Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.27
      1  1.27  mycroft /*	$NetBSD: uvm_pdaemon.c,v 1.27 2001/01/25 00:10:03 mycroft Exp $	*/
      2   1.1      mrg 
      3   1.1      mrg /*
      4   1.1      mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.1      mrg  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1      mrg  *
      7   1.1      mrg  * All rights reserved.
      8   1.1      mrg  *
      9   1.1      mrg  * This code is derived from software contributed to Berkeley by
     10   1.1      mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1      mrg  *
     12   1.1      mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1      mrg  * modification, are permitted provided that the following conditions
     14   1.1      mrg  * are met:
     15   1.1      mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1      mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1      mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1      mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1      mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1      mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1      mrg  *    must display the following acknowledgement:
     22   1.1      mrg  *	This product includes software developed by Charles D. Cranor,
     23   1.1      mrg  *      Washington University, the University of California, Berkeley and
     24   1.1      mrg  *      its contributors.
     25   1.1      mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1      mrg  *    may be used to endorse or promote products derived from this software
     27   1.1      mrg  *    without specific prior written permission.
     28   1.1      mrg  *
     29   1.1      mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1      mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1      mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1      mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1      mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1      mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1      mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1      mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1      mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1      mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1      mrg  * SUCH DAMAGE.
     40   1.1      mrg  *
     41   1.1      mrg  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42   1.4      mrg  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43   1.1      mrg  *
     44   1.1      mrg  *
     45   1.1      mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1      mrg  * All rights reserved.
     47   1.1      mrg  *
     48   1.1      mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1      mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1      mrg  * notice and this permission notice appear in all copies of the
     51   1.1      mrg  * software, derivative works or modified versions, and any portions
     52   1.1      mrg  * thereof, and that both notices appear in supporting documentation.
     53   1.1      mrg  *
     54   1.1      mrg  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55   1.1      mrg  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1      mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57   1.1      mrg  *
     58   1.1      mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1      mrg  *
     60   1.1      mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1      mrg  *  School of Computer Science
     62   1.1      mrg  *  Carnegie Mellon University
     63   1.1      mrg  *  Pittsburgh PA 15213-3890
     64   1.1      mrg  *
     65   1.1      mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1      mrg  * rights to redistribute these changes.
     67   1.1      mrg  */
     68   1.1      mrg 
     69   1.7      mrg #include "opt_uvmhist.h"
     70   1.7      mrg 
     71   1.1      mrg /*
     72   1.1      mrg  * uvm_pdaemon.c: the page daemon
     73   1.1      mrg  */
     74   1.1      mrg 
     75   1.1      mrg #include <sys/param.h>
     76   1.1      mrg #include <sys/proc.h>
     77   1.1      mrg #include <sys/systm.h>
     78   1.1      mrg #include <sys/kernel.h>
     79   1.9       pk #include <sys/pool.h>
     80  1.24      chs #include <sys/buf.h>
     81   1.1      mrg 
     82   1.1      mrg #include <uvm/uvm.h>
     83   1.1      mrg 
     84  1.24      chs extern struct uvm_pagerops uvm_vnodeops;
     85  1.24      chs 
     86   1.1      mrg /*
     87  1.14      chs  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
     88  1.14      chs  * in a pass thru the inactive list when swap is full.  the value should be
     89  1.14      chs  * "small"... if it's too large we'll cycle the active pages thru the inactive
     90  1.14      chs  * queue too quickly to for them to be referenced and avoid being freed.
     91  1.14      chs  */
     92  1.14      chs 
     93  1.14      chs #define UVMPD_NUMDIRTYREACTS 16
     94  1.14      chs 
     95  1.14      chs 
     96  1.14      chs /*
     97   1.1      mrg  * local prototypes
     98   1.1      mrg  */
     99   1.1      mrg 
    100   1.1      mrg static void		uvmpd_scan __P((void));
    101   1.1      mrg static boolean_t	uvmpd_scan_inactive __P((struct pglist *));
    102   1.1      mrg static void		uvmpd_tune __P((void));
    103   1.1      mrg 
    104   1.1      mrg 
    105   1.1      mrg /*
    106   1.1      mrg  * uvm_wait: wait (sleep) for the page daemon to free some pages
    107   1.1      mrg  *
    108   1.1      mrg  * => should be called with all locks released
    109   1.1      mrg  * => should _not_ be called by the page daemon (to avoid deadlock)
    110   1.1      mrg  */
    111   1.1      mrg 
    112  1.19  thorpej void
    113  1.19  thorpej uvm_wait(wmsg)
    114  1.19  thorpej 	const char *wmsg;
    115   1.8      mrg {
    116   1.8      mrg 	int timo = 0;
    117   1.8      mrg 	int s = splbio();
    118   1.1      mrg 
    119   1.8      mrg 	/*
    120   1.8      mrg 	 * check for page daemon going to sleep (waiting for itself)
    121   1.8      mrg 	 */
    122   1.1      mrg 
    123   1.8      mrg 	if (curproc == uvm.pagedaemon_proc) {
    124   1.8      mrg 		/*
    125   1.8      mrg 		 * now we have a problem: the pagedaemon wants to go to
    126   1.8      mrg 		 * sleep until it frees more memory.   but how can it
    127   1.8      mrg 		 * free more memory if it is asleep?  that is a deadlock.
    128   1.8      mrg 		 * we have two options:
    129   1.8      mrg 		 *  [1] panic now
    130   1.8      mrg 		 *  [2] put a timeout on the sleep, thus causing the
    131   1.8      mrg 		 *      pagedaemon to only pause (rather than sleep forever)
    132   1.8      mrg 		 *
    133   1.8      mrg 		 * note that option [2] will only help us if we get lucky
    134   1.8      mrg 		 * and some other process on the system breaks the deadlock
    135   1.8      mrg 		 * by exiting or freeing memory (thus allowing the pagedaemon
    136   1.8      mrg 		 * to continue).  for now we panic if DEBUG is defined,
    137   1.8      mrg 		 * otherwise we hope for the best with option [2] (better
    138   1.8      mrg 		 * yet, this should never happen in the first place!).
    139   1.8      mrg 		 */
    140   1.1      mrg 
    141   1.8      mrg 		printf("pagedaemon: deadlock detected!\n");
    142   1.8      mrg 		timo = hz >> 3;		/* set timeout */
    143   1.1      mrg #if defined(DEBUG)
    144   1.8      mrg 		/* DEBUG: panic so we can debug it */
    145   1.8      mrg 		panic("pagedaemon deadlock");
    146   1.1      mrg #endif
    147   1.8      mrg 	}
    148   1.1      mrg 
    149   1.8      mrg 	simple_lock(&uvm.pagedaemon_lock);
    150  1.17  thorpej 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    151   1.8      mrg 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    152   1.8      mrg 	    timo);
    153   1.1      mrg 
    154   1.8      mrg 	splx(s);
    155   1.1      mrg }
    156   1.1      mrg 
    157   1.1      mrg 
    158   1.1      mrg /*
    159   1.1      mrg  * uvmpd_tune: tune paging parameters
    160   1.1      mrg  *
    161   1.1      mrg  * => called when ever memory is added (or removed?) to the system
    162   1.1      mrg  * => caller must call with page queues locked
    163   1.1      mrg  */
    164   1.1      mrg 
    165   1.8      mrg static void
    166   1.8      mrg uvmpd_tune()
    167   1.8      mrg {
    168   1.8      mrg 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    169   1.1      mrg 
    170   1.8      mrg 	uvmexp.freemin = uvmexp.npages / 20;
    171   1.1      mrg 
    172   1.8      mrg 	/* between 16k and 256k */
    173   1.8      mrg 	/* XXX:  what are these values good for? */
    174  1.11      chs 	uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    175  1.11      chs 	uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    176  1.23    bjh21 
    177  1.23    bjh21 	/* Make sure there's always a user page free. */
    178  1.23    bjh21 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    179  1.23    bjh21 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    180   1.1      mrg 
    181   1.8      mrg 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    182   1.8      mrg 	if (uvmexp.freetarg <= uvmexp.freemin)
    183   1.8      mrg 		uvmexp.freetarg = uvmexp.freemin + 1;
    184   1.1      mrg 
    185   1.8      mrg 	/* uvmexp.inactarg: computed in main daemon loop */
    186   1.1      mrg 
    187   1.8      mrg 	uvmexp.wiredmax = uvmexp.npages / 3;
    188   1.8      mrg 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    189   1.1      mrg 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    190   1.1      mrg }
    191   1.1      mrg 
    192   1.1      mrg /*
    193   1.1      mrg  * uvm_pageout: the main loop for the pagedaemon
    194   1.1      mrg  */
    195   1.1      mrg 
    196   1.8      mrg void
    197  1.22  thorpej uvm_pageout(void *arg)
    198   1.8      mrg {
    199   1.8      mrg 	int npages = 0;
    200   1.8      mrg 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    201  1.24      chs 
    202   1.8      mrg 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    203   1.8      mrg 
    204   1.8      mrg 	/*
    205   1.8      mrg 	 * ensure correct priority and set paging parameters...
    206   1.8      mrg 	 */
    207   1.8      mrg 
    208   1.8      mrg 	uvm.pagedaemon_proc = curproc;
    209   1.8      mrg 	(void) spl0();
    210   1.8      mrg 	uvm_lock_pageq();
    211   1.8      mrg 	npages = uvmexp.npages;
    212   1.8      mrg 	uvmpd_tune();
    213   1.8      mrg 	uvm_unlock_pageq();
    214   1.8      mrg 
    215   1.8      mrg 	/*
    216   1.8      mrg 	 * main loop
    217   1.8      mrg 	 */
    218  1.24      chs 
    219  1.24      chs 	for (;;) {
    220  1.24      chs 		simple_lock(&uvm.pagedaemon_lock);
    221  1.24      chs 
    222  1.24      chs 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    223  1.24      chs 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    224  1.24      chs 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    225  1.24      chs 		uvmexp.pdwoke++;
    226  1.24      chs 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    227  1.24      chs 
    228  1.24      chs 		/* drain pool resources */
    229  1.24      chs 		pool_drain(0);
    230   1.1      mrg 
    231   1.8      mrg 		/*
    232  1.24      chs 		 * now lock page queues and recompute inactive count
    233   1.8      mrg 		 */
    234   1.8      mrg 
    235  1.24      chs 		uvm_lock_pageq();
    236  1.24      chs 		if (npages != uvmexp.npages) {	/* check for new pages? */
    237  1.24      chs 			npages = uvmexp.npages;
    238  1.24      chs 			uvmpd_tune();
    239  1.24      chs 		}
    240  1.24      chs 
    241  1.24      chs 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    242  1.24      chs 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    243  1.24      chs 			uvmexp.inactarg = uvmexp.freetarg + 1;
    244  1.24      chs 		}
    245  1.24      chs 
    246  1.24      chs 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    247  1.24      chs 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    248  1.24      chs 		    uvmexp.inactarg);
    249   1.8      mrg 
    250   1.8      mrg 		/*
    251  1.24      chs 		 * scan if needed
    252   1.8      mrg 		 */
    253   1.8      mrg 
    254  1.24      chs 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    255  1.24      chs 		    uvmexp.inactive < uvmexp.inactarg ||
    256  1.25   simonb 		    uvmexp.vnodepages >
    257  1.24      chs 		    (uvmexp.active + uvmexp.inactive + uvmexp.wired +
    258  1.24      chs 		     uvmexp.free) * 13 / 16) {
    259  1.24      chs 			uvmpd_scan();
    260   1.8      mrg 		}
    261   1.8      mrg 
    262   1.8      mrg 		/*
    263  1.24      chs 		 * if there's any free memory to be had,
    264  1.24      chs 		 * wake up any waiters.
    265   1.8      mrg 		 */
    266   1.8      mrg 
    267  1.24      chs 		if (uvmexp.free > uvmexp.reserve_kernel ||
    268  1.24      chs 		    uvmexp.paging == 0) {
    269  1.24      chs 			wakeup(&uvmexp.free);
    270   1.8      mrg 		}
    271   1.1      mrg 
    272   1.8      mrg 		/*
    273  1.24      chs 		 * scan done.  unlock page queues (the only lock we are holding)
    274   1.8      mrg 		 */
    275   1.8      mrg 
    276  1.24      chs 		uvm_unlock_pageq();
    277  1.24      chs 	}
    278  1.24      chs 	/*NOTREACHED*/
    279  1.24      chs }
    280  1.24      chs 
    281   1.8      mrg 
    282  1.24      chs /*
    283  1.24      chs  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    284  1.24      chs  */
    285   1.8      mrg 
    286  1.24      chs void
    287  1.24      chs uvm_aiodone_daemon(void *arg)
    288  1.24      chs {
    289  1.24      chs 	int s, free;
    290  1.24      chs 	struct buf *bp, *nbp;
    291  1.24      chs 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    292   1.9       pk 
    293  1.24      chs 	for (;;) {
    294   1.8      mrg 
    295   1.8      mrg 		/*
    296  1.24      chs 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    297  1.24      chs 		 * we need splbio because we want to make sure the aio_done list
    298  1.24      chs 		 * is totally empty before we go to sleep.
    299   1.8      mrg 		 */
    300   1.8      mrg 
    301  1.24      chs 		s = splbio();
    302  1.24      chs 		simple_lock(&uvm.aiodoned_lock);
    303  1.24      chs 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    304  1.24      chs 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    305  1.24      chs 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    306  1.24      chs 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    307  1.24      chs 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    308  1.24      chs 
    309  1.24      chs 			/* relock aiodoned_lock, still at splbio */
    310  1.24      chs 			simple_lock(&uvm.aiodoned_lock);
    311   1.8      mrg 		}
    312   1.8      mrg 
    313  1.24      chs 		/*
    314  1.24      chs 		 * check for done aio structures
    315  1.24      chs 		 */
    316   1.8      mrg 
    317  1.24      chs 		bp = TAILQ_FIRST(&uvm.aio_done);
    318  1.24      chs 		if (bp) {
    319  1.24      chs 			TAILQ_INIT(&uvm.aio_done);
    320  1.24      chs 		}
    321   1.8      mrg 
    322  1.24      chs 		simple_unlock(&uvm.aiodoned_lock);
    323  1.24      chs 		splx(s);
    324   1.8      mrg 
    325   1.8      mrg 		/*
    326  1.24      chs 		 * process each i/o that's done.
    327   1.8      mrg 		 */
    328   1.8      mrg 
    329  1.24      chs 		free = uvmexp.free;
    330  1.24      chs 		while (bp != NULL) {
    331  1.24      chs 			if (bp->b_flags & B_PDAEMON) {
    332  1.24      chs 				uvmexp.paging -= bp->b_bufsize >> PAGE_SHIFT;
    333  1.24      chs 			}
    334  1.24      chs 			nbp = TAILQ_NEXT(bp, b_freelist);
    335  1.24      chs 			(*bp->b_iodone)(bp);
    336  1.24      chs 			bp = nbp;
    337  1.24      chs 		}
    338  1.24      chs 		if (free <= uvmexp.reserve_kernel) {
    339  1.24      chs 			s = uvm_lock_fpageq();
    340  1.24      chs 			wakeup(&uvm.pagedaemon);
    341  1.24      chs 			uvm_unlock_fpageq(s);
    342  1.24      chs 		} else {
    343  1.24      chs 			simple_lock(&uvm.pagedaemon_lock);
    344  1.17  thorpej 			wakeup(&uvmexp.free);
    345  1.24      chs 			simple_unlock(&uvm.pagedaemon_lock);
    346  1.24      chs 		}
    347   1.8      mrg 	}
    348   1.1      mrg }
    349   1.1      mrg 
    350  1.24      chs 
    351  1.24      chs 
    352   1.1      mrg /*
    353  1.24      chs  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    354   1.1      mrg  *
    355   1.1      mrg  * => called with page queues locked
    356   1.1      mrg  * => we work on meeting our free target by converting inactive pages
    357   1.1      mrg  *    into free pages.
    358   1.1      mrg  * => we handle the building of swap-backed clusters
    359   1.1      mrg  * => we return TRUE if we are exiting because we met our target
    360   1.1      mrg  */
    361   1.1      mrg 
    362   1.8      mrg static boolean_t
    363   1.8      mrg uvmpd_scan_inactive(pglst)
    364   1.8      mrg 	struct pglist *pglst;
    365   1.8      mrg {
    366   1.8      mrg 	boolean_t retval = FALSE;	/* assume we haven't hit target */
    367   1.8      mrg 	int s, free, result;
    368   1.8      mrg 	struct vm_page *p, *nextpg;
    369   1.8      mrg 	struct uvm_object *uobj;
    370  1.11      chs 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
    371   1.8      mrg 	int npages;
    372  1.11      chs 	struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; 	/* XXX: see below */
    373   1.8      mrg 	int swnpages, swcpages;				/* XXX: see below */
    374  1.14      chs 	int swslot;
    375   1.8      mrg 	struct vm_anon *anon;
    376  1.24      chs 	boolean_t swap_backed, vnode_only;
    377  1.10      eeh 	vaddr_t start;
    378  1.24      chs 	int dirtyreacts, vpgs;
    379   1.8      mrg 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    380   1.1      mrg 
    381   1.8      mrg 	/*
    382   1.8      mrg 	 * note: we currently keep swap-backed pages on a seperate inactive
    383   1.8      mrg 	 * list from object-backed pages.   however, merging the two lists
    384   1.8      mrg 	 * back together again hasn't been ruled out.   thus, we keep our
    385   1.8      mrg 	 * swap cluster in "swpps" rather than in pps (allows us to mix
    386   1.8      mrg 	 * clustering types in the event of a mixed inactive queue).
    387   1.8      mrg 	 */
    388   1.1      mrg 
    389   1.8      mrg 	/*
    390   1.8      mrg 	 * swslot is non-zero if we are building a swap cluster.  we want
    391  1.24      chs 	 * to stay in the loop while we have a page to scan or we have
    392   1.8      mrg 	 * a swap-cluster to build.
    393   1.8      mrg 	 */
    394  1.24      chs 
    395   1.8      mrg 	swslot = 0;
    396   1.8      mrg 	swnpages = swcpages = 0;
    397   1.8      mrg 	free = 0;
    398  1.14      chs 	dirtyreacts = 0;
    399  1.24      chs 	vnode_only = FALSE;
    400   1.8      mrg 
    401  1.24      chs 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
    402   1.8      mrg 
    403   1.8      mrg 		/*
    404   1.8      mrg 		 * note that p can be NULL iff we have traversed the whole
    405   1.8      mrg 		 * list and need to do one final swap-backed clustered pageout.
    406   1.8      mrg 		 */
    407  1.24      chs 
    408  1.24      chs 		uobj = NULL;
    409  1.24      chs 		anon = NULL;
    410  1.24      chs 
    411   1.8      mrg 		if (p) {
    412  1.24      chs 
    413   1.8      mrg 			/*
    414   1.8      mrg 			 * update our copy of "free" and see if we've met
    415   1.8      mrg 			 * our target
    416   1.8      mrg 			 */
    417  1.24      chs 
    418  1.16  thorpej 			s = uvm_lock_fpageq();
    419   1.8      mrg 			free = uvmexp.free;
    420  1.16  thorpej 			uvm_unlock_fpageq(s);
    421   1.8      mrg 
    422  1.24      chs 			/* XXXUBC */
    423  1.25   simonb 			vpgs = uvmexp.vnodepages -
    424  1.24      chs 				(uvmexp.active + uvmexp.inactive +
    425  1.24      chs 				 uvmexp.wired + uvmexp.free) * 13 / 16;
    426  1.24      chs 
    427  1.14      chs 			if (free + uvmexp.paging >= uvmexp.freetarg << 2 ||
    428  1.26      chs 			    vpgs > 0 || dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    429  1.24      chs 				if (vpgs <= 0) {
    430  1.24      chs 					UVMHIST_LOG(pdhist,"  met free target: "
    431  1.24      chs 						    "exit loop", 0, 0, 0, 0);
    432  1.24      chs 					retval = TRUE;
    433  1.24      chs 
    434  1.24      chs 					if (swslot == 0)
    435  1.24      chs 						/* exit now if no
    436  1.24      chs                                                    swap-i/o pending */
    437  1.24      chs 						break;
    438  1.24      chs 
    439  1.24      chs 					/* set p to null to signal final
    440  1.24      chs                                            swap i/o */
    441  1.24      chs 					p = NULL;
    442  1.24      chs 				} else {
    443  1.24      chs 					vnode_only = TRUE;
    444  1.24      chs 				}
    445   1.8      mrg 			}
    446   1.8      mrg 		}
    447   1.8      mrg 
    448  1.24      chs 		if (p) {	/* if (we have a new page to consider) */
    449   1.8      mrg 			/*
    450   1.8      mrg 			 * we are below target and have a new page to consider.
    451   1.8      mrg 			 */
    452   1.8      mrg 			uvmexp.pdscans++;
    453  1.24      chs 			nextpg = TAILQ_NEXT(p, pageq);
    454   1.8      mrg 
    455  1.27  mycroft 			/*
    456  1.27  mycroft 			 * move referenced pages back to active queue and
    457  1.27  mycroft 			 * skip to next page (unlikely to happen since
    458  1.27  mycroft 			 * inactive pages shouldn't have any valid mappings
    459  1.27  mycroft 			 * and we cleared reference before deactivating).
    460  1.27  mycroft 			 */
    461  1.27  mycroft 			if (pmap_is_referenced(p)) {
    462  1.27  mycroft 				uvm_pageactivate(p);
    463  1.27  mycroft 				uvmexp.pdreact++;
    464  1.27  mycroft 				continue;
    465  1.27  mycroft 			}
    466  1.27  mycroft 
    467   1.8      mrg 			/*
    468   1.8      mrg 			 * first we attempt to lock the object that this page
    469   1.8      mrg 			 * belongs to.  if our attempt fails we skip on to
    470   1.8      mrg 			 * the next page (no harm done).  it is important to
    471   1.8      mrg 			 * "try" locking the object as we are locking in the
    472   1.8      mrg 			 * wrong order (pageq -> object) and we don't want to
    473  1.24      chs 			 * deadlock.
    474   1.8      mrg 			 *
    475  1.24      chs 			 * the only time we expect to see an ownerless page
    476   1.8      mrg 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    477   1.8      mrg 			 * anon has loaned a page from a uvm_object and the
    478   1.8      mrg 			 * uvm_object has dropped the ownership.  in that
    479   1.8      mrg 			 * case, the anon can "take over" the loaned page
    480   1.8      mrg 			 * and make it its own.
    481   1.8      mrg 			 */
    482   1.8      mrg 
    483   1.8      mrg 			/* is page part of an anon or ownerless ? */
    484   1.8      mrg 			if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
    485  1.24      chs 				if (vnode_only) {
    486  1.24      chs 					uvm_pageactivate(p);
    487  1.24      chs 					continue;
    488  1.24      chs 				}
    489   1.8      mrg 				anon = p->uanon;
    490  1.24      chs 				KASSERT(anon != NULL);
    491   1.8      mrg 				if (!simple_lock_try(&anon->an_lock))
    492   1.8      mrg 					/* lock failed, skip this page */
    493   1.8      mrg 					continue;
    494   1.8      mrg 
    495   1.8      mrg 				/*
    496   1.8      mrg 				 * if the page is ownerless, claim it in the
    497   1.8      mrg 				 * name of "anon"!
    498   1.8      mrg 				 */
    499  1.24      chs 
    500   1.8      mrg 				if ((p->pqflags & PQ_ANON) == 0) {
    501  1.24      chs 					KASSERT(p->loan_count > 0);
    502   1.8      mrg 					p->loan_count--;
    503  1.24      chs 					p->pqflags |= PQ_ANON;
    504  1.24      chs 					/* anon now owns it */
    505   1.8      mrg 				}
    506   1.8      mrg 				if (p->flags & PG_BUSY) {
    507   1.8      mrg 					simple_unlock(&anon->an_lock);
    508   1.8      mrg 					uvmexp.pdbusy++;
    509   1.8      mrg 					/* someone else owns page, skip it */
    510   1.8      mrg 					continue;
    511   1.8      mrg 				}
    512   1.8      mrg 				uvmexp.pdanscan++;
    513   1.8      mrg 			} else {
    514   1.8      mrg 				uobj = p->uobject;
    515  1.24      chs 				KASSERT(uobj != NULL);
    516  1.24      chs 				if (vnode_only &&
    517  1.24      chs 				    uobj->pgops != &uvm_vnodeops) {
    518  1.24      chs 					uvm_pageactivate(p);
    519  1.24      chs 					continue;
    520  1.24      chs 				}
    521   1.8      mrg 				if (!simple_lock_try(&uobj->vmobjlock))
    522   1.8      mrg 					/* lock failed, skip this page */
    523  1.24      chs 					continue;
    524   1.8      mrg 
    525   1.8      mrg 				if (p->flags & PG_BUSY) {
    526   1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    527   1.8      mrg 					uvmexp.pdbusy++;
    528   1.8      mrg 					/* someone else owns page, skip it */
    529  1.24      chs 					continue;
    530   1.8      mrg 				}
    531   1.8      mrg 				uvmexp.pdobscan++;
    532   1.8      mrg 			}
    533   1.8      mrg 
    534   1.8      mrg 			/*
    535   1.8      mrg 			 * we now have the object and the page queues locked.
    536   1.8      mrg 			 * the page is not busy.   if the page is clean we
    537   1.8      mrg 			 * can free it now and continue.
    538   1.8      mrg 			 */
    539   1.8      mrg 
    540   1.8      mrg 			if (p->flags & PG_CLEAN) {
    541  1.14      chs 				if (p->pqflags & PQ_SWAPBACKED) {
    542  1.14      chs 					/* this page now lives only in swap */
    543  1.14      chs 					simple_lock(&uvm.swap_data_lock);
    544  1.14      chs 					uvmexp.swpgonly++;
    545  1.14      chs 					simple_unlock(&uvm.swap_data_lock);
    546  1.14      chs 				}
    547  1.14      chs 
    548   1.8      mrg 				uvm_pagefree(p);
    549   1.8      mrg 				uvmexp.pdfreed++;
    550  1.24      chs 
    551   1.8      mrg 				if (anon) {
    552  1.24      chs 
    553   1.8      mrg 					/*
    554   1.8      mrg 					 * an anonymous page can only be clean
    555  1.24      chs 					 * if it has backing store assigned.
    556   1.8      mrg 					 */
    557  1.24      chs 
    558  1.24      chs 					KASSERT(anon->an_swslot != 0);
    559  1.24      chs 
    560   1.8      mrg 					/* remove from object */
    561   1.8      mrg 					anon->u.an_page = NULL;
    562   1.8      mrg 					simple_unlock(&anon->an_lock);
    563   1.8      mrg 				} else {
    564   1.8      mrg 					/* pagefree has already removed the
    565   1.8      mrg 					 * page from the object */
    566   1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    567   1.8      mrg 				}
    568   1.8      mrg 				continue;
    569   1.8      mrg 			}
    570   1.8      mrg 
    571   1.8      mrg 			/*
    572   1.8      mrg 			 * this page is dirty, skip it if we'll have met our
    573   1.8      mrg 			 * free target when all the current pageouts complete.
    574   1.8      mrg 			 */
    575  1.24      chs 
    576  1.26      chs 			if (free + uvmexp.paging > uvmexp.freetarg << 2 &&
    577  1.26      chs 			    !vnode_only) {
    578   1.8      mrg 				if (anon) {
    579   1.8      mrg 					simple_unlock(&anon->an_lock);
    580   1.8      mrg 				} else {
    581   1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    582   1.8      mrg 				}
    583   1.8      mrg 				continue;
    584   1.8      mrg 			}
    585   1.8      mrg 
    586   1.8      mrg 			/*
    587  1.14      chs 			 * this page is dirty, but we can't page it out
    588  1.14      chs 			 * since all pages in swap are only in swap.
    589  1.14      chs 			 * reactivate it so that we eventually cycle
    590  1.14      chs 			 * all pages thru the inactive queue.
    591  1.14      chs 			 */
    592  1.24      chs 
    593  1.24      chs 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
    594  1.14      chs 			if ((p->pqflags & PQ_SWAPBACKED) &&
    595  1.14      chs 			    uvmexp.swpgonly == uvmexp.swpages) {
    596  1.14      chs 				dirtyreacts++;
    597  1.14      chs 				uvm_pageactivate(p);
    598  1.14      chs 				if (anon) {
    599  1.14      chs 					simple_unlock(&anon->an_lock);
    600  1.14      chs 				} else {
    601  1.14      chs 					simple_unlock(&uobj->vmobjlock);
    602  1.14      chs 				}
    603  1.14      chs 				continue;
    604  1.14      chs 			}
    605  1.14      chs 
    606  1.14      chs 			/*
    607  1.14      chs 			 * if the page is swap-backed and dirty and swap space
    608  1.14      chs 			 * is full, free any swap allocated to the page
    609  1.14      chs 			 * so that other pages can be paged out.
    610  1.14      chs 			 */
    611  1.24      chs 
    612  1.24      chs 			KASSERT(uvmexp.swpginuse <= uvmexp.swpages);
    613  1.14      chs 			if ((p->pqflags & PQ_SWAPBACKED) &&
    614  1.14      chs 			    uvmexp.swpginuse == uvmexp.swpages) {
    615  1.14      chs 
    616  1.14      chs 				if ((p->pqflags & PQ_ANON) &&
    617  1.14      chs 				    p->uanon->an_swslot) {
    618  1.14      chs 					uvm_swap_free(p->uanon->an_swslot, 1);
    619  1.14      chs 					p->uanon->an_swslot = 0;
    620  1.14      chs 				}
    621  1.14      chs 				if (p->pqflags & PQ_AOBJ) {
    622  1.14      chs 					uao_dropswap(p->uobject,
    623  1.14      chs 						     p->offset >> PAGE_SHIFT);
    624  1.14      chs 				}
    625  1.14      chs 			}
    626  1.14      chs 
    627  1.14      chs 			/*
    628   1.8      mrg 			 * the page we are looking at is dirty.   we must
    629   1.8      mrg 			 * clean it before it can be freed.  to do this we
    630   1.8      mrg 			 * first mark the page busy so that no one else will
    631  1.24      chs 			 * touch the page.
    632   1.8      mrg 			 */
    633   1.8      mrg 
    634   1.8      mrg 			swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
    635   1.8      mrg 			p->flags |= PG_BUSY;		/* now we own it */
    636   1.8      mrg 			UVM_PAGE_OWN(p, "scan_inactive");
    637   1.8      mrg 			uvmexp.pgswapout++;
    638   1.8      mrg 
    639   1.8      mrg 			/*
    640   1.8      mrg 			 * for swap-backed pages we need to (re)allocate
    641   1.8      mrg 			 * swap space.
    642   1.8      mrg 			 */
    643  1.24      chs 
    644   1.8      mrg 			if (swap_backed) {
    645   1.8      mrg 
    646   1.8      mrg 				/*
    647   1.8      mrg 				 * free old swap slot (if any)
    648   1.8      mrg 				 */
    649  1.24      chs 
    650   1.8      mrg 				if (anon) {
    651   1.8      mrg 					if (anon->an_swslot) {
    652   1.8      mrg 						uvm_swap_free(anon->an_swslot,
    653   1.8      mrg 						    1);
    654   1.8      mrg 						anon->an_swslot = 0;
    655   1.8      mrg 					}
    656   1.8      mrg 				} else {
    657  1.14      chs 					uao_dropswap(uobj,
    658  1.14      chs 						     p->offset >> PAGE_SHIFT);
    659   1.8      mrg 				}
    660   1.8      mrg 
    661   1.8      mrg 				/*
    662   1.8      mrg 				 * start new cluster (if necessary)
    663   1.8      mrg 				 */
    664  1.24      chs 
    665   1.8      mrg 				if (swslot == 0) {
    666  1.11      chs 					swnpages = MAXBSIZE >> PAGE_SHIFT;
    667   1.8      mrg 					swslot = uvm_swap_alloc(&swnpages,
    668   1.8      mrg 					    TRUE);
    669   1.8      mrg 					if (swslot == 0) {
    670   1.8      mrg 						/* no swap?  give up! */
    671   1.8      mrg 						p->flags &= ~PG_BUSY;
    672   1.8      mrg 						UVM_PAGE_OWN(p, NULL);
    673   1.8      mrg 						if (anon)
    674   1.8      mrg 							simple_unlock(
    675   1.8      mrg 							    &anon->an_lock);
    676   1.8      mrg 						else
    677   1.8      mrg 							simple_unlock(
    678   1.8      mrg 							    &uobj->vmobjlock);
    679   1.8      mrg 						continue;
    680   1.8      mrg 					}
    681   1.8      mrg 					swcpages = 0;	/* cluster is empty */
    682   1.8      mrg 				}
    683   1.8      mrg 
    684   1.8      mrg 				/*
    685   1.8      mrg 				 * add block to cluster
    686   1.8      mrg 				 */
    687  1.24      chs 
    688   1.8      mrg 				swpps[swcpages] = p;
    689   1.8      mrg 				if (anon)
    690   1.8      mrg 					anon->an_swslot = swslot + swcpages;
    691   1.8      mrg 				else
    692   1.8      mrg 					uao_set_swslot(uobj,
    693  1.11      chs 					    p->offset >> PAGE_SHIFT,
    694   1.8      mrg 					    swslot + swcpages);
    695   1.8      mrg 				swcpages++;
    696   1.8      mrg 			}
    697   1.8      mrg 		} else {
    698   1.8      mrg 
    699   1.8      mrg 			/* if p == NULL we must be doing a last swap i/o */
    700   1.8      mrg 			swap_backed = TRUE;
    701   1.8      mrg 		}
    702   1.8      mrg 
    703   1.8      mrg 		/*
    704  1.24      chs 		 * now consider doing the pageout.
    705   1.8      mrg 		 *
    706  1.24      chs 		 * for swap-backed pages, we do the pageout if we have either
    707  1.24      chs 		 * filled the cluster (in which case (swnpages == swcpages) or
    708   1.8      mrg 		 * run out of pages (p == NULL).
    709   1.8      mrg 		 *
    710   1.8      mrg 		 * for object pages, we always do the pageout.
    711   1.8      mrg 		 */
    712  1.24      chs 
    713   1.8      mrg 		if (swap_backed) {
    714   1.8      mrg 			if (p) {	/* if we just added a page to cluster */
    715   1.8      mrg 				if (anon)
    716   1.8      mrg 					simple_unlock(&anon->an_lock);
    717   1.8      mrg 				else
    718   1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    719   1.8      mrg 
    720   1.8      mrg 				/* cluster not full yet? */
    721   1.8      mrg 				if (swcpages < swnpages)
    722   1.8      mrg 					continue;
    723   1.8      mrg 			}
    724   1.8      mrg 
    725   1.8      mrg 			/* starting I/O now... set up for it */
    726   1.8      mrg 			npages = swcpages;
    727   1.8      mrg 			ppsp = swpps;
    728   1.8      mrg 			/* for swap-backed pages only */
    729  1.10      eeh 			start = (vaddr_t) swslot;
    730   1.8      mrg 
    731   1.8      mrg 			/* if this is final pageout we could have a few
    732   1.8      mrg 			 * extra swap blocks */
    733   1.8      mrg 			if (swcpages < swnpages) {
    734   1.8      mrg 				uvm_swap_free(swslot + swcpages,
    735   1.8      mrg 				    (swnpages - swcpages));
    736  1.24      chs 			}
    737   1.8      mrg 		} else {
    738   1.8      mrg 			/* normal object pageout */
    739   1.8      mrg 			ppsp = pps;
    740   1.8      mrg 			npages = sizeof(pps) / sizeof(struct vm_page *);
    741   1.8      mrg 			/* not looked at because PGO_ALLPAGES is set */
    742   1.8      mrg 			start = 0;
    743   1.8      mrg 		}
    744   1.8      mrg 
    745   1.8      mrg 		/*
    746   1.8      mrg 		 * now do the pageout.
    747  1.24      chs 		 *
    748   1.8      mrg 		 * for swap_backed pages we have already built the cluster.
    749   1.8      mrg 		 * for !swap_backed pages, uvm_pager_put will call the object's
    750   1.8      mrg 		 * "make put cluster" function to build a cluster on our behalf.
    751   1.8      mrg 		 *
    752   1.8      mrg 		 * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
    753   1.8      mrg 		 * it to free the cluster pages for us on a successful I/O (it
    754   1.8      mrg 		 * always does this for un-successful I/O requests).  this
    755   1.8      mrg 		 * allows us to do clustered pageout without having to deal
    756   1.8      mrg 		 * with cluster pages at this level.
    757   1.8      mrg 		 *
    758   1.8      mrg 		 * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
    759   1.8      mrg 		 *  IN: locked: uobj (if !swap_backed), page queues
    760   1.8      mrg 		 * OUT: locked: uobj (if !swap_backed && result !=VM_PAGER_PEND)
    761   1.8      mrg 		 *     !locked: pageqs, uobj (if swap_backed || VM_PAGER_PEND)
    762   1.8      mrg 		 *
    763   1.8      mrg 		 * [the bit about VM_PAGER_PEND saves us one lock-unlock pair]
    764   1.8      mrg 		 */
    765   1.8      mrg 
    766   1.8      mrg 		/* locked: uobj (if !swap_backed), page queues */
    767   1.8      mrg 		uvmexp.pdpageouts++;
    768  1.24      chs 		result = uvm_pager_put(swap_backed ? NULL : uobj, p,
    769   1.8      mrg 		    &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
    770   1.8      mrg 		/* locked: uobj (if !swap_backed && result != PEND) */
    771   1.8      mrg 		/* unlocked: pageqs, object (if swap_backed ||result == PEND) */
    772   1.8      mrg 
    773   1.8      mrg 		/*
    774   1.8      mrg 		 * if we did i/o to swap, zero swslot to indicate that we are
    775   1.8      mrg 		 * no longer building a swap-backed cluster.
    776   1.8      mrg 		 */
    777   1.8      mrg 
    778   1.8      mrg 		if (swap_backed)
    779   1.8      mrg 			swslot = 0;		/* done with this cluster */
    780   1.8      mrg 
    781   1.8      mrg 		/*
    782   1.8      mrg 		 * first, we check for VM_PAGER_PEND which means that the
    783   1.8      mrg 		 * async I/O is in progress and the async I/O done routine
    784   1.8      mrg 		 * will clean up after us.   in this case we move on to the
    785   1.8      mrg 		 * next page.
    786   1.8      mrg 		 *
    787   1.8      mrg 		 * there is a very remote chance that the pending async i/o can
    788   1.8      mrg 		 * finish _before_ we get here.   if that happens, our page "p"
    789   1.8      mrg 		 * may no longer be on the inactive queue.   so we verify this
    790   1.8      mrg 		 * when determining the next page (starting over at the head if
    791   1.8      mrg 		 * we've lost our inactive page).
    792   1.8      mrg 		 */
    793   1.8      mrg 
    794   1.8      mrg 		if (result == VM_PAGER_PEND) {
    795   1.8      mrg 			uvmexp.paging += npages;
    796  1.24      chs 			uvm_lock_pageq();
    797   1.8      mrg 			uvmexp.pdpending++;
    798   1.8      mrg 			if (p) {
    799   1.8      mrg 				if (p->pqflags & PQ_INACTIVE)
    800  1.24      chs 					nextpg = TAILQ_NEXT(p, pageq);
    801   1.8      mrg 				else
    802  1.24      chs 					nextpg = TAILQ_FIRST(pglst);
    803  1.24      chs 			} else {
    804  1.24      chs 				nextpg = NULL;
    805   1.8      mrg 			}
    806   1.8      mrg 			continue;
    807   1.8      mrg 		}
    808   1.8      mrg 
    809  1.24      chs 		if (result == VM_PAGER_ERROR &&
    810  1.24      chs 		    curproc == uvm.pagedaemon_proc) {
    811  1.24      chs 			uvm_lock_pageq();
    812  1.24      chs 			nextpg = TAILQ_NEXT(p, pageq);
    813  1.24      chs 			uvm_pageactivate(p);
    814  1.24      chs 			continue;
    815  1.24      chs 		}
    816  1.24      chs 
    817   1.8      mrg 		/*
    818   1.8      mrg 		 * clean up "p" if we have one
    819   1.8      mrg 		 */
    820   1.8      mrg 
    821   1.8      mrg 		if (p) {
    822   1.8      mrg 			/*
    823   1.8      mrg 			 * the I/O request to "p" is done and uvm_pager_put
    824   1.8      mrg 			 * has freed any cluster pages it may have allocated
    825   1.8      mrg 			 * during I/O.  all that is left for us to do is
    826   1.8      mrg 			 * clean up page "p" (which is still PG_BUSY).
    827   1.8      mrg 			 *
    828   1.8      mrg 			 * our result could be one of the following:
    829   1.8      mrg 			 *   VM_PAGER_OK: successful pageout
    830   1.8      mrg 			 *
    831   1.8      mrg 			 *   VM_PAGER_AGAIN: tmp resource shortage, we skip
    832   1.8      mrg 			 *     to next page
    833   1.8      mrg 			 *   VM_PAGER_{FAIL,ERROR,BAD}: an error.   we
    834   1.8      mrg 			 *     "reactivate" page to get it out of the way (it
    835   1.8      mrg 			 *     will eventually drift back into the inactive
    836   1.8      mrg 			 *     queue for a retry).
    837   1.8      mrg 			 *   VM_PAGER_UNLOCK: should never see this as it is
    838   1.8      mrg 			 *     only valid for "get" operations
    839   1.8      mrg 			 */
    840   1.8      mrg 
    841   1.8      mrg 			/* relock p's object: page queues not lock yet, so
    842   1.8      mrg 			 * no need for "try" */
    843   1.8      mrg 
    844   1.8      mrg 			/* !swap_backed case: already locked... */
    845   1.8      mrg 			if (swap_backed) {
    846   1.8      mrg 				if (anon)
    847   1.8      mrg 					simple_lock(&anon->an_lock);
    848   1.8      mrg 				else
    849   1.8      mrg 					simple_lock(&uobj->vmobjlock);
    850   1.8      mrg 			}
    851   1.1      mrg 
    852   1.8      mrg 			/* handle PG_WANTED now */
    853   1.8      mrg 			if (p->flags & PG_WANTED)
    854   1.8      mrg 				/* still holding object lock */
    855  1.17  thorpej 				wakeup(p);
    856   1.8      mrg 
    857   1.8      mrg 			p->flags &= ~(PG_BUSY|PG_WANTED);
    858   1.8      mrg 			UVM_PAGE_OWN(p, NULL);
    859   1.8      mrg 
    860   1.8      mrg 			/* released during I/O? */
    861   1.8      mrg 			if (p->flags & PG_RELEASED) {
    862   1.8      mrg 				if (anon) {
    863   1.8      mrg 					/* remove page so we can get nextpg */
    864   1.8      mrg 					anon->u.an_page = NULL;
    865   1.8      mrg 
    866   1.8      mrg 					simple_unlock(&anon->an_lock);
    867   1.8      mrg 					uvm_anfree(anon);	/* kills anon */
    868  1.18      chs 					pmap_page_protect(p, VM_PROT_NONE);
    869   1.8      mrg 					anon = NULL;
    870   1.8      mrg 					uvm_lock_pageq();
    871  1.24      chs 					nextpg = TAILQ_NEXT(p, pageq);
    872   1.8      mrg 					/* free released page */
    873   1.8      mrg 					uvm_pagefree(p);
    874   1.1      mrg 
    875   1.8      mrg 				} else {
    876   1.1      mrg 
    877  1.24      chs 					/*
    878   1.8      mrg 					 * pgo_releasepg nukes the page and
    879   1.8      mrg 					 * gets "nextpg" for us.  it returns
    880   1.8      mrg 					 * with the page queues locked (when
    881   1.8      mrg 					 * given nextpg ptr).
    882   1.8      mrg 					 */
    883  1.24      chs 
    884   1.8      mrg 					if (!uobj->pgops->pgo_releasepg(p,
    885   1.8      mrg 					    &nextpg))
    886   1.8      mrg 						/* uobj died after release */
    887   1.8      mrg 						uobj = NULL;
    888   1.8      mrg 
    889   1.8      mrg 					/*
    890   1.8      mrg 					 * lock page queues here so that they're
    891   1.8      mrg 					 * always locked at the end of the loop.
    892   1.8      mrg 					 */
    893  1.24      chs 
    894   1.8      mrg 					uvm_lock_pageq();
    895   1.8      mrg 				}
    896   1.8      mrg 			} else {	/* page was not released during I/O */
    897   1.8      mrg 				uvm_lock_pageq();
    898  1.24      chs 				nextpg = TAILQ_NEXT(p, pageq);
    899   1.8      mrg 				if (result != VM_PAGER_OK) {
    900   1.8      mrg 					/* pageout was a failure... */
    901   1.8      mrg 					if (result != VM_PAGER_AGAIN)
    902   1.8      mrg 						uvm_pageactivate(p);
    903  1.18      chs 					pmap_clear_reference(p);
    904   1.8      mrg 					/* XXXCDC: if (swap_backed) FREE p's
    905   1.8      mrg 					 * swap block? */
    906   1.8      mrg 				} else {
    907   1.8      mrg 					/* pageout was a success... */
    908  1.18      chs 					pmap_clear_reference(p);
    909  1.18      chs 					pmap_clear_modify(p);
    910   1.8      mrg 					p->flags |= PG_CLEAN;
    911   1.8      mrg 				}
    912   1.8      mrg 			}
    913  1.24      chs 
    914   1.8      mrg 			/*
    915   1.8      mrg 			 * drop object lock (if there is an object left).   do
    916   1.8      mrg 			 * a safety check of nextpg to make sure it is on the
    917   1.8      mrg 			 * inactive queue (it should be since PG_BUSY pages on
    918   1.8      mrg 			 * the inactive queue can't be re-queued [note: not
    919   1.8      mrg 			 * true for active queue]).
    920   1.8      mrg 			 */
    921   1.8      mrg 
    922   1.8      mrg 			if (anon)
    923   1.8      mrg 				simple_unlock(&anon->an_lock);
    924   1.8      mrg 			else if (uobj)
    925   1.8      mrg 				simple_unlock(&uobj->vmobjlock);
    926   1.8      mrg 
    927  1.24      chs 		} else {
    928  1.24      chs 
    929  1.24      chs 			/*
    930  1.24      chs 			 * if p is null in this loop, make sure it stays null
    931  1.24      chs 			 * in the next loop.
    932  1.24      chs 			 */
    933   1.8      mrg 
    934   1.8      mrg 			nextpg = NULL;
    935   1.8      mrg 
    936   1.8      mrg 			/*
    937   1.8      mrg 			 * lock page queues here just so they're always locked
    938   1.8      mrg 			 * at the end of the loop.
    939   1.8      mrg 			 */
    940  1.24      chs 
    941   1.8      mrg 			uvm_lock_pageq();
    942   1.8      mrg 		}
    943   1.8      mrg 
    944   1.8      mrg 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    945  1.24      chs 			nextpg = TAILQ_FIRST(pglst);	/* reload! */
    946   1.8      mrg 		}
    947  1.24      chs 	}
    948   1.8      mrg 	return (retval);
    949   1.1      mrg }
    950   1.1      mrg 
    951   1.1      mrg /*
    952   1.1      mrg  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    953   1.1      mrg  *
    954   1.1      mrg  * => called with pageq's locked
    955   1.1      mrg  */
    956   1.1      mrg 
    957   1.8      mrg void
    958   1.8      mrg uvmpd_scan()
    959   1.1      mrg {
    960  1.14      chs 	int s, free, inactive_shortage, swap_shortage, pages_freed;
    961   1.8      mrg 	struct vm_page *p, *nextpg;
    962   1.8      mrg 	struct uvm_object *uobj;
    963   1.8      mrg 	boolean_t got_it;
    964   1.8      mrg 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    965   1.1      mrg 
    966   1.8      mrg 	uvmexp.pdrevs++;		/* counter */
    967  1.24      chs 	uobj = NULL;
    968   1.1      mrg 
    969   1.8      mrg 	/*
    970   1.8      mrg 	 * get current "free" page count
    971   1.8      mrg 	 */
    972  1.16  thorpej 	s = uvm_lock_fpageq();
    973   1.8      mrg 	free = uvmexp.free;
    974  1.16  thorpej 	uvm_unlock_fpageq(s);
    975   1.1      mrg 
    976   1.1      mrg #ifndef __SWAP_BROKEN
    977   1.8      mrg 	/*
    978   1.8      mrg 	 * swap out some processes if we are below our free target.
    979   1.8      mrg 	 * we need to unlock the page queues for this.
    980   1.8      mrg 	 */
    981   1.8      mrg 	if (free < uvmexp.freetarg) {
    982   1.8      mrg 		uvmexp.pdswout++;
    983   1.8      mrg 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout", free,
    984   1.8      mrg 		    uvmexp.freetarg, 0, 0);
    985   1.8      mrg 		uvm_unlock_pageq();
    986   1.8      mrg 		uvm_swapout_threads();
    987   1.8      mrg 		uvm_lock_pageq();
    988   1.1      mrg 
    989   1.8      mrg 	}
    990   1.1      mrg #endif
    991   1.1      mrg 
    992   1.8      mrg 	/*
    993   1.8      mrg 	 * now we want to work on meeting our targets.   first we work on our
    994   1.8      mrg 	 * free target by converting inactive pages into free pages.  then
    995   1.8      mrg 	 * we work on meeting our inactive target by converting active pages
    996   1.8      mrg 	 * to inactive ones.
    997   1.8      mrg 	 */
    998   1.8      mrg 
    999   1.8      mrg 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
   1000   1.8      mrg 
   1001   1.8      mrg 	/*
   1002  1.24      chs 	 * alternate starting queue between swap and object based on the
   1003  1.24      chs 	 * low bit of uvmexp.pdrevs (which we bump by one each call).
   1004   1.8      mrg 	 */
   1005   1.8      mrg 
   1006   1.8      mrg 	got_it = FALSE;
   1007  1.14      chs 	pages_freed = uvmexp.pdfreed;
   1008   1.8      mrg 	if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
   1009   1.8      mrg 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
   1010   1.8      mrg 	if (!got_it)
   1011   1.8      mrg 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
   1012   1.8      mrg 	if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
   1013   1.8      mrg 		(void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
   1014  1.14      chs 	pages_freed = uvmexp.pdfreed - pages_freed;
   1015   1.8      mrg 
   1016   1.8      mrg 	/*
   1017   1.8      mrg 	 * we have done the scan to get free pages.   now we work on meeting
   1018   1.8      mrg 	 * our inactive target.
   1019   1.8      mrg 	 */
   1020   1.8      mrg 
   1021  1.14      chs 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
   1022  1.14      chs 
   1023  1.14      chs 	/*
   1024  1.14      chs 	 * detect if we're not going to be able to page anything out
   1025  1.14      chs 	 * until we free some swap resources from active pages.
   1026  1.14      chs 	 */
   1027  1.24      chs 
   1028  1.14      chs 	swap_shortage = 0;
   1029  1.14      chs 	if (uvmexp.free < uvmexp.freetarg &&
   1030  1.14      chs 	    uvmexp.swpginuse == uvmexp.swpages &&
   1031  1.14      chs 	    uvmexp.swpgonly < uvmexp.swpages &&
   1032  1.14      chs 	    pages_freed == 0) {
   1033  1.14      chs 		swap_shortage = uvmexp.freetarg - uvmexp.free;
   1034  1.14      chs 	}
   1035  1.24      chs 
   1036  1.14      chs 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
   1037  1.14      chs 		    inactive_shortage, swap_shortage,0,0);
   1038  1.24      chs 	for (p = TAILQ_FIRST(&uvm.page_active);
   1039  1.14      chs 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
   1040  1.14      chs 	     p = nextpg) {
   1041  1.24      chs 		nextpg = TAILQ_NEXT(p, pageq);
   1042   1.8      mrg 		if (p->flags & PG_BUSY)
   1043   1.8      mrg 			continue;	/* quick check before trying to lock */
   1044   1.8      mrg 
   1045   1.8      mrg 		/*
   1046  1.14      chs 		 * lock the page's owner.
   1047   1.8      mrg 		 */
   1048   1.8      mrg 		/* is page anon owned or ownerless? */
   1049   1.8      mrg 		if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
   1050  1.24      chs 			KASSERT(p->uanon != NULL);
   1051   1.8      mrg 			if (!simple_lock_try(&p->uanon->an_lock))
   1052   1.8      mrg 				continue;
   1053   1.1      mrg 
   1054   1.8      mrg 			/* take over the page? */
   1055   1.8      mrg 			if ((p->pqflags & PQ_ANON) == 0) {
   1056  1.24      chs 				KASSERT(p->loan_count > 0);
   1057   1.8      mrg 				p->loan_count--;
   1058   1.8      mrg 				p->pqflags |= PQ_ANON;
   1059   1.8      mrg 			}
   1060   1.8      mrg 		} else {
   1061   1.8      mrg 			if (!simple_lock_try(&p->uobject->vmobjlock))
   1062   1.8      mrg 				continue;
   1063   1.8      mrg 		}
   1064  1.24      chs 
   1065  1.14      chs 		/*
   1066  1.14      chs 		 * skip this page if it's busy.
   1067  1.14      chs 		 */
   1068  1.24      chs 
   1069  1.14      chs 		if ((p->flags & PG_BUSY) != 0) {
   1070  1.14      chs 			if (p->pqflags & PQ_ANON)
   1071  1.14      chs 				simple_unlock(&p->uanon->an_lock);
   1072  1.14      chs 			else
   1073  1.14      chs 				simple_unlock(&p->uobject->vmobjlock);
   1074  1.14      chs 			continue;
   1075  1.14      chs 		}
   1076  1.24      chs 
   1077  1.14      chs 		/*
   1078  1.14      chs 		 * if there's a shortage of swap, free any swap allocated
   1079  1.14      chs 		 * to this page so that other pages can be paged out.
   1080  1.14      chs 		 */
   1081  1.24      chs 
   1082  1.14      chs 		if (swap_shortage > 0) {
   1083  1.14      chs 			if ((p->pqflags & PQ_ANON) && p->uanon->an_swslot) {
   1084  1.14      chs 				uvm_swap_free(p->uanon->an_swslot, 1);
   1085  1.14      chs 				p->uanon->an_swslot = 0;
   1086  1.14      chs 				p->flags &= ~PG_CLEAN;
   1087  1.14      chs 				swap_shortage--;
   1088  1.14      chs 			}
   1089  1.14      chs 			if (p->pqflags & PQ_AOBJ) {
   1090  1.14      chs 				int slot = uao_set_swslot(p->uobject,
   1091  1.14      chs 					p->offset >> PAGE_SHIFT, 0);
   1092  1.14      chs 				if (slot) {
   1093  1.14      chs 					uvm_swap_free(slot, 1);
   1094  1.14      chs 					p->flags &= ~PG_CLEAN;
   1095  1.14      chs 					swap_shortage--;
   1096  1.14      chs 				}
   1097  1.14      chs 			}
   1098  1.14      chs 		}
   1099  1.24      chs 
   1100  1.14      chs 		/*
   1101  1.14      chs 		 * deactivate this page if there's a shortage of
   1102  1.14      chs 		 * inactive pages.
   1103  1.14      chs 		 */
   1104  1.24      chs 
   1105  1.14      chs 		if (inactive_shortage > 0) {
   1106  1.18      chs 			pmap_page_protect(p, VM_PROT_NONE);
   1107   1.8      mrg 			/* no need to check wire_count as pg is "active" */
   1108   1.8      mrg 			uvm_pagedeactivate(p);
   1109   1.8      mrg 			uvmexp.pddeact++;
   1110  1.14      chs 			inactive_shortage--;
   1111   1.8      mrg 		}
   1112   1.8      mrg 		if (p->pqflags & PQ_ANON)
   1113   1.8      mrg 			simple_unlock(&p->uanon->an_lock);
   1114   1.8      mrg 		else
   1115   1.8      mrg 			simple_unlock(&p->uobject->vmobjlock);
   1116   1.8      mrg 	}
   1117   1.1      mrg }
   1118