uvm_pdaemon.c revision 1.28 1 1.28 thorpej /* $NetBSD: uvm_pdaemon.c,v 1.28 2001/01/25 00:24:48 thorpej Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.1 mrg * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.1 mrg *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.1 mrg *
54 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.1 mrg *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.7 mrg #include "opt_uvmhist.h"
70 1.7 mrg
71 1.1 mrg /*
72 1.1 mrg * uvm_pdaemon.c: the page daemon
73 1.1 mrg */
74 1.1 mrg
75 1.1 mrg #include <sys/param.h>
76 1.1 mrg #include <sys/proc.h>
77 1.1 mrg #include <sys/systm.h>
78 1.1 mrg #include <sys/kernel.h>
79 1.9 pk #include <sys/pool.h>
80 1.24 chs #include <sys/buf.h>
81 1.1 mrg
82 1.1 mrg #include <uvm/uvm.h>
83 1.1 mrg
84 1.24 chs extern struct uvm_pagerops uvm_vnodeops;
85 1.24 chs
86 1.1 mrg /*
87 1.14 chs * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
88 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
89 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
90 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
91 1.14 chs */
92 1.14 chs
93 1.14 chs #define UVMPD_NUMDIRTYREACTS 16
94 1.14 chs
95 1.14 chs
96 1.14 chs /*
97 1.1 mrg * local prototypes
98 1.1 mrg */
99 1.1 mrg
100 1.1 mrg static void uvmpd_scan __P((void));
101 1.1 mrg static boolean_t uvmpd_scan_inactive __P((struct pglist *));
102 1.1 mrg static void uvmpd_tune __P((void));
103 1.1 mrg
104 1.1 mrg
105 1.1 mrg /*
106 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
107 1.1 mrg *
108 1.1 mrg * => should be called with all locks released
109 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
110 1.1 mrg */
111 1.1 mrg
112 1.19 thorpej void
113 1.19 thorpej uvm_wait(wmsg)
114 1.19 thorpej const char *wmsg;
115 1.8 mrg {
116 1.8 mrg int timo = 0;
117 1.8 mrg int s = splbio();
118 1.1 mrg
119 1.8 mrg /*
120 1.8 mrg * check for page daemon going to sleep (waiting for itself)
121 1.8 mrg */
122 1.1 mrg
123 1.8 mrg if (curproc == uvm.pagedaemon_proc) {
124 1.8 mrg /*
125 1.8 mrg * now we have a problem: the pagedaemon wants to go to
126 1.8 mrg * sleep until it frees more memory. but how can it
127 1.8 mrg * free more memory if it is asleep? that is a deadlock.
128 1.8 mrg * we have two options:
129 1.8 mrg * [1] panic now
130 1.8 mrg * [2] put a timeout on the sleep, thus causing the
131 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
132 1.8 mrg *
133 1.8 mrg * note that option [2] will only help us if we get lucky
134 1.8 mrg * and some other process on the system breaks the deadlock
135 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
136 1.8 mrg * to continue). for now we panic if DEBUG is defined,
137 1.8 mrg * otherwise we hope for the best with option [2] (better
138 1.8 mrg * yet, this should never happen in the first place!).
139 1.8 mrg */
140 1.1 mrg
141 1.8 mrg printf("pagedaemon: deadlock detected!\n");
142 1.8 mrg timo = hz >> 3; /* set timeout */
143 1.1 mrg #if defined(DEBUG)
144 1.8 mrg /* DEBUG: panic so we can debug it */
145 1.8 mrg panic("pagedaemon deadlock");
146 1.1 mrg #endif
147 1.8 mrg }
148 1.1 mrg
149 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
150 1.17 thorpej wakeup(&uvm.pagedaemon); /* wake the daemon! */
151 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
152 1.8 mrg timo);
153 1.1 mrg
154 1.8 mrg splx(s);
155 1.1 mrg }
156 1.1 mrg
157 1.1 mrg
158 1.1 mrg /*
159 1.1 mrg * uvmpd_tune: tune paging parameters
160 1.1 mrg *
161 1.1 mrg * => called when ever memory is added (or removed?) to the system
162 1.1 mrg * => caller must call with page queues locked
163 1.1 mrg */
164 1.1 mrg
165 1.8 mrg static void
166 1.8 mrg uvmpd_tune()
167 1.8 mrg {
168 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
169 1.1 mrg
170 1.8 mrg uvmexp.freemin = uvmexp.npages / 20;
171 1.1 mrg
172 1.8 mrg /* between 16k and 256k */
173 1.8 mrg /* XXX: what are these values good for? */
174 1.11 chs uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
175 1.11 chs uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
176 1.23 bjh21
177 1.23 bjh21 /* Make sure there's always a user page free. */
178 1.23 bjh21 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
179 1.23 bjh21 uvmexp.freemin = uvmexp.reserve_kernel + 1;
180 1.1 mrg
181 1.8 mrg uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
182 1.8 mrg if (uvmexp.freetarg <= uvmexp.freemin)
183 1.8 mrg uvmexp.freetarg = uvmexp.freemin + 1;
184 1.1 mrg
185 1.8 mrg /* uvmexp.inactarg: computed in main daemon loop */
186 1.1 mrg
187 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
188 1.8 mrg UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
189 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
190 1.1 mrg }
191 1.1 mrg
192 1.1 mrg /*
193 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
194 1.1 mrg */
195 1.1 mrg
196 1.8 mrg void
197 1.22 thorpej uvm_pageout(void *arg)
198 1.8 mrg {
199 1.8 mrg int npages = 0;
200 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
201 1.24 chs
202 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
203 1.8 mrg
204 1.8 mrg /*
205 1.8 mrg * ensure correct priority and set paging parameters...
206 1.8 mrg */
207 1.8 mrg
208 1.8 mrg uvm.pagedaemon_proc = curproc;
209 1.8 mrg (void) spl0();
210 1.8 mrg uvm_lock_pageq();
211 1.8 mrg npages = uvmexp.npages;
212 1.8 mrg uvmpd_tune();
213 1.8 mrg uvm_unlock_pageq();
214 1.8 mrg
215 1.8 mrg /*
216 1.8 mrg * main loop
217 1.8 mrg */
218 1.24 chs
219 1.24 chs for (;;) {
220 1.24 chs simple_lock(&uvm.pagedaemon_lock);
221 1.24 chs
222 1.24 chs UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
223 1.24 chs UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
224 1.24 chs &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
225 1.24 chs uvmexp.pdwoke++;
226 1.24 chs UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
227 1.24 chs
228 1.24 chs /* drain pool resources */
229 1.24 chs pool_drain(0);
230 1.1 mrg
231 1.8 mrg /*
232 1.24 chs * now lock page queues and recompute inactive count
233 1.8 mrg */
234 1.8 mrg
235 1.24 chs uvm_lock_pageq();
236 1.24 chs if (npages != uvmexp.npages) { /* check for new pages? */
237 1.24 chs npages = uvmexp.npages;
238 1.24 chs uvmpd_tune();
239 1.24 chs }
240 1.24 chs
241 1.24 chs uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
242 1.24 chs if (uvmexp.inactarg <= uvmexp.freetarg) {
243 1.24 chs uvmexp.inactarg = uvmexp.freetarg + 1;
244 1.24 chs }
245 1.24 chs
246 1.24 chs UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
247 1.24 chs uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
248 1.24 chs uvmexp.inactarg);
249 1.8 mrg
250 1.8 mrg /*
251 1.24 chs * scan if needed
252 1.8 mrg */
253 1.8 mrg
254 1.24 chs if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
255 1.24 chs uvmexp.inactive < uvmexp.inactarg ||
256 1.25 simonb uvmexp.vnodepages >
257 1.24 chs (uvmexp.active + uvmexp.inactive + uvmexp.wired +
258 1.24 chs uvmexp.free) * 13 / 16) {
259 1.24 chs uvmpd_scan();
260 1.8 mrg }
261 1.8 mrg
262 1.8 mrg /*
263 1.24 chs * if there's any free memory to be had,
264 1.24 chs * wake up any waiters.
265 1.8 mrg */
266 1.8 mrg
267 1.24 chs if (uvmexp.free > uvmexp.reserve_kernel ||
268 1.24 chs uvmexp.paging == 0) {
269 1.24 chs wakeup(&uvmexp.free);
270 1.8 mrg }
271 1.1 mrg
272 1.8 mrg /*
273 1.24 chs * scan done. unlock page queues (the only lock we are holding)
274 1.8 mrg */
275 1.8 mrg
276 1.24 chs uvm_unlock_pageq();
277 1.24 chs }
278 1.24 chs /*NOTREACHED*/
279 1.24 chs }
280 1.24 chs
281 1.8 mrg
282 1.24 chs /*
283 1.24 chs * uvm_aiodone_daemon: main loop for the aiodone daemon.
284 1.24 chs */
285 1.8 mrg
286 1.24 chs void
287 1.24 chs uvm_aiodone_daemon(void *arg)
288 1.24 chs {
289 1.24 chs int s, free;
290 1.24 chs struct buf *bp, *nbp;
291 1.24 chs UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
292 1.9 pk
293 1.24 chs for (;;) {
294 1.8 mrg
295 1.8 mrg /*
296 1.24 chs * carefully attempt to go to sleep (without losing "wakeups"!).
297 1.24 chs * we need splbio because we want to make sure the aio_done list
298 1.24 chs * is totally empty before we go to sleep.
299 1.8 mrg */
300 1.8 mrg
301 1.24 chs s = splbio();
302 1.24 chs simple_lock(&uvm.aiodoned_lock);
303 1.24 chs if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
304 1.24 chs UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
305 1.24 chs UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
306 1.24 chs &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
307 1.24 chs UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
308 1.24 chs
309 1.24 chs /* relock aiodoned_lock, still at splbio */
310 1.24 chs simple_lock(&uvm.aiodoned_lock);
311 1.8 mrg }
312 1.8 mrg
313 1.24 chs /*
314 1.24 chs * check for done aio structures
315 1.24 chs */
316 1.8 mrg
317 1.24 chs bp = TAILQ_FIRST(&uvm.aio_done);
318 1.24 chs if (bp) {
319 1.24 chs TAILQ_INIT(&uvm.aio_done);
320 1.24 chs }
321 1.8 mrg
322 1.24 chs simple_unlock(&uvm.aiodoned_lock);
323 1.24 chs splx(s);
324 1.8 mrg
325 1.8 mrg /*
326 1.24 chs * process each i/o that's done.
327 1.8 mrg */
328 1.8 mrg
329 1.24 chs free = uvmexp.free;
330 1.24 chs while (bp != NULL) {
331 1.24 chs if (bp->b_flags & B_PDAEMON) {
332 1.24 chs uvmexp.paging -= bp->b_bufsize >> PAGE_SHIFT;
333 1.24 chs }
334 1.24 chs nbp = TAILQ_NEXT(bp, b_freelist);
335 1.24 chs (*bp->b_iodone)(bp);
336 1.24 chs bp = nbp;
337 1.24 chs }
338 1.24 chs if (free <= uvmexp.reserve_kernel) {
339 1.24 chs s = uvm_lock_fpageq();
340 1.24 chs wakeup(&uvm.pagedaemon);
341 1.24 chs uvm_unlock_fpageq(s);
342 1.24 chs } else {
343 1.24 chs simple_lock(&uvm.pagedaemon_lock);
344 1.17 thorpej wakeup(&uvmexp.free);
345 1.24 chs simple_unlock(&uvm.pagedaemon_lock);
346 1.24 chs }
347 1.8 mrg }
348 1.1 mrg }
349 1.1 mrg
350 1.24 chs
351 1.24 chs
352 1.1 mrg /*
353 1.24 chs * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
354 1.1 mrg *
355 1.1 mrg * => called with page queues locked
356 1.1 mrg * => we work on meeting our free target by converting inactive pages
357 1.1 mrg * into free pages.
358 1.1 mrg * => we handle the building of swap-backed clusters
359 1.1 mrg * => we return TRUE if we are exiting because we met our target
360 1.1 mrg */
361 1.1 mrg
362 1.8 mrg static boolean_t
363 1.8 mrg uvmpd_scan_inactive(pglst)
364 1.8 mrg struct pglist *pglst;
365 1.8 mrg {
366 1.8 mrg boolean_t retval = FALSE; /* assume we haven't hit target */
367 1.8 mrg int s, free, result;
368 1.8 mrg struct vm_page *p, *nextpg;
369 1.8 mrg struct uvm_object *uobj;
370 1.11 chs struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
371 1.8 mrg int npages;
372 1.11 chs struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; /* XXX: see below */
373 1.8 mrg int swnpages, swcpages; /* XXX: see below */
374 1.14 chs int swslot;
375 1.8 mrg struct vm_anon *anon;
376 1.24 chs boolean_t swap_backed, vnode_only;
377 1.10 eeh vaddr_t start;
378 1.24 chs int dirtyreacts, vpgs;
379 1.8 mrg UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
380 1.1 mrg
381 1.8 mrg /*
382 1.8 mrg * note: we currently keep swap-backed pages on a seperate inactive
383 1.8 mrg * list from object-backed pages. however, merging the two lists
384 1.8 mrg * back together again hasn't been ruled out. thus, we keep our
385 1.8 mrg * swap cluster in "swpps" rather than in pps (allows us to mix
386 1.8 mrg * clustering types in the event of a mixed inactive queue).
387 1.8 mrg */
388 1.1 mrg
389 1.8 mrg /*
390 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
391 1.24 chs * to stay in the loop while we have a page to scan or we have
392 1.8 mrg * a swap-cluster to build.
393 1.8 mrg */
394 1.24 chs
395 1.8 mrg swslot = 0;
396 1.8 mrg swnpages = swcpages = 0;
397 1.8 mrg free = 0;
398 1.14 chs dirtyreacts = 0;
399 1.24 chs vnode_only = FALSE;
400 1.8 mrg
401 1.24 chs for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
402 1.8 mrg
403 1.8 mrg /*
404 1.8 mrg * note that p can be NULL iff we have traversed the whole
405 1.8 mrg * list and need to do one final swap-backed clustered pageout.
406 1.8 mrg */
407 1.24 chs
408 1.24 chs uobj = NULL;
409 1.24 chs anon = NULL;
410 1.24 chs
411 1.8 mrg if (p) {
412 1.24 chs
413 1.8 mrg /*
414 1.8 mrg * update our copy of "free" and see if we've met
415 1.8 mrg * our target
416 1.8 mrg */
417 1.24 chs
418 1.16 thorpej s = uvm_lock_fpageq();
419 1.8 mrg free = uvmexp.free;
420 1.16 thorpej uvm_unlock_fpageq(s);
421 1.8 mrg
422 1.24 chs /* XXXUBC */
423 1.25 simonb vpgs = uvmexp.vnodepages -
424 1.24 chs (uvmexp.active + uvmexp.inactive +
425 1.24 chs uvmexp.wired + uvmexp.free) * 13 / 16;
426 1.24 chs
427 1.14 chs if (free + uvmexp.paging >= uvmexp.freetarg << 2 ||
428 1.26 chs vpgs > 0 || dirtyreacts == UVMPD_NUMDIRTYREACTS) {
429 1.24 chs if (vpgs <= 0) {
430 1.24 chs UVMHIST_LOG(pdhist," met free target: "
431 1.24 chs "exit loop", 0, 0, 0, 0);
432 1.24 chs retval = TRUE;
433 1.24 chs
434 1.24 chs if (swslot == 0)
435 1.24 chs /* exit now if no
436 1.24 chs swap-i/o pending */
437 1.24 chs break;
438 1.24 chs
439 1.24 chs /* set p to null to signal final
440 1.24 chs swap i/o */
441 1.24 chs p = NULL;
442 1.24 chs } else {
443 1.24 chs vnode_only = TRUE;
444 1.24 chs }
445 1.8 mrg }
446 1.8 mrg }
447 1.8 mrg
448 1.24 chs if (p) { /* if (we have a new page to consider) */
449 1.8 mrg /*
450 1.8 mrg * we are below target and have a new page to consider.
451 1.8 mrg */
452 1.8 mrg uvmexp.pdscans++;
453 1.24 chs nextpg = TAILQ_NEXT(p, pageq);
454 1.8 mrg
455 1.27 mycroft /*
456 1.27 mycroft * move referenced pages back to active queue and
457 1.27 mycroft * skip to next page (unlikely to happen since
458 1.27 mycroft * inactive pages shouldn't have any valid mappings
459 1.27 mycroft * and we cleared reference before deactivating).
460 1.27 mycroft */
461 1.27 mycroft if (pmap_is_referenced(p)) {
462 1.27 mycroft uvm_pageactivate(p);
463 1.27 mycroft uvmexp.pdreact++;
464 1.27 mycroft continue;
465 1.27 mycroft }
466 1.27 mycroft
467 1.8 mrg /*
468 1.8 mrg * first we attempt to lock the object that this page
469 1.8 mrg * belongs to. if our attempt fails we skip on to
470 1.8 mrg * the next page (no harm done). it is important to
471 1.8 mrg * "try" locking the object as we are locking in the
472 1.8 mrg * wrong order (pageq -> object) and we don't want to
473 1.24 chs * deadlock.
474 1.8 mrg *
475 1.24 chs * the only time we expect to see an ownerless page
476 1.8 mrg * (i.e. a page with no uobject and !PQ_ANON) is if an
477 1.8 mrg * anon has loaned a page from a uvm_object and the
478 1.8 mrg * uvm_object has dropped the ownership. in that
479 1.8 mrg * case, the anon can "take over" the loaned page
480 1.8 mrg * and make it its own.
481 1.8 mrg */
482 1.8 mrg
483 1.8 mrg /* is page part of an anon or ownerless ? */
484 1.8 mrg if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
485 1.24 chs if (vnode_only) {
486 1.24 chs uvm_pageactivate(p);
487 1.24 chs continue;
488 1.24 chs }
489 1.8 mrg anon = p->uanon;
490 1.24 chs KASSERT(anon != NULL);
491 1.8 mrg if (!simple_lock_try(&anon->an_lock))
492 1.8 mrg /* lock failed, skip this page */
493 1.8 mrg continue;
494 1.8 mrg
495 1.8 mrg /*
496 1.8 mrg * if the page is ownerless, claim it in the
497 1.8 mrg * name of "anon"!
498 1.8 mrg */
499 1.24 chs
500 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
501 1.24 chs KASSERT(p->loan_count > 0);
502 1.8 mrg p->loan_count--;
503 1.24 chs p->pqflags |= PQ_ANON;
504 1.24 chs /* anon now owns it */
505 1.8 mrg }
506 1.8 mrg if (p->flags & PG_BUSY) {
507 1.8 mrg simple_unlock(&anon->an_lock);
508 1.8 mrg uvmexp.pdbusy++;
509 1.8 mrg /* someone else owns page, skip it */
510 1.8 mrg continue;
511 1.8 mrg }
512 1.8 mrg uvmexp.pdanscan++;
513 1.8 mrg } else {
514 1.8 mrg uobj = p->uobject;
515 1.24 chs KASSERT(uobj != NULL);
516 1.24 chs if (vnode_only &&
517 1.24 chs uobj->pgops != &uvm_vnodeops) {
518 1.24 chs uvm_pageactivate(p);
519 1.24 chs continue;
520 1.24 chs }
521 1.8 mrg if (!simple_lock_try(&uobj->vmobjlock))
522 1.8 mrg /* lock failed, skip this page */
523 1.24 chs continue;
524 1.8 mrg
525 1.8 mrg if (p->flags & PG_BUSY) {
526 1.8 mrg simple_unlock(&uobj->vmobjlock);
527 1.8 mrg uvmexp.pdbusy++;
528 1.8 mrg /* someone else owns page, skip it */
529 1.24 chs continue;
530 1.8 mrg }
531 1.8 mrg uvmexp.pdobscan++;
532 1.8 mrg }
533 1.8 mrg
534 1.8 mrg /*
535 1.8 mrg * we now have the object and the page queues locked.
536 1.8 mrg * the page is not busy. if the page is clean we
537 1.8 mrg * can free it now and continue.
538 1.8 mrg */
539 1.8 mrg
540 1.8 mrg if (p->flags & PG_CLEAN) {
541 1.14 chs if (p->pqflags & PQ_SWAPBACKED) {
542 1.14 chs /* this page now lives only in swap */
543 1.14 chs simple_lock(&uvm.swap_data_lock);
544 1.14 chs uvmexp.swpgonly++;
545 1.14 chs simple_unlock(&uvm.swap_data_lock);
546 1.14 chs }
547 1.14 chs
548 1.8 mrg uvm_pagefree(p);
549 1.8 mrg uvmexp.pdfreed++;
550 1.24 chs
551 1.8 mrg if (anon) {
552 1.24 chs
553 1.8 mrg /*
554 1.8 mrg * an anonymous page can only be clean
555 1.24 chs * if it has backing store assigned.
556 1.8 mrg */
557 1.24 chs
558 1.24 chs KASSERT(anon->an_swslot != 0);
559 1.24 chs
560 1.8 mrg /* remove from object */
561 1.8 mrg anon->u.an_page = NULL;
562 1.8 mrg simple_unlock(&anon->an_lock);
563 1.8 mrg } else {
564 1.8 mrg /* pagefree has already removed the
565 1.8 mrg * page from the object */
566 1.8 mrg simple_unlock(&uobj->vmobjlock);
567 1.8 mrg }
568 1.8 mrg continue;
569 1.8 mrg }
570 1.8 mrg
571 1.8 mrg /*
572 1.8 mrg * this page is dirty, skip it if we'll have met our
573 1.8 mrg * free target when all the current pageouts complete.
574 1.8 mrg */
575 1.24 chs
576 1.26 chs if (free + uvmexp.paging > uvmexp.freetarg << 2 &&
577 1.26 chs !vnode_only) {
578 1.8 mrg if (anon) {
579 1.8 mrg simple_unlock(&anon->an_lock);
580 1.8 mrg } else {
581 1.8 mrg simple_unlock(&uobj->vmobjlock);
582 1.8 mrg }
583 1.8 mrg continue;
584 1.8 mrg }
585 1.8 mrg
586 1.8 mrg /*
587 1.14 chs * this page is dirty, but we can't page it out
588 1.14 chs * since all pages in swap are only in swap.
589 1.14 chs * reactivate it so that we eventually cycle
590 1.14 chs * all pages thru the inactive queue.
591 1.14 chs */
592 1.24 chs
593 1.24 chs KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
594 1.14 chs if ((p->pqflags & PQ_SWAPBACKED) &&
595 1.14 chs uvmexp.swpgonly == uvmexp.swpages) {
596 1.14 chs dirtyreacts++;
597 1.14 chs uvm_pageactivate(p);
598 1.14 chs if (anon) {
599 1.14 chs simple_unlock(&anon->an_lock);
600 1.14 chs } else {
601 1.14 chs simple_unlock(&uobj->vmobjlock);
602 1.14 chs }
603 1.14 chs continue;
604 1.14 chs }
605 1.14 chs
606 1.14 chs /*
607 1.14 chs * if the page is swap-backed and dirty and swap space
608 1.14 chs * is full, free any swap allocated to the page
609 1.14 chs * so that other pages can be paged out.
610 1.14 chs */
611 1.24 chs
612 1.24 chs KASSERT(uvmexp.swpginuse <= uvmexp.swpages);
613 1.14 chs if ((p->pqflags & PQ_SWAPBACKED) &&
614 1.14 chs uvmexp.swpginuse == uvmexp.swpages) {
615 1.14 chs
616 1.14 chs if ((p->pqflags & PQ_ANON) &&
617 1.14 chs p->uanon->an_swslot) {
618 1.14 chs uvm_swap_free(p->uanon->an_swslot, 1);
619 1.14 chs p->uanon->an_swslot = 0;
620 1.14 chs }
621 1.14 chs if (p->pqflags & PQ_AOBJ) {
622 1.14 chs uao_dropswap(p->uobject,
623 1.14 chs p->offset >> PAGE_SHIFT);
624 1.14 chs }
625 1.14 chs }
626 1.14 chs
627 1.14 chs /*
628 1.8 mrg * the page we are looking at is dirty. we must
629 1.8 mrg * clean it before it can be freed. to do this we
630 1.8 mrg * first mark the page busy so that no one else will
631 1.24 chs * touch the page.
632 1.8 mrg */
633 1.8 mrg
634 1.8 mrg swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
635 1.8 mrg p->flags |= PG_BUSY; /* now we own it */
636 1.8 mrg UVM_PAGE_OWN(p, "scan_inactive");
637 1.8 mrg uvmexp.pgswapout++;
638 1.8 mrg
639 1.8 mrg /*
640 1.8 mrg * for swap-backed pages we need to (re)allocate
641 1.8 mrg * swap space.
642 1.8 mrg */
643 1.24 chs
644 1.8 mrg if (swap_backed) {
645 1.8 mrg
646 1.8 mrg /*
647 1.8 mrg * free old swap slot (if any)
648 1.8 mrg */
649 1.24 chs
650 1.8 mrg if (anon) {
651 1.8 mrg if (anon->an_swslot) {
652 1.8 mrg uvm_swap_free(anon->an_swslot,
653 1.8 mrg 1);
654 1.8 mrg anon->an_swslot = 0;
655 1.8 mrg }
656 1.8 mrg } else {
657 1.14 chs uao_dropswap(uobj,
658 1.14 chs p->offset >> PAGE_SHIFT);
659 1.8 mrg }
660 1.8 mrg
661 1.8 mrg /*
662 1.8 mrg * start new cluster (if necessary)
663 1.8 mrg */
664 1.24 chs
665 1.8 mrg if (swslot == 0) {
666 1.11 chs swnpages = MAXBSIZE >> PAGE_SHIFT;
667 1.8 mrg swslot = uvm_swap_alloc(&swnpages,
668 1.8 mrg TRUE);
669 1.8 mrg if (swslot == 0) {
670 1.8 mrg /* no swap? give up! */
671 1.8 mrg p->flags &= ~PG_BUSY;
672 1.8 mrg UVM_PAGE_OWN(p, NULL);
673 1.8 mrg if (anon)
674 1.8 mrg simple_unlock(
675 1.8 mrg &anon->an_lock);
676 1.8 mrg else
677 1.8 mrg simple_unlock(
678 1.8 mrg &uobj->vmobjlock);
679 1.8 mrg continue;
680 1.8 mrg }
681 1.8 mrg swcpages = 0; /* cluster is empty */
682 1.8 mrg }
683 1.8 mrg
684 1.8 mrg /*
685 1.8 mrg * add block to cluster
686 1.8 mrg */
687 1.24 chs
688 1.8 mrg swpps[swcpages] = p;
689 1.8 mrg if (anon)
690 1.8 mrg anon->an_swslot = swslot + swcpages;
691 1.8 mrg else
692 1.8 mrg uao_set_swslot(uobj,
693 1.11 chs p->offset >> PAGE_SHIFT,
694 1.8 mrg swslot + swcpages);
695 1.8 mrg swcpages++;
696 1.8 mrg }
697 1.8 mrg } else {
698 1.8 mrg
699 1.8 mrg /* if p == NULL we must be doing a last swap i/o */
700 1.8 mrg swap_backed = TRUE;
701 1.8 mrg }
702 1.8 mrg
703 1.8 mrg /*
704 1.24 chs * now consider doing the pageout.
705 1.8 mrg *
706 1.24 chs * for swap-backed pages, we do the pageout if we have either
707 1.24 chs * filled the cluster (in which case (swnpages == swcpages) or
708 1.8 mrg * run out of pages (p == NULL).
709 1.8 mrg *
710 1.8 mrg * for object pages, we always do the pageout.
711 1.8 mrg */
712 1.24 chs
713 1.8 mrg if (swap_backed) {
714 1.8 mrg if (p) { /* if we just added a page to cluster */
715 1.8 mrg if (anon)
716 1.8 mrg simple_unlock(&anon->an_lock);
717 1.8 mrg else
718 1.8 mrg simple_unlock(&uobj->vmobjlock);
719 1.8 mrg
720 1.8 mrg /* cluster not full yet? */
721 1.8 mrg if (swcpages < swnpages)
722 1.8 mrg continue;
723 1.8 mrg }
724 1.8 mrg
725 1.8 mrg /* starting I/O now... set up for it */
726 1.8 mrg npages = swcpages;
727 1.8 mrg ppsp = swpps;
728 1.8 mrg /* for swap-backed pages only */
729 1.10 eeh start = (vaddr_t) swslot;
730 1.8 mrg
731 1.8 mrg /* if this is final pageout we could have a few
732 1.8 mrg * extra swap blocks */
733 1.8 mrg if (swcpages < swnpages) {
734 1.8 mrg uvm_swap_free(swslot + swcpages,
735 1.8 mrg (swnpages - swcpages));
736 1.24 chs }
737 1.8 mrg } else {
738 1.8 mrg /* normal object pageout */
739 1.8 mrg ppsp = pps;
740 1.8 mrg npages = sizeof(pps) / sizeof(struct vm_page *);
741 1.8 mrg /* not looked at because PGO_ALLPAGES is set */
742 1.8 mrg start = 0;
743 1.8 mrg }
744 1.8 mrg
745 1.8 mrg /*
746 1.8 mrg * now do the pageout.
747 1.24 chs *
748 1.8 mrg * for swap_backed pages we have already built the cluster.
749 1.8 mrg * for !swap_backed pages, uvm_pager_put will call the object's
750 1.8 mrg * "make put cluster" function to build a cluster on our behalf.
751 1.8 mrg *
752 1.8 mrg * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
753 1.8 mrg * it to free the cluster pages for us on a successful I/O (it
754 1.8 mrg * always does this for un-successful I/O requests). this
755 1.8 mrg * allows us to do clustered pageout without having to deal
756 1.8 mrg * with cluster pages at this level.
757 1.8 mrg *
758 1.8 mrg * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
759 1.8 mrg * IN: locked: uobj (if !swap_backed), page queues
760 1.8 mrg * OUT: locked: uobj (if !swap_backed && result !=VM_PAGER_PEND)
761 1.8 mrg * !locked: pageqs, uobj (if swap_backed || VM_PAGER_PEND)
762 1.8 mrg *
763 1.8 mrg * [the bit about VM_PAGER_PEND saves us one lock-unlock pair]
764 1.8 mrg */
765 1.8 mrg
766 1.8 mrg /* locked: uobj (if !swap_backed), page queues */
767 1.8 mrg uvmexp.pdpageouts++;
768 1.24 chs result = uvm_pager_put(swap_backed ? NULL : uobj, p,
769 1.8 mrg &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
770 1.8 mrg /* locked: uobj (if !swap_backed && result != PEND) */
771 1.8 mrg /* unlocked: pageqs, object (if swap_backed ||result == PEND) */
772 1.8 mrg
773 1.8 mrg /*
774 1.8 mrg * if we did i/o to swap, zero swslot to indicate that we are
775 1.8 mrg * no longer building a swap-backed cluster.
776 1.8 mrg */
777 1.8 mrg
778 1.8 mrg if (swap_backed)
779 1.8 mrg swslot = 0; /* done with this cluster */
780 1.8 mrg
781 1.8 mrg /*
782 1.8 mrg * first, we check for VM_PAGER_PEND which means that the
783 1.8 mrg * async I/O is in progress and the async I/O done routine
784 1.8 mrg * will clean up after us. in this case we move on to the
785 1.8 mrg * next page.
786 1.8 mrg *
787 1.8 mrg * there is a very remote chance that the pending async i/o can
788 1.8 mrg * finish _before_ we get here. if that happens, our page "p"
789 1.8 mrg * may no longer be on the inactive queue. so we verify this
790 1.8 mrg * when determining the next page (starting over at the head if
791 1.8 mrg * we've lost our inactive page).
792 1.8 mrg */
793 1.8 mrg
794 1.8 mrg if (result == VM_PAGER_PEND) {
795 1.8 mrg uvmexp.paging += npages;
796 1.24 chs uvm_lock_pageq();
797 1.8 mrg uvmexp.pdpending++;
798 1.8 mrg if (p) {
799 1.8 mrg if (p->pqflags & PQ_INACTIVE)
800 1.24 chs nextpg = TAILQ_NEXT(p, pageq);
801 1.8 mrg else
802 1.24 chs nextpg = TAILQ_FIRST(pglst);
803 1.24 chs } else {
804 1.24 chs nextpg = NULL;
805 1.8 mrg }
806 1.8 mrg continue;
807 1.8 mrg }
808 1.8 mrg
809 1.24 chs if (result == VM_PAGER_ERROR &&
810 1.24 chs curproc == uvm.pagedaemon_proc) {
811 1.24 chs uvm_lock_pageq();
812 1.24 chs nextpg = TAILQ_NEXT(p, pageq);
813 1.24 chs uvm_pageactivate(p);
814 1.24 chs continue;
815 1.24 chs }
816 1.24 chs
817 1.8 mrg /*
818 1.8 mrg * clean up "p" if we have one
819 1.8 mrg */
820 1.8 mrg
821 1.8 mrg if (p) {
822 1.8 mrg /*
823 1.8 mrg * the I/O request to "p" is done and uvm_pager_put
824 1.8 mrg * has freed any cluster pages it may have allocated
825 1.8 mrg * during I/O. all that is left for us to do is
826 1.8 mrg * clean up page "p" (which is still PG_BUSY).
827 1.8 mrg *
828 1.8 mrg * our result could be one of the following:
829 1.8 mrg * VM_PAGER_OK: successful pageout
830 1.8 mrg *
831 1.8 mrg * VM_PAGER_AGAIN: tmp resource shortage, we skip
832 1.8 mrg * to next page
833 1.8 mrg * VM_PAGER_{FAIL,ERROR,BAD}: an error. we
834 1.8 mrg * "reactivate" page to get it out of the way (it
835 1.8 mrg * will eventually drift back into the inactive
836 1.8 mrg * queue for a retry).
837 1.8 mrg * VM_PAGER_UNLOCK: should never see this as it is
838 1.8 mrg * only valid for "get" operations
839 1.8 mrg */
840 1.8 mrg
841 1.8 mrg /* relock p's object: page queues not lock yet, so
842 1.8 mrg * no need for "try" */
843 1.8 mrg
844 1.8 mrg /* !swap_backed case: already locked... */
845 1.8 mrg if (swap_backed) {
846 1.8 mrg if (anon)
847 1.8 mrg simple_lock(&anon->an_lock);
848 1.8 mrg else
849 1.8 mrg simple_lock(&uobj->vmobjlock);
850 1.8 mrg }
851 1.1 mrg
852 1.8 mrg /* handle PG_WANTED now */
853 1.8 mrg if (p->flags & PG_WANTED)
854 1.8 mrg /* still holding object lock */
855 1.17 thorpej wakeup(p);
856 1.8 mrg
857 1.8 mrg p->flags &= ~(PG_BUSY|PG_WANTED);
858 1.8 mrg UVM_PAGE_OWN(p, NULL);
859 1.8 mrg
860 1.8 mrg /* released during I/O? */
861 1.8 mrg if (p->flags & PG_RELEASED) {
862 1.8 mrg if (anon) {
863 1.8 mrg /* remove page so we can get nextpg */
864 1.8 mrg anon->u.an_page = NULL;
865 1.8 mrg
866 1.8 mrg simple_unlock(&anon->an_lock);
867 1.8 mrg uvm_anfree(anon); /* kills anon */
868 1.18 chs pmap_page_protect(p, VM_PROT_NONE);
869 1.8 mrg anon = NULL;
870 1.8 mrg uvm_lock_pageq();
871 1.24 chs nextpg = TAILQ_NEXT(p, pageq);
872 1.8 mrg /* free released page */
873 1.8 mrg uvm_pagefree(p);
874 1.1 mrg
875 1.8 mrg } else {
876 1.1 mrg
877 1.24 chs /*
878 1.8 mrg * pgo_releasepg nukes the page and
879 1.8 mrg * gets "nextpg" for us. it returns
880 1.8 mrg * with the page queues locked (when
881 1.8 mrg * given nextpg ptr).
882 1.8 mrg */
883 1.24 chs
884 1.8 mrg if (!uobj->pgops->pgo_releasepg(p,
885 1.8 mrg &nextpg))
886 1.8 mrg /* uobj died after release */
887 1.8 mrg uobj = NULL;
888 1.8 mrg
889 1.8 mrg /*
890 1.8 mrg * lock page queues here so that they're
891 1.8 mrg * always locked at the end of the loop.
892 1.8 mrg */
893 1.24 chs
894 1.8 mrg uvm_lock_pageq();
895 1.8 mrg }
896 1.8 mrg } else { /* page was not released during I/O */
897 1.8 mrg uvm_lock_pageq();
898 1.24 chs nextpg = TAILQ_NEXT(p, pageq);
899 1.8 mrg if (result != VM_PAGER_OK) {
900 1.8 mrg /* pageout was a failure... */
901 1.8 mrg if (result != VM_PAGER_AGAIN)
902 1.8 mrg uvm_pageactivate(p);
903 1.18 chs pmap_clear_reference(p);
904 1.8 mrg /* XXXCDC: if (swap_backed) FREE p's
905 1.8 mrg * swap block? */
906 1.8 mrg } else {
907 1.8 mrg /* pageout was a success... */
908 1.18 chs pmap_clear_reference(p);
909 1.18 chs pmap_clear_modify(p);
910 1.8 mrg p->flags |= PG_CLEAN;
911 1.8 mrg }
912 1.8 mrg }
913 1.24 chs
914 1.8 mrg /*
915 1.8 mrg * drop object lock (if there is an object left). do
916 1.8 mrg * a safety check of nextpg to make sure it is on the
917 1.8 mrg * inactive queue (it should be since PG_BUSY pages on
918 1.8 mrg * the inactive queue can't be re-queued [note: not
919 1.8 mrg * true for active queue]).
920 1.8 mrg */
921 1.8 mrg
922 1.8 mrg if (anon)
923 1.8 mrg simple_unlock(&anon->an_lock);
924 1.8 mrg else if (uobj)
925 1.8 mrg simple_unlock(&uobj->vmobjlock);
926 1.8 mrg
927 1.24 chs } else {
928 1.24 chs
929 1.24 chs /*
930 1.24 chs * if p is null in this loop, make sure it stays null
931 1.24 chs * in the next loop.
932 1.24 chs */
933 1.8 mrg
934 1.8 mrg nextpg = NULL;
935 1.8 mrg
936 1.8 mrg /*
937 1.8 mrg * lock page queues here just so they're always locked
938 1.8 mrg * at the end of the loop.
939 1.8 mrg */
940 1.24 chs
941 1.8 mrg uvm_lock_pageq();
942 1.8 mrg }
943 1.8 mrg
944 1.8 mrg if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
945 1.24 chs nextpg = TAILQ_FIRST(pglst); /* reload! */
946 1.8 mrg }
947 1.24 chs }
948 1.8 mrg return (retval);
949 1.1 mrg }
950 1.1 mrg
951 1.1 mrg /*
952 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
953 1.1 mrg *
954 1.1 mrg * => called with pageq's locked
955 1.1 mrg */
956 1.1 mrg
957 1.8 mrg void
958 1.8 mrg uvmpd_scan()
959 1.1 mrg {
960 1.14 chs int s, free, inactive_shortage, swap_shortage, pages_freed;
961 1.8 mrg struct vm_page *p, *nextpg;
962 1.8 mrg struct uvm_object *uobj;
963 1.8 mrg boolean_t got_it;
964 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
965 1.1 mrg
966 1.8 mrg uvmexp.pdrevs++; /* counter */
967 1.24 chs uobj = NULL;
968 1.1 mrg
969 1.8 mrg /*
970 1.8 mrg * get current "free" page count
971 1.8 mrg */
972 1.16 thorpej s = uvm_lock_fpageq();
973 1.8 mrg free = uvmexp.free;
974 1.16 thorpej uvm_unlock_fpageq(s);
975 1.1 mrg
976 1.1 mrg #ifndef __SWAP_BROKEN
977 1.8 mrg /*
978 1.8 mrg * swap out some processes if we are below our free target.
979 1.8 mrg * we need to unlock the page queues for this.
980 1.8 mrg */
981 1.8 mrg if (free < uvmexp.freetarg) {
982 1.8 mrg uvmexp.pdswout++;
983 1.8 mrg UVMHIST_LOG(pdhist," free %d < target %d: swapout", free,
984 1.8 mrg uvmexp.freetarg, 0, 0);
985 1.8 mrg uvm_unlock_pageq();
986 1.8 mrg uvm_swapout_threads();
987 1.8 mrg uvm_lock_pageq();
988 1.1 mrg
989 1.8 mrg }
990 1.1 mrg #endif
991 1.1 mrg
992 1.8 mrg /*
993 1.8 mrg * now we want to work on meeting our targets. first we work on our
994 1.8 mrg * free target by converting inactive pages into free pages. then
995 1.8 mrg * we work on meeting our inactive target by converting active pages
996 1.8 mrg * to inactive ones.
997 1.8 mrg */
998 1.8 mrg
999 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
1000 1.8 mrg
1001 1.8 mrg /*
1002 1.24 chs * alternate starting queue between swap and object based on the
1003 1.24 chs * low bit of uvmexp.pdrevs (which we bump by one each call).
1004 1.8 mrg */
1005 1.8 mrg
1006 1.8 mrg got_it = FALSE;
1007 1.14 chs pages_freed = uvmexp.pdfreed;
1008 1.8 mrg if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
1009 1.8 mrg got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
1010 1.8 mrg if (!got_it)
1011 1.8 mrg got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
1012 1.8 mrg if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
1013 1.8 mrg (void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
1014 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
1015 1.8 mrg
1016 1.8 mrg /*
1017 1.8 mrg * we have done the scan to get free pages. now we work on meeting
1018 1.8 mrg * our inactive target.
1019 1.8 mrg */
1020 1.8 mrg
1021 1.14 chs inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
1022 1.14 chs
1023 1.14 chs /*
1024 1.14 chs * detect if we're not going to be able to page anything out
1025 1.14 chs * until we free some swap resources from active pages.
1026 1.14 chs */
1027 1.24 chs
1028 1.14 chs swap_shortage = 0;
1029 1.14 chs if (uvmexp.free < uvmexp.freetarg &&
1030 1.14 chs uvmexp.swpginuse == uvmexp.swpages &&
1031 1.14 chs uvmexp.swpgonly < uvmexp.swpages &&
1032 1.14 chs pages_freed == 0) {
1033 1.14 chs swap_shortage = uvmexp.freetarg - uvmexp.free;
1034 1.14 chs }
1035 1.24 chs
1036 1.14 chs UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
1037 1.14 chs inactive_shortage, swap_shortage,0,0);
1038 1.24 chs for (p = TAILQ_FIRST(&uvm.page_active);
1039 1.14 chs p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
1040 1.14 chs p = nextpg) {
1041 1.24 chs nextpg = TAILQ_NEXT(p, pageq);
1042 1.8 mrg if (p->flags & PG_BUSY)
1043 1.8 mrg continue; /* quick check before trying to lock */
1044 1.8 mrg
1045 1.8 mrg /*
1046 1.14 chs * lock the page's owner.
1047 1.8 mrg */
1048 1.8 mrg /* is page anon owned or ownerless? */
1049 1.8 mrg if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
1050 1.24 chs KASSERT(p->uanon != NULL);
1051 1.8 mrg if (!simple_lock_try(&p->uanon->an_lock))
1052 1.8 mrg continue;
1053 1.1 mrg
1054 1.8 mrg /* take over the page? */
1055 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
1056 1.24 chs KASSERT(p->loan_count > 0);
1057 1.8 mrg p->loan_count--;
1058 1.8 mrg p->pqflags |= PQ_ANON;
1059 1.8 mrg }
1060 1.8 mrg } else {
1061 1.8 mrg if (!simple_lock_try(&p->uobject->vmobjlock))
1062 1.8 mrg continue;
1063 1.8 mrg }
1064 1.24 chs
1065 1.14 chs /*
1066 1.14 chs * skip this page if it's busy.
1067 1.14 chs */
1068 1.24 chs
1069 1.14 chs if ((p->flags & PG_BUSY) != 0) {
1070 1.14 chs if (p->pqflags & PQ_ANON)
1071 1.14 chs simple_unlock(&p->uanon->an_lock);
1072 1.14 chs else
1073 1.14 chs simple_unlock(&p->uobject->vmobjlock);
1074 1.14 chs continue;
1075 1.14 chs }
1076 1.24 chs
1077 1.14 chs /*
1078 1.14 chs * if there's a shortage of swap, free any swap allocated
1079 1.14 chs * to this page so that other pages can be paged out.
1080 1.14 chs */
1081 1.24 chs
1082 1.14 chs if (swap_shortage > 0) {
1083 1.14 chs if ((p->pqflags & PQ_ANON) && p->uanon->an_swslot) {
1084 1.14 chs uvm_swap_free(p->uanon->an_swslot, 1);
1085 1.14 chs p->uanon->an_swslot = 0;
1086 1.14 chs p->flags &= ~PG_CLEAN;
1087 1.14 chs swap_shortage--;
1088 1.14 chs }
1089 1.14 chs if (p->pqflags & PQ_AOBJ) {
1090 1.14 chs int slot = uao_set_swslot(p->uobject,
1091 1.14 chs p->offset >> PAGE_SHIFT, 0);
1092 1.14 chs if (slot) {
1093 1.14 chs uvm_swap_free(slot, 1);
1094 1.14 chs p->flags &= ~PG_CLEAN;
1095 1.14 chs swap_shortage--;
1096 1.14 chs }
1097 1.14 chs }
1098 1.14 chs }
1099 1.24 chs
1100 1.14 chs /*
1101 1.28 thorpej * If the page has not been referenced since the
1102 1.28 thorpej * last scan, deactivate the page if there is a
1103 1.28 thorpej * shortage of inactive pages.
1104 1.14 chs */
1105 1.24 chs
1106 1.28 thorpej if (inactive_shortage > 0 &&
1107 1.28 thorpej pmap_clear_reference(p) == FALSE) {
1108 1.18 chs pmap_page_protect(p, VM_PROT_NONE);
1109 1.8 mrg /* no need to check wire_count as pg is "active" */
1110 1.8 mrg uvm_pagedeactivate(p);
1111 1.8 mrg uvmexp.pddeact++;
1112 1.14 chs inactive_shortage--;
1113 1.8 mrg }
1114 1.8 mrg if (p->pqflags & PQ_ANON)
1115 1.8 mrg simple_unlock(&p->uanon->an_lock);
1116 1.8 mrg else
1117 1.8 mrg simple_unlock(&p->uobject->vmobjlock);
1118 1.8 mrg }
1119 1.1 mrg }
1120