Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.19
      1  1.19  thorpej /*	$NetBSD: uvm_pdaemon.c,v 1.19 1999/11/04 21:51:42 thorpej Exp $	*/
      2   1.1      mrg 
      3   1.1      mrg /*
      4   1.1      mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.1      mrg  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1      mrg  *
      7   1.1      mrg  * All rights reserved.
      8   1.1      mrg  *
      9   1.1      mrg  * This code is derived from software contributed to Berkeley by
     10   1.1      mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1      mrg  *
     12   1.1      mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1      mrg  * modification, are permitted provided that the following conditions
     14   1.1      mrg  * are met:
     15   1.1      mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1      mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1      mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1      mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1      mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1      mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1      mrg  *    must display the following acknowledgement:
     22   1.1      mrg  *	This product includes software developed by Charles D. Cranor,
     23   1.1      mrg  *      Washington University, the University of California, Berkeley and
     24   1.1      mrg  *      its contributors.
     25   1.1      mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1      mrg  *    may be used to endorse or promote products derived from this software
     27   1.1      mrg  *    without specific prior written permission.
     28   1.1      mrg  *
     29   1.1      mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1      mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1      mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1      mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1      mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1      mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1      mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1      mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1      mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1      mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1      mrg  * SUCH DAMAGE.
     40   1.1      mrg  *
     41   1.1      mrg  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42   1.4      mrg  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43   1.1      mrg  *
     44   1.1      mrg  *
     45   1.1      mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1      mrg  * All rights reserved.
     47   1.1      mrg  *
     48   1.1      mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1      mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1      mrg  * notice and this permission notice appear in all copies of the
     51   1.1      mrg  * software, derivative works or modified versions, and any portions
     52   1.1      mrg  * thereof, and that both notices appear in supporting documentation.
     53   1.1      mrg  *
     54   1.1      mrg  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55   1.1      mrg  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1      mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57   1.1      mrg  *
     58   1.1      mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1      mrg  *
     60   1.1      mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1      mrg  *  School of Computer Science
     62   1.1      mrg  *  Carnegie Mellon University
     63   1.1      mrg  *  Pittsburgh PA 15213-3890
     64   1.1      mrg  *
     65   1.1      mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1      mrg  * rights to redistribute these changes.
     67   1.1      mrg  */
     68   1.1      mrg 
     69   1.7      mrg #include "opt_uvmhist.h"
     70   1.7      mrg 
     71   1.1      mrg /*
     72   1.1      mrg  * uvm_pdaemon.c: the page daemon
     73   1.1      mrg  */
     74   1.1      mrg 
     75   1.1      mrg #include <sys/param.h>
     76   1.1      mrg #include <sys/proc.h>
     77   1.1      mrg #include <sys/systm.h>
     78   1.1      mrg #include <sys/kernel.h>
     79   1.9       pk #include <sys/pool.h>
     80   1.1      mrg 
     81   1.1      mrg #include <vm/vm.h>
     82   1.1      mrg #include <vm/vm_page.h>
     83   1.1      mrg #include <vm/vm_kern.h>
     84   1.1      mrg 
     85   1.1      mrg #include <uvm/uvm.h>
     86   1.1      mrg 
     87   1.1      mrg /*
     88  1.14      chs  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
     89  1.14      chs  * in a pass thru the inactive list when swap is full.  the value should be
     90  1.14      chs  * "small"... if it's too large we'll cycle the active pages thru the inactive
     91  1.14      chs  * queue too quickly to for them to be referenced and avoid being freed.
     92  1.14      chs  */
     93  1.14      chs 
     94  1.14      chs #define UVMPD_NUMDIRTYREACTS 16
     95  1.14      chs 
     96  1.14      chs 
     97  1.14      chs /*
     98   1.1      mrg  * local prototypes
     99   1.1      mrg  */
    100   1.1      mrg 
    101   1.1      mrg static void		uvmpd_scan __P((void));
    102   1.1      mrg static boolean_t	uvmpd_scan_inactive __P((struct pglist *));
    103   1.1      mrg static void		uvmpd_tune __P((void));
    104   1.1      mrg 
    105   1.1      mrg 
    106   1.1      mrg /*
    107   1.1      mrg  * uvm_wait: wait (sleep) for the page daemon to free some pages
    108   1.1      mrg  *
    109   1.1      mrg  * => should be called with all locks released
    110   1.1      mrg  * => should _not_ be called by the page daemon (to avoid deadlock)
    111   1.1      mrg  */
    112   1.1      mrg 
    113  1.19  thorpej void
    114  1.19  thorpej uvm_wait(wmsg)
    115  1.19  thorpej 	const char *wmsg;
    116   1.8      mrg {
    117   1.8      mrg 	int timo = 0;
    118   1.8      mrg 	int s = splbio();
    119   1.1      mrg 
    120   1.8      mrg 	/*
    121   1.8      mrg 	 * check for page daemon going to sleep (waiting for itself)
    122   1.8      mrg 	 */
    123   1.1      mrg 
    124   1.8      mrg 	if (curproc == uvm.pagedaemon_proc) {
    125   1.8      mrg 		/*
    126   1.8      mrg 		 * now we have a problem: the pagedaemon wants to go to
    127   1.8      mrg 		 * sleep until it frees more memory.   but how can it
    128   1.8      mrg 		 * free more memory if it is asleep?  that is a deadlock.
    129   1.8      mrg 		 * we have two options:
    130   1.8      mrg 		 *  [1] panic now
    131   1.8      mrg 		 *  [2] put a timeout on the sleep, thus causing the
    132   1.8      mrg 		 *      pagedaemon to only pause (rather than sleep forever)
    133   1.8      mrg 		 *
    134   1.8      mrg 		 * note that option [2] will only help us if we get lucky
    135   1.8      mrg 		 * and some other process on the system breaks the deadlock
    136   1.8      mrg 		 * by exiting or freeing memory (thus allowing the pagedaemon
    137   1.8      mrg 		 * to continue).  for now we panic if DEBUG is defined,
    138   1.8      mrg 		 * otherwise we hope for the best with option [2] (better
    139   1.8      mrg 		 * yet, this should never happen in the first place!).
    140   1.8      mrg 		 */
    141   1.1      mrg 
    142   1.8      mrg 		printf("pagedaemon: deadlock detected!\n");
    143   1.8      mrg 		timo = hz >> 3;		/* set timeout */
    144   1.1      mrg #if defined(DEBUG)
    145   1.8      mrg 		/* DEBUG: panic so we can debug it */
    146   1.8      mrg 		panic("pagedaemon deadlock");
    147   1.1      mrg #endif
    148   1.8      mrg 	}
    149   1.1      mrg 
    150   1.8      mrg 	simple_lock(&uvm.pagedaemon_lock);
    151  1.17  thorpej 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    152   1.8      mrg 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    153   1.8      mrg 	    timo);
    154   1.1      mrg 
    155   1.8      mrg 	splx(s);
    156   1.1      mrg }
    157   1.1      mrg 
    158   1.1      mrg 
    159   1.1      mrg /*
    160   1.1      mrg  * uvmpd_tune: tune paging parameters
    161   1.1      mrg  *
    162   1.1      mrg  * => called when ever memory is added (or removed?) to the system
    163   1.1      mrg  * => caller must call with page queues locked
    164   1.1      mrg  */
    165   1.1      mrg 
    166   1.8      mrg static void
    167   1.8      mrg uvmpd_tune()
    168   1.8      mrg {
    169   1.8      mrg 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    170   1.1      mrg 
    171   1.8      mrg 	uvmexp.freemin = uvmexp.npages / 20;
    172   1.1      mrg 
    173   1.8      mrg 	/* between 16k and 256k */
    174   1.8      mrg 	/* XXX:  what are these values good for? */
    175  1.11      chs 	uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    176  1.11      chs 	uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    177   1.1      mrg 
    178   1.8      mrg 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    179   1.8      mrg 	if (uvmexp.freetarg <= uvmexp.freemin)
    180   1.8      mrg 		uvmexp.freetarg = uvmexp.freemin + 1;
    181   1.1      mrg 
    182   1.8      mrg 	/* uvmexp.inactarg: computed in main daemon loop */
    183   1.1      mrg 
    184   1.8      mrg 	uvmexp.wiredmax = uvmexp.npages / 3;
    185   1.8      mrg 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    186   1.1      mrg 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    187   1.1      mrg }
    188   1.1      mrg 
    189   1.1      mrg /*
    190   1.1      mrg  * uvm_pageout: the main loop for the pagedaemon
    191   1.1      mrg  */
    192   1.1      mrg 
    193   1.8      mrg void
    194   1.8      mrg uvm_pageout()
    195   1.8      mrg {
    196   1.8      mrg 	int npages = 0;
    197   1.8      mrg 	int s;
    198   1.8      mrg 	struct uvm_aiodesc *aio, *nextaio;
    199   1.8      mrg 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    200   1.8      mrg 
    201   1.8      mrg 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    202   1.8      mrg 
    203   1.8      mrg 	/*
    204   1.8      mrg 	 * ensure correct priority and set paging parameters...
    205   1.8      mrg 	 */
    206   1.8      mrg 
    207   1.8      mrg 	uvm.pagedaemon_proc = curproc;
    208   1.8      mrg 	(void) spl0();
    209   1.8      mrg 	uvm_lock_pageq();
    210   1.8      mrg 	npages = uvmexp.npages;
    211   1.8      mrg 	uvmpd_tune();
    212   1.8      mrg 	uvm_unlock_pageq();
    213   1.8      mrg 
    214   1.8      mrg 	/*
    215   1.8      mrg 	 * main loop
    216   1.8      mrg 	 */
    217   1.8      mrg 	while (TRUE) {
    218   1.1      mrg 
    219   1.8      mrg 		/*
    220   1.8      mrg 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    221   1.8      mrg 		 * we need splbio because we want to make sure the aio_done list
    222   1.8      mrg 		 * is totally empty before we go to sleep.
    223   1.8      mrg 		 */
    224   1.8      mrg 
    225   1.8      mrg 		s = splbio();
    226   1.8      mrg 		simple_lock(&uvm.pagedaemon_lock);
    227   1.8      mrg 
    228   1.8      mrg 		/*
    229   1.8      mrg 		 * if we've got done aio's, then bypass the sleep
    230   1.8      mrg 		 */
    231   1.8      mrg 
    232   1.8      mrg 		if (uvm.aio_done.tqh_first == NULL) {
    233   1.8      mrg 			UVMHIST_LOG(maphist,"  <<SLEEPING>>",0,0,0,0);
    234   1.8      mrg 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    235   1.8      mrg 			    &uvm.pagedaemon_lock, FALSE, "daemon_slp", 0);
    236   1.8      mrg 			uvmexp.pdwoke++;
    237   1.8      mrg 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    238   1.8      mrg 
    239   1.8      mrg 			/* relock pagedaemon_lock, still at splbio */
    240   1.8      mrg 			simple_lock(&uvm.pagedaemon_lock);
    241   1.8      mrg 		}
    242   1.8      mrg 
    243   1.8      mrg 		/*
    244   1.8      mrg 		 * check for done aio structures
    245   1.8      mrg 		 */
    246   1.8      mrg 
    247   1.8      mrg 		aio = uvm.aio_done.tqh_first;	/* save current list (if any)*/
    248   1.8      mrg 		if (aio) {
    249   1.8      mrg 			TAILQ_INIT(&uvm.aio_done);	/* zero global list */
    250   1.8      mrg 		}
    251   1.1      mrg 
    252   1.8      mrg 		simple_unlock(&uvm.pagedaemon_lock);	/* unlock */
    253   1.8      mrg 		splx(s);				/* drop splbio */
    254   1.1      mrg 
    255   1.8      mrg 		/*
    256   1.8      mrg 		 * first clear out any pending aios (to free space in case we
    257   1.8      mrg 		 * want to pageout more stuff).
    258   1.8      mrg 		 */
    259   1.8      mrg 
    260   1.8      mrg 		for (/*null*/; aio != NULL ; aio = nextaio) {
    261   1.8      mrg 
    262   1.8      mrg 			uvmexp.paging -= aio->npages;
    263   1.8      mrg 			nextaio = aio->aioq.tqe_next;
    264   1.8      mrg 			aio->aiodone(aio);
    265   1.8      mrg 
    266   1.8      mrg 		}
    267   1.9       pk 
    268   1.9       pk 		/* Next, drain pool resources */
    269   1.9       pk 		pool_drain(0);
    270   1.8      mrg 
    271   1.8      mrg 		/*
    272   1.8      mrg 		 * now lock page queues and recompute inactive count
    273   1.8      mrg 		 */
    274   1.8      mrg 		uvm_lock_pageq();
    275   1.8      mrg 
    276   1.8      mrg 		if (npages != uvmexp.npages) {	/* check for new pages? */
    277   1.8      mrg 			npages = uvmexp.npages;
    278   1.8      mrg 			uvmpd_tune();
    279   1.8      mrg 		}
    280   1.8      mrg 
    281   1.8      mrg 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    282   1.8      mrg 		if (uvmexp.inactarg <= uvmexp.freetarg)
    283   1.8      mrg 			uvmexp.inactarg = uvmexp.freetarg + 1;
    284   1.8      mrg 
    285   1.8      mrg 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    286   1.8      mrg 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    287   1.8      mrg 		    uvmexp.inactarg);
    288   1.8      mrg 
    289   1.8      mrg 		/*
    290   1.8      mrg 		 * scan if needed
    291   1.8      mrg 		 * [XXX: note we are reading uvm.free without locking]
    292   1.8      mrg 		 */
    293   1.8      mrg 		if (uvmexp.free < uvmexp.freetarg ||
    294   1.8      mrg 		    uvmexp.inactive < uvmexp.inactarg)
    295   1.8      mrg 			uvmpd_scan();
    296   1.8      mrg 
    297   1.8      mrg 		/*
    298   1.8      mrg 		 * done scan.  unlock page queues (the only lock we are holding)
    299   1.8      mrg 		 */
    300   1.8      mrg 		uvm_unlock_pageq();
    301   1.8      mrg 
    302   1.8      mrg 		/*
    303   1.8      mrg 		 * done!    restart loop.
    304   1.8      mrg 		 */
    305  1.15  mycroft 		if (uvmexp.free > uvmexp.reserve_kernel ||
    306  1.14      chs 		    uvmexp.paging == 0)
    307  1.17  thorpej 			wakeup(&uvmexp.free);
    308   1.8      mrg 	}
    309   1.8      mrg 	/*NOTREACHED*/
    310   1.1      mrg }
    311   1.1      mrg 
    312   1.1      mrg /*
    313   1.1      mrg  * uvmpd_scan_inactive: the first loop of uvmpd_scan broken out into
    314   1.1      mrg  * 	its own function for ease of reading.
    315   1.1      mrg  *
    316   1.1      mrg  * => called with page queues locked
    317   1.1      mrg  * => we work on meeting our free target by converting inactive pages
    318   1.1      mrg  *    into free pages.
    319   1.1      mrg  * => we handle the building of swap-backed clusters
    320   1.1      mrg  * => we return TRUE if we are exiting because we met our target
    321   1.1      mrg  */
    322   1.1      mrg 
    323   1.8      mrg static boolean_t
    324   1.8      mrg uvmpd_scan_inactive(pglst)
    325   1.8      mrg 	struct pglist *pglst;
    326   1.8      mrg {
    327   1.8      mrg 	boolean_t retval = FALSE;	/* assume we haven't hit target */
    328   1.8      mrg 	int s, free, result;
    329   1.8      mrg 	struct vm_page *p, *nextpg;
    330   1.8      mrg 	struct uvm_object *uobj;
    331  1.11      chs 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
    332   1.8      mrg 	int npages;
    333  1.11      chs 	struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; 	/* XXX: see below */
    334   1.8      mrg 	int swnpages, swcpages;				/* XXX: see below */
    335  1.14      chs 	int swslot;
    336   1.8      mrg 	struct vm_anon *anon;
    337   1.8      mrg 	boolean_t swap_backed;
    338  1.10      eeh 	vaddr_t start;
    339  1.14      chs 	int dirtyreacts;
    340   1.8      mrg 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    341   1.1      mrg 
    342   1.8      mrg 	/*
    343   1.8      mrg 	 * note: we currently keep swap-backed pages on a seperate inactive
    344   1.8      mrg 	 * list from object-backed pages.   however, merging the two lists
    345   1.8      mrg 	 * back together again hasn't been ruled out.   thus, we keep our
    346   1.8      mrg 	 * swap cluster in "swpps" rather than in pps (allows us to mix
    347   1.8      mrg 	 * clustering types in the event of a mixed inactive queue).
    348   1.8      mrg 	 */
    349   1.1      mrg 
    350   1.8      mrg 	/*
    351   1.8      mrg 	 * swslot is non-zero if we are building a swap cluster.  we want
    352   1.8      mrg 	 * to stay in the loop while we have a page to scan or we have
    353   1.8      mrg 	 * a swap-cluster to build.
    354   1.8      mrg 	 */
    355   1.8      mrg 	swslot = 0;
    356   1.8      mrg 	swnpages = swcpages = 0;
    357   1.8      mrg 	free = 0;
    358  1.14      chs 	dirtyreacts = 0;
    359   1.8      mrg 
    360   1.8      mrg 	for (p = pglst->tqh_first ; p != NULL || swslot != 0 ; p = nextpg) {
    361   1.8      mrg 
    362   1.8      mrg 		/*
    363   1.8      mrg 		 * note that p can be NULL iff we have traversed the whole
    364   1.8      mrg 		 * list and need to do one final swap-backed clustered pageout.
    365   1.8      mrg 		 */
    366   1.8      mrg 		if (p) {
    367   1.8      mrg 			/*
    368   1.8      mrg 			 * update our copy of "free" and see if we've met
    369   1.8      mrg 			 * our target
    370   1.8      mrg 			 */
    371  1.16  thorpej 			s = uvm_lock_fpageq();
    372   1.8      mrg 			free = uvmexp.free;
    373  1.16  thorpej 			uvm_unlock_fpageq(s);
    374   1.8      mrg 
    375  1.14      chs 			if (free + uvmexp.paging >= uvmexp.freetarg << 2 ||
    376  1.14      chs 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    377   1.8      mrg 				UVMHIST_LOG(pdhist,"  met free target: "
    378   1.8      mrg 				    "exit loop", 0, 0, 0, 0);
    379   1.8      mrg 				retval = TRUE;		/* hit the target! */
    380   1.8      mrg 
    381   1.8      mrg 				if (swslot == 0)
    382   1.8      mrg 					/* exit now if no swap-i/o pending */
    383   1.8      mrg 					break;
    384   1.8      mrg 
    385   1.8      mrg 				/* set p to null to signal final swap i/o */
    386   1.8      mrg 				p = NULL;
    387   1.8      mrg 			}
    388   1.8      mrg 		}
    389   1.8      mrg 
    390   1.8      mrg 		uobj = NULL;	/* be safe and shut gcc up */
    391   1.8      mrg 		anon = NULL;	/* be safe and shut gcc up */
    392   1.8      mrg 
    393   1.8      mrg 		if (p) {	/* if (we have a new page to consider) */
    394   1.8      mrg 			/*
    395   1.8      mrg 			 * we are below target and have a new page to consider.
    396   1.8      mrg 			 */
    397   1.8      mrg 			uvmexp.pdscans++;
    398   1.8      mrg 			nextpg = p->pageq.tqe_next;
    399   1.8      mrg 
    400   1.8      mrg 			/*
    401   1.8      mrg 			 * move referenced pages back to active queue and
    402   1.8      mrg 			 * skip to next page (unlikely to happen since
    403   1.8      mrg 			 * inactive pages shouldn't have any valid mappings
    404   1.8      mrg 			 * and we cleared reference before deactivating).
    405   1.8      mrg 			 */
    406  1.18      chs 			if (pmap_is_referenced(p)) {
    407   1.8      mrg 				uvm_pageactivate(p);
    408   1.8      mrg 				uvmexp.pdreact++;
    409   1.8      mrg 				continue;
    410   1.8      mrg 			}
    411   1.8      mrg 
    412   1.8      mrg 			/*
    413   1.8      mrg 			 * first we attempt to lock the object that this page
    414   1.8      mrg 			 * belongs to.  if our attempt fails we skip on to
    415   1.8      mrg 			 * the next page (no harm done).  it is important to
    416   1.8      mrg 			 * "try" locking the object as we are locking in the
    417   1.8      mrg 			 * wrong order (pageq -> object) and we don't want to
    418   1.8      mrg 			 * get deadlocked.
    419   1.8      mrg 			 *
    420   1.8      mrg 			 * the only time we exepct to see an ownerless page
    421   1.8      mrg 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    422   1.8      mrg 			 * anon has loaned a page from a uvm_object and the
    423   1.8      mrg 			 * uvm_object has dropped the ownership.  in that
    424   1.8      mrg 			 * case, the anon can "take over" the loaned page
    425   1.8      mrg 			 * and make it its own.
    426   1.8      mrg 			 */
    427   1.8      mrg 
    428   1.8      mrg 			/* is page part of an anon or ownerless ? */
    429   1.8      mrg 			if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
    430   1.1      mrg 
    431   1.8      mrg 				anon = p->uanon;
    432   1.1      mrg 
    433   1.1      mrg #ifdef DIAGNOSTIC
    434   1.8      mrg 				/* to be on inactive q, page must be part
    435   1.8      mrg 				 * of _something_ */
    436   1.8      mrg 				if (anon == NULL)
    437   1.8      mrg 					panic("pagedaemon: page with no anon "
    438   1.8      mrg 					    "or object detected - loop 1");
    439   1.1      mrg #endif
    440   1.1      mrg 
    441   1.8      mrg 				if (!simple_lock_try(&anon->an_lock))
    442   1.8      mrg 					/* lock failed, skip this page */
    443   1.8      mrg 					continue;
    444   1.8      mrg 
    445   1.8      mrg 				/*
    446   1.8      mrg 				 * if the page is ownerless, claim it in the
    447   1.8      mrg 				 * name of "anon"!
    448   1.8      mrg 				 */
    449   1.8      mrg 				if ((p->pqflags & PQ_ANON) == 0) {
    450   1.1      mrg #ifdef DIAGNOSTIC
    451   1.8      mrg 					if (p->loan_count < 1)
    452   1.8      mrg 						panic("pagedaemon: non-loaned "
    453   1.8      mrg 						    "ownerless page detected -"
    454   1.8      mrg 						    " loop 1");
    455   1.1      mrg #endif
    456   1.8      mrg 					p->loan_count--;
    457   1.8      mrg 					p->pqflags |= PQ_ANON;      /* anon now owns it */
    458   1.8      mrg 				}
    459   1.8      mrg 
    460   1.8      mrg 				if (p->flags & PG_BUSY) {
    461   1.8      mrg 					simple_unlock(&anon->an_lock);
    462   1.8      mrg 					uvmexp.pdbusy++;
    463   1.8      mrg 					/* someone else owns page, skip it */
    464   1.8      mrg 					continue;
    465   1.8      mrg 				}
    466   1.8      mrg 
    467   1.8      mrg 				uvmexp.pdanscan++;
    468   1.8      mrg 
    469   1.8      mrg 			} else {
    470   1.8      mrg 
    471   1.8      mrg 				uobj = p->uobject;
    472   1.8      mrg 
    473   1.8      mrg 				if (!simple_lock_try(&uobj->vmobjlock))
    474   1.8      mrg 					/* lock failed, skip this page */
    475   1.8      mrg 					continue;
    476   1.8      mrg 
    477   1.8      mrg 				if (p->flags & PG_BUSY) {
    478   1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    479   1.8      mrg 					uvmexp.pdbusy++;
    480   1.8      mrg 					/* someone else owns page, skip it */
    481   1.8      mrg 					continue;
    482   1.8      mrg 				}
    483   1.8      mrg 
    484   1.8      mrg 				uvmexp.pdobscan++;
    485   1.8      mrg 			}
    486   1.8      mrg 
    487   1.8      mrg 			/*
    488   1.8      mrg 			 * we now have the object and the page queues locked.
    489   1.8      mrg 			 * the page is not busy.   if the page is clean we
    490   1.8      mrg 			 * can free it now and continue.
    491   1.8      mrg 			 */
    492   1.8      mrg 
    493   1.8      mrg 			if (p->flags & PG_CLEAN) {
    494  1.14      chs 				if (p->pqflags & PQ_SWAPBACKED) {
    495  1.14      chs 					/* this page now lives only in swap */
    496  1.14      chs 					simple_lock(&uvm.swap_data_lock);
    497  1.14      chs 					uvmexp.swpgonly++;
    498  1.14      chs 					simple_unlock(&uvm.swap_data_lock);
    499  1.14      chs 				}
    500  1.14      chs 
    501   1.8      mrg 				/* zap all mappings with pmap_page_protect... */
    502  1.18      chs 				pmap_page_protect(p, VM_PROT_NONE);
    503   1.8      mrg 				uvm_pagefree(p);
    504   1.8      mrg 				uvmexp.pdfreed++;
    505   1.8      mrg 
    506   1.8      mrg 				if (anon) {
    507   1.1      mrg #ifdef DIAGNOSTIC
    508   1.8      mrg 					/*
    509   1.8      mrg 					 * an anonymous page can only be clean
    510   1.8      mrg 					 * if it has valid backing store.
    511   1.8      mrg 					 */
    512   1.8      mrg 					if (anon->an_swslot == 0)
    513   1.8      mrg 						panic("pagedaemon: clean anon "
    514   1.8      mrg 						 "page without backing store?");
    515   1.1      mrg #endif
    516   1.8      mrg 					/* remove from object */
    517   1.8      mrg 					anon->u.an_page = NULL;
    518   1.8      mrg 					simple_unlock(&anon->an_lock);
    519   1.8      mrg 				} else {
    520   1.8      mrg 					/* pagefree has already removed the
    521   1.8      mrg 					 * page from the object */
    522   1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    523   1.8      mrg 				}
    524   1.8      mrg 				continue;
    525   1.8      mrg 			}
    526   1.8      mrg 
    527   1.8      mrg 			/*
    528   1.8      mrg 			 * this page is dirty, skip it if we'll have met our
    529   1.8      mrg 			 * free target when all the current pageouts complete.
    530   1.8      mrg 			 */
    531  1.14      chs 			if (free + uvmexp.paging > uvmexp.freetarg << 2) {
    532   1.8      mrg 				if (anon) {
    533   1.8      mrg 					simple_unlock(&anon->an_lock);
    534   1.8      mrg 				} else {
    535   1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    536   1.8      mrg 				}
    537   1.8      mrg 				continue;
    538   1.8      mrg 			}
    539   1.8      mrg 
    540   1.8      mrg 			/*
    541  1.14      chs 			 * this page is dirty, but we can't page it out
    542  1.14      chs 			 * since all pages in swap are only in swap.
    543  1.14      chs 			 * reactivate it so that we eventually cycle
    544  1.14      chs 			 * all pages thru the inactive queue.
    545  1.14      chs 			 */
    546  1.14      chs #ifdef DIAGNOSTIC
    547  1.14      chs 			if (uvmexp.swpgonly > uvmexp.swpages) {
    548  1.14      chs 				panic("uvmexp.swpgonly botch");
    549  1.14      chs 			}
    550  1.14      chs #endif
    551  1.14      chs 			if ((p->pqflags & PQ_SWAPBACKED) &&
    552  1.14      chs 			    uvmexp.swpgonly == uvmexp.swpages) {
    553  1.14      chs 				dirtyreacts++;
    554  1.14      chs 				uvm_pageactivate(p);
    555  1.14      chs 				if (anon) {
    556  1.14      chs 					simple_unlock(&anon->an_lock);
    557  1.14      chs 				} else {
    558  1.14      chs 					simple_unlock(&uobj->vmobjlock);
    559  1.14      chs 				}
    560  1.14      chs 				continue;
    561  1.14      chs 			}
    562  1.14      chs 
    563  1.14      chs 			/*
    564  1.14      chs 			 * if the page is swap-backed and dirty and swap space
    565  1.14      chs 			 * is full, free any swap allocated to the page
    566  1.14      chs 			 * so that other pages can be paged out.
    567  1.14      chs 			 */
    568  1.14      chs #ifdef DIAGNOSTIC
    569  1.14      chs 			if (uvmexp.swpginuse > uvmexp.swpages) {
    570  1.14      chs 				panic("uvmexp.swpginuse botch");
    571  1.14      chs 			}
    572  1.14      chs #endif
    573  1.14      chs 			if ((p->pqflags & PQ_SWAPBACKED) &&
    574  1.14      chs 			    uvmexp.swpginuse == uvmexp.swpages) {
    575  1.14      chs 
    576  1.14      chs 				if ((p->pqflags & PQ_ANON) &&
    577  1.14      chs 				    p->uanon->an_swslot) {
    578  1.14      chs 					uvm_swap_free(p->uanon->an_swslot, 1);
    579  1.14      chs 					p->uanon->an_swslot = 0;
    580  1.14      chs 				}
    581  1.14      chs 				if (p->pqflags & PQ_AOBJ) {
    582  1.14      chs 					uao_dropswap(p->uobject,
    583  1.14      chs 						     p->offset >> PAGE_SHIFT);
    584  1.14      chs 				}
    585  1.14      chs 			}
    586  1.14      chs 
    587  1.14      chs 			/*
    588   1.8      mrg 			 * the page we are looking at is dirty.   we must
    589   1.8      mrg 			 * clean it before it can be freed.  to do this we
    590   1.8      mrg 			 * first mark the page busy so that no one else will
    591   1.8      mrg 			 * touch the page.   we write protect all the mappings
    592   1.8      mrg 			 * of the page so that no one touches it while it is
    593   1.8      mrg 			 * in I/O.
    594   1.8      mrg 			 */
    595   1.8      mrg 
    596   1.8      mrg 			swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
    597   1.8      mrg 			p->flags |= PG_BUSY;		/* now we own it */
    598   1.8      mrg 			UVM_PAGE_OWN(p, "scan_inactive");
    599  1.18      chs 			pmap_page_protect(p, VM_PROT_READ);
    600   1.8      mrg 			uvmexp.pgswapout++;
    601   1.8      mrg 
    602   1.8      mrg 			/*
    603   1.8      mrg 			 * for swap-backed pages we need to (re)allocate
    604   1.8      mrg 			 * swap space.
    605   1.8      mrg 			 */
    606   1.8      mrg 			if (swap_backed) {
    607   1.8      mrg 
    608   1.8      mrg 				/*
    609   1.8      mrg 				 * free old swap slot (if any)
    610   1.8      mrg 				 */
    611   1.8      mrg 				if (anon) {
    612   1.8      mrg 					if (anon->an_swslot) {
    613   1.8      mrg 						uvm_swap_free(anon->an_swslot,
    614   1.8      mrg 						    1);
    615   1.8      mrg 						anon->an_swslot = 0;
    616   1.8      mrg 					}
    617   1.8      mrg 				} else {
    618  1.14      chs 					uao_dropswap(uobj,
    619  1.14      chs 						     p->offset >> PAGE_SHIFT);
    620   1.8      mrg 				}
    621   1.8      mrg 
    622   1.8      mrg 				/*
    623   1.8      mrg 				 * start new cluster (if necessary)
    624   1.8      mrg 				 */
    625   1.8      mrg 				if (swslot == 0) {
    626   1.8      mrg 					/* want this much */
    627  1.11      chs 					swnpages = MAXBSIZE >> PAGE_SHIFT;
    628   1.8      mrg 
    629   1.8      mrg 					swslot = uvm_swap_alloc(&swnpages,
    630   1.8      mrg 					    TRUE);
    631   1.8      mrg 
    632   1.8      mrg 					if (swslot == 0) {
    633   1.8      mrg 						/* no swap?  give up! */
    634   1.8      mrg 						p->flags &= ~PG_BUSY;
    635   1.8      mrg 						UVM_PAGE_OWN(p, NULL);
    636   1.8      mrg 						if (anon)
    637   1.8      mrg 							simple_unlock(
    638   1.8      mrg 							    &anon->an_lock);
    639   1.8      mrg 						else
    640   1.8      mrg 							simple_unlock(
    641   1.8      mrg 							    &uobj->vmobjlock);
    642   1.8      mrg 						continue;
    643   1.8      mrg 					}
    644   1.8      mrg 					swcpages = 0;	/* cluster is empty */
    645   1.8      mrg 				}
    646   1.8      mrg 
    647   1.8      mrg 				/*
    648   1.8      mrg 				 * add block to cluster
    649   1.8      mrg 				 */
    650   1.8      mrg 				swpps[swcpages] = p;
    651   1.8      mrg 				if (anon)
    652   1.8      mrg 					anon->an_swslot = swslot + swcpages;
    653   1.8      mrg 				else
    654   1.8      mrg 					uao_set_swslot(uobj,
    655  1.11      chs 					    p->offset >> PAGE_SHIFT,
    656   1.8      mrg 					    swslot + swcpages);
    657   1.8      mrg 				swcpages++;
    658   1.8      mrg 
    659   1.8      mrg 				/* done (swap-backed) */
    660   1.8      mrg 			}
    661   1.8      mrg 
    662   1.8      mrg 			/* end: if (p) ["if we have new page to consider"] */
    663   1.8      mrg 		} else {
    664   1.8      mrg 
    665   1.8      mrg 			/* if p == NULL we must be doing a last swap i/o */
    666   1.8      mrg 			swap_backed = TRUE;
    667   1.8      mrg 		}
    668   1.8      mrg 
    669   1.8      mrg 		/*
    670   1.8      mrg 		 * now consider doing the pageout.
    671   1.8      mrg 		 *
    672   1.8      mrg 		 * for swap-backed pages, we do the pageout if we have either
    673   1.8      mrg 		 * filled the cluster (in which case (swnpages == swcpages) or
    674   1.8      mrg 		 * run out of pages (p == NULL).
    675   1.8      mrg 		 *
    676   1.8      mrg 		 * for object pages, we always do the pageout.
    677   1.8      mrg 		 */
    678   1.8      mrg 		if (swap_backed) {
    679   1.8      mrg 
    680   1.8      mrg 			if (p) {	/* if we just added a page to cluster */
    681   1.8      mrg 				if (anon)
    682   1.8      mrg 					simple_unlock(&anon->an_lock);
    683   1.8      mrg 				else
    684   1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    685   1.8      mrg 
    686   1.8      mrg 				/* cluster not full yet? */
    687   1.8      mrg 				if (swcpages < swnpages)
    688   1.8      mrg 					continue;
    689   1.8      mrg 			}
    690   1.8      mrg 
    691   1.8      mrg 			/* starting I/O now... set up for it */
    692   1.8      mrg 			npages = swcpages;
    693   1.8      mrg 			ppsp = swpps;
    694   1.8      mrg 			/* for swap-backed pages only */
    695  1.10      eeh 			start = (vaddr_t) swslot;
    696   1.8      mrg 
    697   1.8      mrg 			/* if this is final pageout we could have a few
    698   1.8      mrg 			 * extra swap blocks */
    699   1.8      mrg 			if (swcpages < swnpages) {
    700   1.8      mrg 				uvm_swap_free(swslot + swcpages,
    701   1.8      mrg 				    (swnpages - swcpages));
    702   1.8      mrg 			}
    703   1.1      mrg 
    704   1.8      mrg 		} else {
    705   1.1      mrg 
    706   1.8      mrg 			/* normal object pageout */
    707   1.8      mrg 			ppsp = pps;
    708   1.8      mrg 			npages = sizeof(pps) / sizeof(struct vm_page *);
    709   1.8      mrg 			/* not looked at because PGO_ALLPAGES is set */
    710   1.8      mrg 			start = 0;
    711   1.8      mrg 
    712   1.8      mrg 		}
    713   1.8      mrg 
    714   1.8      mrg 		/*
    715   1.8      mrg 		 * now do the pageout.
    716   1.8      mrg 		 *
    717   1.8      mrg 		 * for swap_backed pages we have already built the cluster.
    718   1.8      mrg 		 * for !swap_backed pages, uvm_pager_put will call the object's
    719   1.8      mrg 		 * "make put cluster" function to build a cluster on our behalf.
    720   1.8      mrg 		 *
    721   1.8      mrg 		 * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
    722   1.8      mrg 		 * it to free the cluster pages for us on a successful I/O (it
    723   1.8      mrg 		 * always does this for un-successful I/O requests).  this
    724   1.8      mrg 		 * allows us to do clustered pageout without having to deal
    725   1.8      mrg 		 * with cluster pages at this level.
    726   1.8      mrg 		 *
    727   1.8      mrg 		 * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
    728   1.8      mrg 		 *  IN: locked: uobj (if !swap_backed), page queues
    729   1.8      mrg 		 * OUT: locked: uobj (if !swap_backed && result !=VM_PAGER_PEND)
    730   1.8      mrg 		 *     !locked: pageqs, uobj (if swap_backed || VM_PAGER_PEND)
    731   1.8      mrg 		 *
    732   1.8      mrg 		 * [the bit about VM_PAGER_PEND saves us one lock-unlock pair]
    733   1.8      mrg 		 */
    734   1.8      mrg 
    735   1.8      mrg 		/* locked: uobj (if !swap_backed), page queues */
    736   1.8      mrg 		uvmexp.pdpageouts++;
    737   1.8      mrg 		result = uvm_pager_put((swap_backed) ? NULL : uobj, p,
    738   1.8      mrg 		    &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
    739   1.8      mrg 		/* locked: uobj (if !swap_backed && result != PEND) */
    740   1.8      mrg 		/* unlocked: pageqs, object (if swap_backed ||result == PEND) */
    741   1.8      mrg 
    742   1.8      mrg 		/*
    743   1.8      mrg 		 * if we did i/o to swap, zero swslot to indicate that we are
    744   1.8      mrg 		 * no longer building a swap-backed cluster.
    745   1.8      mrg 		 */
    746   1.8      mrg 
    747   1.8      mrg 		if (swap_backed)
    748   1.8      mrg 			swslot = 0;		/* done with this cluster */
    749   1.8      mrg 
    750   1.8      mrg 		/*
    751   1.8      mrg 		 * first, we check for VM_PAGER_PEND which means that the
    752   1.8      mrg 		 * async I/O is in progress and the async I/O done routine
    753   1.8      mrg 		 * will clean up after us.   in this case we move on to the
    754   1.8      mrg 		 * next page.
    755   1.8      mrg 		 *
    756   1.8      mrg 		 * there is a very remote chance that the pending async i/o can
    757   1.8      mrg 		 * finish _before_ we get here.   if that happens, our page "p"
    758   1.8      mrg 		 * may no longer be on the inactive queue.   so we verify this
    759   1.8      mrg 		 * when determining the next page (starting over at the head if
    760   1.8      mrg 		 * we've lost our inactive page).
    761   1.8      mrg 		 */
    762   1.8      mrg 
    763   1.8      mrg 		if (result == VM_PAGER_PEND) {
    764   1.8      mrg 			uvmexp.paging += npages;
    765   1.8      mrg 			uvm_lock_pageq();		/* relock page queues */
    766   1.8      mrg 			uvmexp.pdpending++;
    767   1.8      mrg 			if (p) {
    768   1.8      mrg 				if (p->pqflags & PQ_INACTIVE)
    769   1.8      mrg 					/* reload! */
    770   1.8      mrg 					nextpg = p->pageq.tqe_next;
    771   1.8      mrg 				else
    772   1.8      mrg 					/* reload! */
    773   1.8      mrg 					nextpg = pglst->tqh_first;
    774   1.8      mrg 				} else {
    775   1.8      mrg 					nextpg = NULL;		/* done list */
    776   1.8      mrg 			}
    777   1.8      mrg 			continue;
    778   1.8      mrg 		}
    779   1.8      mrg 
    780   1.8      mrg 		/*
    781   1.8      mrg 		 * clean up "p" if we have one
    782   1.8      mrg 		 */
    783   1.8      mrg 
    784   1.8      mrg 		if (p) {
    785   1.8      mrg 			/*
    786   1.8      mrg 			 * the I/O request to "p" is done and uvm_pager_put
    787   1.8      mrg 			 * has freed any cluster pages it may have allocated
    788   1.8      mrg 			 * during I/O.  all that is left for us to do is
    789   1.8      mrg 			 * clean up page "p" (which is still PG_BUSY).
    790   1.8      mrg 			 *
    791   1.8      mrg 			 * our result could be one of the following:
    792   1.8      mrg 			 *   VM_PAGER_OK: successful pageout
    793   1.8      mrg 			 *
    794   1.8      mrg 			 *   VM_PAGER_AGAIN: tmp resource shortage, we skip
    795   1.8      mrg 			 *     to next page
    796   1.8      mrg 			 *   VM_PAGER_{FAIL,ERROR,BAD}: an error.   we
    797   1.8      mrg 			 *     "reactivate" page to get it out of the way (it
    798   1.8      mrg 			 *     will eventually drift back into the inactive
    799   1.8      mrg 			 *     queue for a retry).
    800   1.8      mrg 			 *   VM_PAGER_UNLOCK: should never see this as it is
    801   1.8      mrg 			 *     only valid for "get" operations
    802   1.8      mrg 			 */
    803   1.8      mrg 
    804   1.8      mrg 			/* relock p's object: page queues not lock yet, so
    805   1.8      mrg 			 * no need for "try" */
    806   1.8      mrg 
    807   1.8      mrg 			/* !swap_backed case: already locked... */
    808   1.8      mrg 			if (swap_backed) {
    809   1.8      mrg 				if (anon)
    810   1.8      mrg 					simple_lock(&anon->an_lock);
    811   1.8      mrg 				else
    812   1.8      mrg 					simple_lock(&uobj->vmobjlock);
    813   1.8      mrg 			}
    814   1.1      mrg 
    815   1.1      mrg #ifdef DIAGNOSTIC
    816   1.8      mrg 			if (result == VM_PAGER_UNLOCK)
    817   1.8      mrg 				panic("pagedaemon: pageout returned "
    818   1.8      mrg 				    "invalid 'unlock' code");
    819   1.1      mrg #endif
    820   1.1      mrg 
    821   1.8      mrg 			/* handle PG_WANTED now */
    822   1.8      mrg 			if (p->flags & PG_WANTED)
    823   1.8      mrg 				/* still holding object lock */
    824  1.17  thorpej 				wakeup(p);
    825   1.8      mrg 
    826   1.8      mrg 			p->flags &= ~(PG_BUSY|PG_WANTED);
    827   1.8      mrg 			UVM_PAGE_OWN(p, NULL);
    828   1.8      mrg 
    829   1.8      mrg 			/* released during I/O? */
    830   1.8      mrg 			if (p->flags & PG_RELEASED) {
    831   1.8      mrg 				if (anon) {
    832   1.8      mrg 					/* remove page so we can get nextpg */
    833   1.8      mrg 					anon->u.an_page = NULL;
    834   1.8      mrg 
    835   1.8      mrg 					simple_unlock(&anon->an_lock);
    836   1.8      mrg 					uvm_anfree(anon);	/* kills anon */
    837  1.18      chs 					pmap_page_protect(p, VM_PROT_NONE);
    838   1.8      mrg 					anon = NULL;
    839   1.8      mrg 					uvm_lock_pageq();
    840   1.8      mrg 					nextpg = p->pageq.tqe_next;
    841   1.8      mrg 					/* free released page */
    842   1.8      mrg 					uvm_pagefree(p);
    843   1.1      mrg 
    844   1.8      mrg 				} else {
    845   1.1      mrg 
    846   1.1      mrg #ifdef DIAGNOSTIC
    847   1.8      mrg 					if (uobj->pgops->pgo_releasepg == NULL)
    848   1.8      mrg 						panic("pagedaemon: no "
    849   1.8      mrg 						   "pgo_releasepg function");
    850   1.1      mrg #endif
    851   1.1      mrg 
    852   1.8      mrg 					/*
    853   1.8      mrg 					 * pgo_releasepg nukes the page and
    854   1.8      mrg 					 * gets "nextpg" for us.  it returns
    855   1.8      mrg 					 * with the page queues locked (when
    856   1.8      mrg 					 * given nextpg ptr).
    857   1.8      mrg 					 */
    858   1.8      mrg 					if (!uobj->pgops->pgo_releasepg(p,
    859   1.8      mrg 					    &nextpg))
    860   1.8      mrg 						/* uobj died after release */
    861   1.8      mrg 						uobj = NULL;
    862   1.8      mrg 
    863   1.8      mrg 					/*
    864   1.8      mrg 					 * lock page queues here so that they're
    865   1.8      mrg 					 * always locked at the end of the loop.
    866   1.8      mrg 					 */
    867   1.8      mrg 					uvm_lock_pageq();
    868   1.8      mrg 				}
    869   1.8      mrg 
    870   1.8      mrg 			} else {	/* page was not released during I/O */
    871   1.8      mrg 
    872   1.8      mrg 				uvm_lock_pageq();
    873   1.8      mrg 				nextpg = p->pageq.tqe_next;
    874   1.8      mrg 
    875   1.8      mrg 				if (result != VM_PAGER_OK) {
    876   1.8      mrg 
    877   1.8      mrg 					/* pageout was a failure... */
    878   1.8      mrg 					if (result != VM_PAGER_AGAIN)
    879   1.8      mrg 						uvm_pageactivate(p);
    880  1.18      chs 					pmap_clear_reference(p);
    881   1.8      mrg 					/* XXXCDC: if (swap_backed) FREE p's
    882   1.8      mrg 					 * swap block? */
    883   1.8      mrg 
    884   1.8      mrg 				} else {
    885   1.8      mrg 
    886   1.8      mrg 					/* pageout was a success... */
    887  1.18      chs 					pmap_clear_reference(p);
    888  1.18      chs 					pmap_clear_modify(p);
    889   1.8      mrg 					p->flags |= PG_CLEAN;
    890   1.8      mrg 					/* XXX: could free page here, but old
    891   1.8      mrg 					 * pagedaemon does not */
    892   1.8      mrg 
    893   1.8      mrg 				}
    894   1.8      mrg 			}
    895   1.8      mrg 
    896   1.8      mrg 			/*
    897   1.8      mrg 			 * drop object lock (if there is an object left).   do
    898   1.8      mrg 			 * a safety check of nextpg to make sure it is on the
    899   1.8      mrg 			 * inactive queue (it should be since PG_BUSY pages on
    900   1.8      mrg 			 * the inactive queue can't be re-queued [note: not
    901   1.8      mrg 			 * true for active queue]).
    902   1.8      mrg 			 */
    903   1.8      mrg 
    904   1.8      mrg 			if (anon)
    905   1.8      mrg 				simple_unlock(&anon->an_lock);
    906   1.8      mrg 			else if (uobj)
    907   1.8      mrg 				simple_unlock(&uobj->vmobjlock);
    908   1.8      mrg 
    909   1.8      mrg 		} /* if (p) */ else {
    910   1.8      mrg 
    911   1.8      mrg 			/* if p is null in this loop, make sure it stays null
    912   1.8      mrg 			 * in next loop */
    913   1.8      mrg 			nextpg = NULL;
    914   1.8      mrg 
    915   1.8      mrg 			/*
    916   1.8      mrg 			 * lock page queues here just so they're always locked
    917   1.8      mrg 			 * at the end of the loop.
    918   1.8      mrg 			 */
    919   1.8      mrg 			uvm_lock_pageq();
    920   1.8      mrg 		}
    921   1.8      mrg 
    922   1.8      mrg 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    923   1.8      mrg 			printf("pagedaemon: invalid nextpg!   reverting to "
    924   1.8      mrg 			    "queue head\n");
    925   1.8      mrg 			nextpg = pglst->tqh_first;	/* reload! */
    926   1.8      mrg 		}
    927   1.1      mrg 
    928   1.8      mrg 	}	/* end of "inactive" 'for' loop */
    929   1.8      mrg 	return (retval);
    930   1.1      mrg }
    931   1.1      mrg 
    932   1.1      mrg /*
    933   1.1      mrg  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    934   1.1      mrg  *
    935   1.1      mrg  * => called with pageq's locked
    936   1.1      mrg  */
    937   1.1      mrg 
    938   1.8      mrg void
    939   1.8      mrg uvmpd_scan()
    940   1.1      mrg {
    941  1.14      chs 	int s, free, inactive_shortage, swap_shortage, pages_freed;
    942   1.8      mrg 	struct vm_page *p, *nextpg;
    943   1.8      mrg 	struct uvm_object *uobj;
    944   1.8      mrg 	boolean_t got_it;
    945   1.8      mrg 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    946   1.1      mrg 
    947   1.8      mrg 	uvmexp.pdrevs++;		/* counter */
    948   1.1      mrg 
    949   1.1      mrg #ifdef __GNUC__
    950   1.8      mrg 	uobj = NULL;	/* XXX gcc */
    951   1.1      mrg #endif
    952   1.8      mrg 	/*
    953   1.8      mrg 	 * get current "free" page count
    954   1.8      mrg 	 */
    955  1.16  thorpej 	s = uvm_lock_fpageq();
    956   1.8      mrg 	free = uvmexp.free;
    957  1.16  thorpej 	uvm_unlock_fpageq(s);
    958   1.1      mrg 
    959   1.1      mrg #ifndef __SWAP_BROKEN
    960   1.8      mrg 	/*
    961   1.8      mrg 	 * swap out some processes if we are below our free target.
    962   1.8      mrg 	 * we need to unlock the page queues for this.
    963   1.8      mrg 	 */
    964   1.8      mrg 	if (free < uvmexp.freetarg) {
    965   1.8      mrg 
    966   1.8      mrg 		uvmexp.pdswout++;
    967   1.8      mrg 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout", free,
    968   1.8      mrg 		    uvmexp.freetarg, 0, 0);
    969   1.8      mrg 		uvm_unlock_pageq();
    970   1.8      mrg 		uvm_swapout_threads();
    971   1.8      mrg 		pmap_update();		/* update so we can scan inactive q */
    972   1.8      mrg 		uvm_lock_pageq();
    973   1.1      mrg 
    974   1.8      mrg 	}
    975   1.1      mrg #endif
    976   1.1      mrg 
    977   1.8      mrg 	/*
    978   1.8      mrg 	 * now we want to work on meeting our targets.   first we work on our
    979   1.8      mrg 	 * free target by converting inactive pages into free pages.  then
    980   1.8      mrg 	 * we work on meeting our inactive target by converting active pages
    981   1.8      mrg 	 * to inactive ones.
    982   1.8      mrg 	 */
    983   1.8      mrg 
    984   1.8      mrg 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    985   1.8      mrg 
    986   1.8      mrg 	/*
    987   1.8      mrg 	 * do loop #1!   alternate starting queue between swap and object based
    988   1.8      mrg 	 * on the low bit of uvmexp.pdrevs (which we bump by one each call).
    989   1.8      mrg 	 */
    990   1.8      mrg 
    991   1.8      mrg 	got_it = FALSE;
    992  1.14      chs 	pages_freed = uvmexp.pdfreed;
    993   1.8      mrg 	if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
    994   1.8      mrg 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
    995   1.8      mrg 	if (!got_it)
    996   1.8      mrg 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
    997   1.8      mrg 	if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
    998   1.8      mrg 		(void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
    999  1.14      chs 	pages_freed = uvmexp.pdfreed - pages_freed;
   1000   1.8      mrg 
   1001   1.8      mrg 	/*
   1002   1.8      mrg 	 * we have done the scan to get free pages.   now we work on meeting
   1003   1.8      mrg 	 * our inactive target.
   1004   1.8      mrg 	 */
   1005   1.8      mrg 
   1006  1.14      chs 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
   1007  1.14      chs 
   1008  1.14      chs 	/*
   1009  1.14      chs 	 * detect if we're not going to be able to page anything out
   1010  1.14      chs 	 * until we free some swap resources from active pages.
   1011  1.14      chs 	 */
   1012  1.14      chs 	swap_shortage = 0;
   1013  1.14      chs 	if (uvmexp.free < uvmexp.freetarg &&
   1014  1.14      chs 	    uvmexp.swpginuse == uvmexp.swpages &&
   1015  1.14      chs 	    uvmexp.swpgonly < uvmexp.swpages &&
   1016  1.14      chs 	    pages_freed == 0) {
   1017  1.14      chs 		swap_shortage = uvmexp.freetarg - uvmexp.free;
   1018  1.14      chs 	}
   1019  1.14      chs 
   1020  1.14      chs 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
   1021  1.14      chs 		    inactive_shortage, swap_shortage,0,0);
   1022  1.14      chs 	for (p = TAILQ_FIRST(&uvm.page_active);
   1023  1.14      chs 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
   1024  1.14      chs 	     p = nextpg) {
   1025   1.8      mrg 		nextpg = p->pageq.tqe_next;
   1026   1.8      mrg 		if (p->flags & PG_BUSY)
   1027   1.8      mrg 			continue;	/* quick check before trying to lock */
   1028   1.8      mrg 
   1029   1.8      mrg 		/*
   1030  1.14      chs 		 * lock the page's owner.
   1031   1.8      mrg 		 */
   1032   1.8      mrg 		/* is page anon owned or ownerless? */
   1033   1.8      mrg 		if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
   1034   1.1      mrg 
   1035   1.1      mrg #ifdef DIAGNOSTIC
   1036   1.8      mrg 			if (p->uanon == NULL)
   1037   1.8      mrg 				panic("pagedaemon: page with no anon or "
   1038   1.8      mrg 				    "object detected - loop 2");
   1039   1.1      mrg #endif
   1040   1.8      mrg 			if (!simple_lock_try(&p->uanon->an_lock))
   1041   1.8      mrg 				continue;
   1042   1.1      mrg 
   1043   1.8      mrg 			/* take over the page? */
   1044   1.8      mrg 			if ((p->pqflags & PQ_ANON) == 0) {
   1045   1.1      mrg #ifdef DIAGNOSTIC
   1046   1.8      mrg 				if (p->loan_count < 1)
   1047   1.8      mrg 					panic("pagedaemon: non-loaned "
   1048   1.8      mrg 					    "ownerless page detected - loop 2");
   1049   1.1      mrg #endif
   1050   1.8      mrg 				p->loan_count--;
   1051   1.8      mrg 				p->pqflags |= PQ_ANON;
   1052   1.8      mrg 			}
   1053   1.8      mrg 		} else {
   1054   1.8      mrg 			if (!simple_lock_try(&p->uobject->vmobjlock))
   1055   1.8      mrg 				continue;
   1056   1.8      mrg 		}
   1057  1.14      chs 		/*
   1058  1.14      chs 		 * skip this page if it's busy.
   1059  1.14      chs 		 */
   1060  1.14      chs 		if ((p->flags & PG_BUSY) != 0) {
   1061  1.14      chs 			if (p->pqflags & PQ_ANON)
   1062  1.14      chs 				simple_unlock(&p->uanon->an_lock);
   1063  1.14      chs 			else
   1064  1.14      chs 				simple_unlock(&p->uobject->vmobjlock);
   1065  1.14      chs 			continue;
   1066  1.14      chs 		}
   1067  1.14      chs 
   1068  1.14      chs 		/*
   1069  1.14      chs 		 * if there's a shortage of swap, free any swap allocated
   1070  1.14      chs 		 * to this page so that other pages can be paged out.
   1071  1.14      chs 		 */
   1072  1.14      chs 		if (swap_shortage > 0) {
   1073  1.14      chs 			if ((p->pqflags & PQ_ANON) && p->uanon->an_swslot) {
   1074  1.14      chs 				uvm_swap_free(p->uanon->an_swslot, 1);
   1075  1.14      chs 				p->uanon->an_swslot = 0;
   1076  1.14      chs 				p->flags &= ~PG_CLEAN;
   1077  1.14      chs 				swap_shortage--;
   1078  1.14      chs 			}
   1079  1.14      chs 			if (p->pqflags & PQ_AOBJ) {
   1080  1.14      chs 				int slot = uao_set_swslot(p->uobject,
   1081  1.14      chs 					p->offset >> PAGE_SHIFT, 0);
   1082  1.14      chs 				if (slot) {
   1083  1.14      chs 					uvm_swap_free(slot, 1);
   1084  1.14      chs 					p->flags &= ~PG_CLEAN;
   1085  1.14      chs 					swap_shortage--;
   1086  1.14      chs 				}
   1087  1.14      chs 			}
   1088  1.14      chs 		}
   1089  1.14      chs 
   1090  1.14      chs 		/*
   1091  1.14      chs 		 * deactivate this page if there's a shortage of
   1092  1.14      chs 		 * inactive pages.
   1093  1.14      chs 		 */
   1094  1.14      chs 		if (inactive_shortage > 0) {
   1095  1.18      chs 			pmap_page_protect(p, VM_PROT_NONE);
   1096   1.8      mrg 			/* no need to check wire_count as pg is "active" */
   1097   1.8      mrg 			uvm_pagedeactivate(p);
   1098   1.8      mrg 			uvmexp.pddeact++;
   1099  1.14      chs 			inactive_shortage--;
   1100   1.8      mrg 		}
   1101   1.8      mrg 
   1102   1.8      mrg 		if (p->pqflags & PQ_ANON)
   1103   1.8      mrg 			simple_unlock(&p->uanon->an_lock);
   1104   1.8      mrg 		else
   1105   1.8      mrg 			simple_unlock(&p->uobject->vmobjlock);
   1106   1.8      mrg 	}
   1107   1.1      mrg }
   1108