg * clean up "p" if we have one
782 1.8 mrg */
783 1.8 mrg
784 1.8 mrg if (p) {
785 1.8 mrg /*
786 1.8 mrg * the I/O request to "p" is done and uvm_pager_put
787 1.8 mrg * has freed any cluster pages it may have allocated
788 1.8 mrg * during I/O. all that is left for us to do is
789 1.8 mrg * clean up page "p" (which is still PG_BUSY).
790 1.8 mrg *
791 1.8 mrg * our result could be one of the following:
792 1.8 mrg * VM_PAGER_OK: successful pageout
793 1.8 mrg *
794 1.8 mrg * VM_PAGER_AGAIN: tmp resource shortage, we skip
795 1.8 mrg * to next page
796 1.8 mrg * VM_PAGER_{FAIL,ERROR,BAD}: an error. we
797 1.8 mrg * "reactivate" page to get it out of the way (it
798 1.8 mrg * will eventually drift back into the inactive
799 1.8 mrg * queue for a retry).
800 1.8 mrg * VM_PAGER_UNLOCK: should never see this as it is
801 1.8 mrg * only valid for "get" operations
802 1.8 mrg */
803 1.8 mrg
804 1.8 mrg /* relock p's object: page queues not lock yet, so
805 1.8 mrg * no need for "try" */
806 1.8 mrg
807 1.8 mrg /* !swap_backed case: already locked... */
808 1.8 mrg if (swap_backed) {
809 1.8 mrg if (anon)
810 1.8 mrg simple_lock(&anon->an_lock);
811 1.8 mrg else
812 1.8 mrg simple_lock(&uobj->vmobjlock);
813 1.8 mrg }
814 1.1 mrg
815 1.1 mrg #ifdef DIAGNOSTIC
816 1.8 mrg if (result == VM_PAGER_UNLOCK)
817 1.8 mrg panic("pagedaemon: pageout returned "
818 1.8 mrg "invalid 'unlock' code");
819 1.1 mrg #endif
820 1.1 mrg
821 1.8 mrg /* handle PG_WANTED now */
822 1.8 mrg if (p->flags & PG_WANTED)
823 1.8 mrg /* still holding object lock */
824 1.17 thorpej wakeup(p);
825 1.8 mrg
826 1.8 mrg p->flags &= ~(PG_BUSY|PG_WANTED);
827 1.8 mrg UVM_PAGE_OWN(p, NULL);
828 1.8 mrg
829 1.8 mrg /* released during I/O? */
830 1.8 mrg if (p->flags & PG_RELEASED) {
831 1.8 mrg if (anon) {
832 1.8 mrg /* remove page so we can get nextpg */
833 1.8 mrg anon->u.an_page = NULL;
834 1.8 mrg
835 1.8 mrg simple_unlock(&anon->an_lock);
836 1.8 mrg uvm_anfree(anon); /* kills anon */
837 1.18 chs pmap_page_protect(p, VM_PROT_NONE);
838 1.8 mrg anon = NULL;
839 1.8 mrg uvm_lock_pageq();
840 1.8 mrg nextpg = p->pageq.tqe_next;
841 1.8 mrg /* free released page */
842 1.8 mrg uvm_pagefree(p);
843 1.1 mrg
844 1.8 mrg } else {
845 1.1 mrg
846 1.1 mrg #ifdef DIAGNOSTIC
847 1.8 mrg if (uobj->pgops->pgo_releasepg == NULL)
848 1.8 mrg panic("pagedaemon: no "
849 1.8 mrg "pgo_releasepg function");
850 1.1 mrg #endif
851 1.1 mrg
852 1.8 mrg /*
853 1.8 mrg * pgo_releasepg nukes the page and
854 1.8 mrg * gets "nextpg" for us. it returns
855 1.8 mrg * with the page queues locked (when
856 1.8 mrg * given nextpg ptr).
857 1.8 mrg */
858 1.8 mrg if (!uobj->pgops->pgo_releasepg(p,
859 1.8 mrg &nextpg))
860 1.8 mrg /* uobj died after release */
861 1.8 mrg uobj = NULL;
862 1.8 mrg
863 1.8 mrg /*
864 1.8 mrg * lock page queues here so that they're
865 1.8 mrg * always locked at the end of the loop.
866 1.8 mrg */
867 1.8 mrg uvm_lock_pageq();
868 1.8 mrg }
869 1.8 mrg
870 1.8 mrg } else { /* page was not released during I/O */
871 1.8 mrg
872 1.8 mrg uvm_lock_pageq();
873 1.8 mrg nextpg = p->pageq.tqe_next;
874 1.8 mrg
875 1.8 mrg if (result != VM_PAGER_OK) {
876 1.8 mrg
877 1.8 mrg /* pageout was a failure... */
878 1.8 mrg if (result != VM_PAGER_AGAIN)
879 1.8 mrg uvm_pageactivate(p);
880 1.18 chs pmap_clear_reference(p);
881 1.8 mrg /* XXXCDC: if (swap_backed) FREE p's
882 1.8 mrg * swap block? */
883 1.8 mrg
884 1.8 mrg } else {
885 1.8 mrg
886 1.8 mrg /* pageout was a success... */
887 1.18 chs pmap_clear_reference(p);
888 1.18 chs pmap_clear_modify(p);
889 1.8 mrg p->flags |= PG_CLEAN;
890 1.8 mrg /* XXX: could free page here, but old
891 1.8 mrg * pagedaemon does not */
892 1.8 mrg
893 1.8 mrg }
894 1.8 mrg }
895 1.8 mrg
896 1.8 mrg /*
897 1.8 mrg * drop object lock (if there is an object left). do
898 1.8 mrg * a safety check of nextpg to make sure it is on the
899 1.8 mrg * inactive queue (it should be since PG_BUSY pages on
900 1.8 mrg * the inactive queue can't be re-queued [note: not
901 1.8 mrg * true for active queue]).
902 1.8 mrg */
903 1.8 mrg
904 1.8 mrg if (anon)
905 1.8 mrg simple_unlock(&anon->an_lock);
906 1.8 mrg else if (uobj)
907 1.8 mrg simple_unlock(&uobj->vmobjlock);
908 1.8 mrg
909 1.8 mrg } /* if (p) */ else {
910 1.8 mrg
911 1.8 mrg /* if p is null in this loop, make sure it stays null
912 1.8 mrg * in next loop */
913 1.8 mrg nextpg = NULL;
914 1.8 mrg
915 1.8 mrg /*
916 1.8 mrg * lock page queues here just so they're always locked
917 1.8 mrg * at the end of the loop.
918 1.8 mrg */
919 1.8 mrg uvm_lock_pageq();
920 1.8 mrg }
921 1.8 mrg
922 1.8 mrg if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
923 1.8 mrg printf("pagedaemon: invalid nextpg! reverting to "
924 1.8 mrg "queue head\n");
925 1.8 mrg nextpg = pglst->tqh_first; /* reload! */
926 1.8 mrg }
927 1.1 mrg
928 1.8 mrg } /* end of "inactive" 'for' loop */
929 1.8 mrg return (retval);
930 1.1 mrg }
931 1.1 mrg
932 1.1 mrg /*
933 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
934 1.1 mrg *
935 1.1 mrg * => called with pageq's locked
936 1.1 mrg */
937 1.1 mrg
938 1.8 mrg void
939 1.8 mrg uvmpd_scan()
940 1.1 mrg {
941 1.14 chs int s, free, inactive_shortage, swap_shortage, pages_freed;
942 1.8 mrg struct vm_page *p, *nextpg;
943 1.8 mrg struct uvm_object *uobj;
944 1.8 mrg boolean_t got_it;
945 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
946 1.1 mrg
947 1.8 mrg uvmexp.pdrevs++; /* counter */
948 1.1 mrg
949 1.1 mrg #ifdef __GNUC__
950 1.8 mrg uobj = NULL; /* XXX gcc */
951 1.1 mrg #endif
952 1.8 mrg /*
953 1.8 mrg * get current "free" page count
954 1.8 mrg */
955 1.16 thorpej s = uvm_lock_fpageq();
956 1.8 mrg free = uvmexp.free;
957 1.16 thorpej uvm_unlock_fpageq(s);
958 1.1 mrg
959 1.1 mrg #ifndef __SWAP_BROKEN
960 1.8 mrg /*
961 1.8 mrg * swap out some processes if we are below our free target.
962 1.8 mrg * we need to unlock the page queues for this.
963 1.8 mrg */
964 1.8 mrg if (free < uvmexp.freetarg) {
965 1.8 mrg
966 1.8 mrg uvmexp.pdswout++;
967 1.8 mrg UVMHIST_LOG(pdhist," free %d < target %d: swapout", free,
968 1.8 mrg uvmexp.freetarg, 0, 0);
969 1.8 mrg uvm_unlock_pageq();
970 1.8 mrg uvm_swapout_threads();
971 1.8 mrg pmap_update(); /* update so we can scan inactive q */
972 1.8 mrg uvm_lock_pageq();
973 1.1 mrg
974 1.8 mrg }
975 1.1 mrg #endif
976 1.1 mrg
977 1.8 mrg /*
978 1.8 mrg * now we want to work on meeting our targets. first we work on our
979 1.8 mrg * free target by converting inactive pages into free pages. then
980 1.8 mrg * we work on meeting our inactive target by converting active pages
981 1.8 mrg * to inactive ones.
982 1.8 mrg */
983 1.8 mrg
984 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
985 1.8 mrg
986 1.8 mrg /*
987 1.8 mrg * do loop #1! alternate starting queue between swap and object based
988 1.8 mrg * on the low bit of uvmexp.pdrevs (which we bump by one each call).
989 1.8 mrg */
990 1.8 mrg
991 1.8 mrg got_it = FALSE;
992 1.14 chs pages_freed = uvmexp.pdfreed;
993 1.8 mrg if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
994 1.8 mrg got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
995 1.8 mrg if (!got_it)
996 1.8 mrg got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
997 1.8 mrg if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
998 1.8 mrg (void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
999 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
1000 1.8 mrg
1001 1.8 mrg /*
1002 1.8 mrg * we have done the scan to get free pages. now we work on meeting
1003 1.8 mrg * our inactive target.
1004 1.8 mrg */
1005 1.8 mrg
1006 1.14 chs inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
1007 1.14 chs
1008 1.14 chs /*
1009 1.14 chs * detect if we're not going to be able to page anything out
1010 1.14 chs * until we free some swap resources from active pages.
1011 1.14 chs */
1012 1.14 chs swap_shortage = 0;
1013 1.14 chs if (uvmexp.free < uvmexp.freetarg &&
1014 1.14 chs uvmexp.swpginuse == uvmexp.swpages &&
1015 1.14 chs uvmexp.swpgonly < uvmexp.swpages &&
1016 1.14 chs pages_freed == 0) {
1017 1.14 chs swap_shortage = uvmexp.freetarg - uvmexp.free;
1018 1.14 chs }
1019 1.14 chs
1020 1.14 chs UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
1021 1.14 chs inactive_shortage, swap_shortage,0,0);
1022 1.14 chs for (p = TAILQ_FIRST(&uvm.page_active);
1023 1.14 chs p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
1024 1.14 chs p = nextpg) {
1025 1.8 mrg nextpg = p->pageq.tqe_next;
1026 1.8 mrg if (p->flags & PG_BUSY)
1027 1.8 mrg continue; /* quick check before trying to lock */
1028 1.8 mrg
1029 1.8 mrg /*
1030 1.14 chs * lock the page's owner.
1031 1.8 mrg */
1032 1.8 mrg /* is page anon owned or ownerless? */
1033 1.8 mrg if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
1034 1.1 mrg
1035 1.1 mrg #ifdef DIAGNOSTIC
1036 1.8 mrg if (p->uanon == NULL)
1037 1.8 mrg panic("pagedaemon: page with no anon or "
1038 1.8 mrg "object detected - loop 2");
1039 1.1 mrg #endif
1040 1.8 mrg if (!simple_lock_try(&p->uanon->an_lock))
1041 1.8 mrg continue;
1042 1.1 mrg
1043 1.8 mrg /* take over the page? */
1044 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
1045 1.1 mrg #ifdef DIAGNOSTIC
1046 1.8 mrg if (p->loan_count < 1)
1047 1.8 mrg panic("pagedaemon: non-loaned "
1048 1.8 mrg "ownerless page detected - loop 2");
1049 1.1 mrg #endif
1050 1.8 mrg p->loan_count--;
1051 1.8 mrg p->pqflags |= PQ_ANON;
1052 1.8 mrg }
1053 1.8 mrg } else {
1054 1.8 mrg if (!simple_lock_try(&p->uobject->vmobjlock))
1055 1.8 mrg continue;
1056 1.8 mrg }
1057 1.14 chs /*
1058 1.14 chs * skip this page if it's busy.
1059 1.14 chs */
1060 1.14 chs if ((p->flags & PG_BUSY) != 0) {
1061 1.14 chs if (p->pqflags & PQ_ANON)
1062 1.14 chs simple_unlock(&p->uanon->an_lock);
1063 1.14 chs else
1064 1.14 chs simple_unlock(&p->uobject->vmobjlock);
1065 1.14 chs continue;
1066 1.14 chs }
1067 1.14 chs
1068 1.14 chs /*
1069 1.14 chs * if there's a shortage of swap, free any swap allocated
1070 1.14 chs * to this page so that other pages can be paged out.
1071 1.14 chs */
1072 1.14 chs if (swap_shortage > 0) {
1073 1.14 chs if ((p->pqflags & PQ_ANON) && p->uanon->an_swslot) {
1074 1.14 chs uvm_swap_free(p->uanon->an_swslot, 1);
1075 1.14 chs p->uanon->an_swslot = 0;
1076 1.14 chs p->flags &= ~PG_CLEAN;
1077 1.14 chs swap_shortage--;
1078 1.14 chs }
1079 1.14 chs if (p->pqflags & PQ_AOBJ) {
1080 1.14 chs int slot = uao_set_swslot(p->uobject,
1081 1.14 chs p->offset >> PAGE_SHIFT, 0);
1082 1.14 chs if (slot) {
1083 1.14 chs uvm_swap_free(slot, 1);
1084 1.14 chs p->flags &= ~PG_CLEAN;
1085 1.14 chs swap_shortage--;
1086 1.14 chs }
1087 1.14 chs }
1088 1.14 chs }
1089 1.14 chs
1090 1.14 chs /*
1091 1.14 chs * deactivate this page if there's a shortage of
1092 1.14 chs * inactive pages.
1093 1.14 chs */
1094 1.14 chs if (inactive_shortage > 0) {
1095 1.18 chs pmap_page_protect(p, VM_PROT_NONE);
1096 1.8 mrg /* no need to check wire_count as pg is "active" */
1097 1.8 mrg uvm_pagedeactivate(p);
1098 1.8 mrg uvmexp.pddeact++;
1099 1.14 chs inactive_shortage--;
1100 1.8 mrg }
1101 1.8 mrg
1102 1.8 mrg if (p->pqflags & PQ_ANON)
1103 1.8 mrg simple_unlock(&p->uanon->an_lock);
1104 1.8 mrg else
1105 1.8 mrg simple_unlock(&p->uobject->vmobjlock);
1106 1.8 mrg }
1107 1.1 mrg }
1108