uvm_pdaemon.c revision 1.29.2.3 1 1.29.2.3 nathanw /* $NetBSD: uvm_pdaemon.c,v 1.29.2.3 2001/08/24 00:13:44 nathanw Exp $ */
2 1.1 mrg
3 1.29.2.2 nathanw /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.29.2.2 nathanw * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.29.2.2 nathanw * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.29.2.2 nathanw *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.29.2.2 nathanw *
54 1.29.2.2 nathanw * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.29.2.2 nathanw * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.29.2.2 nathanw *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.7 mrg #include "opt_uvmhist.h"
70 1.7 mrg
71 1.1 mrg /*
72 1.1 mrg * uvm_pdaemon.c: the page daemon
73 1.1 mrg */
74 1.1 mrg
75 1.1 mrg #include <sys/param.h>
76 1.1 mrg #include <sys/proc.h>
77 1.1 mrg #include <sys/systm.h>
78 1.1 mrg #include <sys/kernel.h>
79 1.9 pk #include <sys/pool.h>
80 1.24 chs #include <sys/buf.h>
81 1.29.2.1 nathanw #include <sys/vnode.h>
82 1.1 mrg
83 1.1 mrg #include <uvm/uvm.h>
84 1.1 mrg
85 1.1 mrg /*
86 1.14 chs * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
87 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
88 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
89 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
90 1.14 chs */
91 1.14 chs
92 1.14 chs #define UVMPD_NUMDIRTYREACTS 16
93 1.14 chs
94 1.14 chs
95 1.14 chs /*
96 1.1 mrg * local prototypes
97 1.1 mrg */
98 1.1 mrg
99 1.1 mrg static void uvmpd_scan __P((void));
100 1.1 mrg static boolean_t uvmpd_scan_inactive __P((struct pglist *));
101 1.1 mrg static void uvmpd_tune __P((void));
102 1.1 mrg
103 1.1 mrg /*
104 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
105 1.1 mrg *
106 1.1 mrg * => should be called with all locks released
107 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
108 1.1 mrg */
109 1.1 mrg
110 1.19 thorpej void
111 1.19 thorpej uvm_wait(wmsg)
112 1.19 thorpej const char *wmsg;
113 1.8 mrg {
114 1.8 mrg int timo = 0;
115 1.8 mrg int s = splbio();
116 1.1 mrg
117 1.8 mrg /*
118 1.8 mrg * check for page daemon going to sleep (waiting for itself)
119 1.8 mrg */
120 1.1 mrg
121 1.8 mrg if (curproc == uvm.pagedaemon_proc) {
122 1.8 mrg /*
123 1.8 mrg * now we have a problem: the pagedaemon wants to go to
124 1.8 mrg * sleep until it frees more memory. but how can it
125 1.8 mrg * free more memory if it is asleep? that is a deadlock.
126 1.8 mrg * we have two options:
127 1.8 mrg * [1] panic now
128 1.8 mrg * [2] put a timeout on the sleep, thus causing the
129 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
130 1.8 mrg *
131 1.8 mrg * note that option [2] will only help us if we get lucky
132 1.8 mrg * and some other process on the system breaks the deadlock
133 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
134 1.8 mrg * to continue). for now we panic if DEBUG is defined,
135 1.8 mrg * otherwise we hope for the best with option [2] (better
136 1.8 mrg * yet, this should never happen in the first place!).
137 1.8 mrg */
138 1.1 mrg
139 1.8 mrg printf("pagedaemon: deadlock detected!\n");
140 1.8 mrg timo = hz >> 3; /* set timeout */
141 1.1 mrg #if defined(DEBUG)
142 1.8 mrg /* DEBUG: panic so we can debug it */
143 1.8 mrg panic("pagedaemon deadlock");
144 1.1 mrg #endif
145 1.8 mrg }
146 1.1 mrg
147 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
148 1.17 thorpej wakeup(&uvm.pagedaemon); /* wake the daemon! */
149 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
150 1.8 mrg timo);
151 1.1 mrg
152 1.8 mrg splx(s);
153 1.1 mrg }
154 1.1 mrg
155 1.1 mrg
156 1.1 mrg /*
157 1.1 mrg * uvmpd_tune: tune paging parameters
158 1.1 mrg *
159 1.1 mrg * => called when ever memory is added (or removed?) to the system
160 1.1 mrg * => caller must call with page queues locked
161 1.1 mrg */
162 1.1 mrg
163 1.8 mrg static void
164 1.8 mrg uvmpd_tune()
165 1.8 mrg {
166 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
167 1.1 mrg
168 1.8 mrg uvmexp.freemin = uvmexp.npages / 20;
169 1.1 mrg
170 1.8 mrg /* between 16k and 256k */
171 1.8 mrg /* XXX: what are these values good for? */
172 1.11 chs uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
173 1.11 chs uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
174 1.23 bjh21
175 1.23 bjh21 /* Make sure there's always a user page free. */
176 1.23 bjh21 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
177 1.23 bjh21 uvmexp.freemin = uvmexp.reserve_kernel + 1;
178 1.1 mrg
179 1.8 mrg uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
180 1.8 mrg if (uvmexp.freetarg <= uvmexp.freemin)
181 1.8 mrg uvmexp.freetarg = uvmexp.freemin + 1;
182 1.1 mrg
183 1.8 mrg /* uvmexp.inactarg: computed in main daemon loop */
184 1.1 mrg
185 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
186 1.8 mrg UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
187 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
188 1.1 mrg }
189 1.1 mrg
190 1.1 mrg /*
191 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
192 1.1 mrg */
193 1.1 mrg
194 1.8 mrg void
195 1.22 thorpej uvm_pageout(void *arg)
196 1.8 mrg {
197 1.8 mrg int npages = 0;
198 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
199 1.24 chs
200 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
201 1.8 mrg
202 1.8 mrg /*
203 1.8 mrg * ensure correct priority and set paging parameters...
204 1.8 mrg */
205 1.8 mrg
206 1.8 mrg uvm.pagedaemon_proc = curproc;
207 1.8 mrg (void) spl0();
208 1.8 mrg uvm_lock_pageq();
209 1.8 mrg npages = uvmexp.npages;
210 1.8 mrg uvmpd_tune();
211 1.8 mrg uvm_unlock_pageq();
212 1.8 mrg
213 1.8 mrg /*
214 1.8 mrg * main loop
215 1.8 mrg */
216 1.24 chs
217 1.24 chs for (;;) {
218 1.24 chs simple_lock(&uvm.pagedaemon_lock);
219 1.24 chs
220 1.24 chs UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
221 1.24 chs UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
222 1.24 chs &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
223 1.24 chs uvmexp.pdwoke++;
224 1.24 chs UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
225 1.24 chs
226 1.24 chs /* drain pool resources */
227 1.24 chs pool_drain(0);
228 1.1 mrg
229 1.8 mrg /*
230 1.24 chs * now lock page queues and recompute inactive count
231 1.8 mrg */
232 1.8 mrg
233 1.24 chs uvm_lock_pageq();
234 1.24 chs if (npages != uvmexp.npages) { /* check for new pages? */
235 1.24 chs npages = uvmexp.npages;
236 1.24 chs uvmpd_tune();
237 1.24 chs }
238 1.24 chs
239 1.24 chs uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
240 1.24 chs if (uvmexp.inactarg <= uvmexp.freetarg) {
241 1.24 chs uvmexp.inactarg = uvmexp.freetarg + 1;
242 1.24 chs }
243 1.24 chs
244 1.24 chs UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
245 1.24 chs uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
246 1.24 chs uvmexp.inactarg);
247 1.8 mrg
248 1.8 mrg /*
249 1.24 chs * scan if needed
250 1.8 mrg */
251 1.8 mrg
252 1.24 chs if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
253 1.29.2.1 nathanw uvmexp.inactive < uvmexp.inactarg) {
254 1.24 chs uvmpd_scan();
255 1.8 mrg }
256 1.8 mrg
257 1.8 mrg /*
258 1.24 chs * if there's any free memory to be had,
259 1.24 chs * wake up any waiters.
260 1.8 mrg */
261 1.8 mrg
262 1.24 chs if (uvmexp.free > uvmexp.reserve_kernel ||
263 1.24 chs uvmexp.paging == 0) {
264 1.24 chs wakeup(&uvmexp.free);
265 1.8 mrg }
266 1.1 mrg
267 1.8 mrg /*
268 1.24 chs * scan done. unlock page queues (the only lock we are holding)
269 1.8 mrg */
270 1.8 mrg
271 1.24 chs uvm_unlock_pageq();
272 1.24 chs }
273 1.24 chs /*NOTREACHED*/
274 1.24 chs }
275 1.24 chs
276 1.8 mrg
277 1.24 chs /*
278 1.24 chs * uvm_aiodone_daemon: main loop for the aiodone daemon.
279 1.24 chs */
280 1.8 mrg
281 1.24 chs void
282 1.24 chs uvm_aiodone_daemon(void *arg)
283 1.24 chs {
284 1.24 chs int s, free;
285 1.24 chs struct buf *bp, *nbp;
286 1.24 chs UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
287 1.9 pk
288 1.24 chs for (;;) {
289 1.8 mrg
290 1.8 mrg /*
291 1.24 chs * carefully attempt to go to sleep (without losing "wakeups"!).
292 1.24 chs * we need splbio because we want to make sure the aio_done list
293 1.24 chs * is totally empty before we go to sleep.
294 1.8 mrg */
295 1.8 mrg
296 1.24 chs s = splbio();
297 1.24 chs simple_lock(&uvm.aiodoned_lock);
298 1.24 chs if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
299 1.24 chs UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
300 1.24 chs UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
301 1.24 chs &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
302 1.24 chs UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
303 1.24 chs
304 1.24 chs /* relock aiodoned_lock, still at splbio */
305 1.24 chs simple_lock(&uvm.aiodoned_lock);
306 1.8 mrg }
307 1.8 mrg
308 1.24 chs /*
309 1.24 chs * check for done aio structures
310 1.24 chs */
311 1.8 mrg
312 1.24 chs bp = TAILQ_FIRST(&uvm.aio_done);
313 1.24 chs if (bp) {
314 1.24 chs TAILQ_INIT(&uvm.aio_done);
315 1.24 chs }
316 1.8 mrg
317 1.24 chs simple_unlock(&uvm.aiodoned_lock);
318 1.24 chs splx(s);
319 1.8 mrg
320 1.8 mrg /*
321 1.24 chs * process each i/o that's done.
322 1.8 mrg */
323 1.8 mrg
324 1.24 chs free = uvmexp.free;
325 1.24 chs while (bp != NULL) {
326 1.24 chs if (bp->b_flags & B_PDAEMON) {
327 1.24 chs uvmexp.paging -= bp->b_bufsize >> PAGE_SHIFT;
328 1.24 chs }
329 1.24 chs nbp = TAILQ_NEXT(bp, b_freelist);
330 1.24 chs (*bp->b_iodone)(bp);
331 1.24 chs bp = nbp;
332 1.24 chs }
333 1.24 chs if (free <= uvmexp.reserve_kernel) {
334 1.24 chs s = uvm_lock_fpageq();
335 1.24 chs wakeup(&uvm.pagedaemon);
336 1.24 chs uvm_unlock_fpageq(s);
337 1.24 chs } else {
338 1.24 chs simple_lock(&uvm.pagedaemon_lock);
339 1.17 thorpej wakeup(&uvmexp.free);
340 1.24 chs simple_unlock(&uvm.pagedaemon_lock);
341 1.24 chs }
342 1.8 mrg }
343 1.1 mrg }
344 1.1 mrg
345 1.24 chs
346 1.24 chs
347 1.1 mrg /*
348 1.24 chs * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
349 1.1 mrg *
350 1.1 mrg * => called with page queues locked
351 1.1 mrg * => we work on meeting our free target by converting inactive pages
352 1.1 mrg * into free pages.
353 1.1 mrg * => we handle the building of swap-backed clusters
354 1.1 mrg * => we return TRUE if we are exiting because we met our target
355 1.1 mrg */
356 1.1 mrg
357 1.8 mrg static boolean_t
358 1.8 mrg uvmpd_scan_inactive(pglst)
359 1.8 mrg struct pglist *pglst;
360 1.8 mrg {
361 1.8 mrg boolean_t retval = FALSE; /* assume we haven't hit target */
362 1.8 mrg int s, free, result;
363 1.8 mrg struct vm_page *p, *nextpg;
364 1.8 mrg struct uvm_object *uobj;
365 1.11 chs struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
366 1.8 mrg int npages;
367 1.11 chs struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; /* XXX: see below */
368 1.8 mrg int swnpages, swcpages; /* XXX: see below */
369 1.14 chs int swslot;
370 1.8 mrg struct vm_anon *anon;
371 1.29.2.1 nathanw boolean_t swap_backed;
372 1.10 eeh vaddr_t start;
373 1.29.2.1 nathanw int dirtyreacts, t;
374 1.8 mrg UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
375 1.1 mrg
376 1.8 mrg /*
377 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
378 1.24 chs * to stay in the loop while we have a page to scan or we have
379 1.8 mrg * a swap-cluster to build.
380 1.8 mrg */
381 1.24 chs
382 1.8 mrg swslot = 0;
383 1.8 mrg swnpages = swcpages = 0;
384 1.8 mrg free = 0;
385 1.14 chs dirtyreacts = 0;
386 1.8 mrg
387 1.24 chs for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
388 1.8 mrg
389 1.8 mrg /*
390 1.8 mrg * note that p can be NULL iff we have traversed the whole
391 1.8 mrg * list and need to do one final swap-backed clustered pageout.
392 1.8 mrg */
393 1.24 chs
394 1.24 chs uobj = NULL;
395 1.24 chs anon = NULL;
396 1.24 chs
397 1.8 mrg if (p) {
398 1.24 chs
399 1.8 mrg /*
400 1.8 mrg * update our copy of "free" and see if we've met
401 1.8 mrg * our target
402 1.8 mrg */
403 1.24 chs
404 1.16 thorpej s = uvm_lock_fpageq();
405 1.8 mrg free = uvmexp.free;
406 1.16 thorpej uvm_unlock_fpageq(s);
407 1.8 mrg
408 1.14 chs if (free + uvmexp.paging >= uvmexp.freetarg << 2 ||
409 1.29.2.1 nathanw dirtyreacts == UVMPD_NUMDIRTYREACTS) {
410 1.29.2.1 nathanw UVMHIST_LOG(pdhist," met free target: "
411 1.29.2.1 nathanw "exit loop", 0, 0, 0, 0);
412 1.29.2.1 nathanw retval = TRUE;
413 1.29.2.1 nathanw
414 1.29.2.1 nathanw if (swslot == 0) {
415 1.29.2.1 nathanw /* exit now if no swap-i/o pending */
416 1.29.2.1 nathanw break;
417 1.24 chs }
418 1.29.2.1 nathanw
419 1.29.2.1 nathanw /* set p to null to signal final swap i/o */
420 1.29.2.1 nathanw p = NULL;
421 1.8 mrg }
422 1.8 mrg }
423 1.8 mrg
424 1.24 chs if (p) { /* if (we have a new page to consider) */
425 1.29.2.1 nathanw
426 1.8 mrg /*
427 1.8 mrg * we are below target and have a new page to consider.
428 1.8 mrg */
429 1.8 mrg uvmexp.pdscans++;
430 1.24 chs nextpg = TAILQ_NEXT(p, pageq);
431 1.8 mrg
432 1.27 mycroft /*
433 1.27 mycroft * move referenced pages back to active queue and
434 1.29.2.1 nathanw * skip to next page.
435 1.27 mycroft */
436 1.29.2.1 nathanw
437 1.27 mycroft if (pmap_is_referenced(p)) {
438 1.27 mycroft uvm_pageactivate(p);
439 1.27 mycroft uvmexp.pdreact++;
440 1.27 mycroft continue;
441 1.27 mycroft }
442 1.29.2.1 nathanw
443 1.29.2.1 nathanw /*
444 1.29.2.1 nathanw * enforce the minimum thresholds on different
445 1.29.2.1 nathanw * types of memory usage. if reusing the current
446 1.29.2.1 nathanw * page would reduce that type of usage below its
447 1.29.2.1 nathanw * minimum, reactivate the page instead and move
448 1.29.2.1 nathanw * on to the next page.
449 1.29.2.1 nathanw */
450 1.29.2.1 nathanw
451 1.29.2.1 nathanw t = uvmexp.active + uvmexp.inactive + uvmexp.free;
452 1.29.2.1 nathanw if (p->uanon &&
453 1.29.2.1 nathanw uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8) {
454 1.29.2.1 nathanw uvm_pageactivate(p);
455 1.29.2.1 nathanw uvmexp.pdreanon++;
456 1.29.2.1 nathanw continue;
457 1.29.2.1 nathanw }
458 1.29.2.1 nathanw if (p->uobject && UVM_OBJ_IS_VTEXT(p->uobject) &&
459 1.29.2.1 nathanw uvmexp.vtextpages <= (t * uvmexp.vtextmin) >> 8) {
460 1.29.2.1 nathanw uvm_pageactivate(p);
461 1.29.2.1 nathanw uvmexp.pdrevtext++;
462 1.29.2.1 nathanw continue;
463 1.29.2.1 nathanw }
464 1.29.2.1 nathanw if (p->uobject && UVM_OBJ_IS_VNODE(p->uobject) &&
465 1.29.2.1 nathanw !UVM_OBJ_IS_VTEXT(p->uobject) &&
466 1.29.2.1 nathanw uvmexp.vnodepages <= (t * uvmexp.vnodemin) >> 8) {
467 1.29.2.1 nathanw uvm_pageactivate(p);
468 1.29.2.1 nathanw uvmexp.pdrevnode++;
469 1.29.2.1 nathanw continue;
470 1.29.2.1 nathanw }
471 1.29.2.1 nathanw
472 1.8 mrg /*
473 1.8 mrg * first we attempt to lock the object that this page
474 1.8 mrg * belongs to. if our attempt fails we skip on to
475 1.8 mrg * the next page (no harm done). it is important to
476 1.8 mrg * "try" locking the object as we are locking in the
477 1.8 mrg * wrong order (pageq -> object) and we don't want to
478 1.24 chs * deadlock.
479 1.8 mrg *
480 1.24 chs * the only time we expect to see an ownerless page
481 1.8 mrg * (i.e. a page with no uobject and !PQ_ANON) is if an
482 1.8 mrg * anon has loaned a page from a uvm_object and the
483 1.8 mrg * uvm_object has dropped the ownership. in that
484 1.8 mrg * case, the anon can "take over" the loaned page
485 1.8 mrg * and make it its own.
486 1.8 mrg */
487 1.29.2.1 nathanw
488 1.8 mrg /* is page part of an anon or ownerless ? */
489 1.8 mrg if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
490 1.8 mrg anon = p->uanon;
491 1.24 chs KASSERT(anon != NULL);
492 1.29.2.1 nathanw if (!simple_lock_try(&anon->an_lock)) {
493 1.8 mrg /* lock failed, skip this page */
494 1.8 mrg continue;
495 1.29.2.1 nathanw }
496 1.8 mrg
497 1.8 mrg /*
498 1.8 mrg * if the page is ownerless, claim it in the
499 1.8 mrg * name of "anon"!
500 1.8 mrg */
501 1.24 chs
502 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
503 1.24 chs KASSERT(p->loan_count > 0);
504 1.8 mrg p->loan_count--;
505 1.24 chs p->pqflags |= PQ_ANON;
506 1.24 chs /* anon now owns it */
507 1.8 mrg }
508 1.8 mrg if (p->flags & PG_BUSY) {
509 1.8 mrg simple_unlock(&anon->an_lock);
510 1.8 mrg uvmexp.pdbusy++;
511 1.8 mrg /* someone else owns page, skip it */
512 1.8 mrg continue;
513 1.8 mrg }
514 1.8 mrg uvmexp.pdanscan++;
515 1.8 mrg } else {
516 1.8 mrg uobj = p->uobject;
517 1.24 chs KASSERT(uobj != NULL);
518 1.29.2.1 nathanw if (!simple_lock_try(&uobj->vmobjlock)) {
519 1.8 mrg /* lock failed, skip this page */
520 1.24 chs continue;
521 1.29.2.1 nathanw }
522 1.8 mrg if (p->flags & PG_BUSY) {
523 1.8 mrg simple_unlock(&uobj->vmobjlock);
524 1.8 mrg uvmexp.pdbusy++;
525 1.8 mrg /* someone else owns page, skip it */
526 1.24 chs continue;
527 1.8 mrg }
528 1.8 mrg uvmexp.pdobscan++;
529 1.8 mrg }
530 1.8 mrg
531 1.8 mrg /*
532 1.8 mrg * we now have the object and the page queues locked.
533 1.29 thorpej * the page is not busy. remove all the permissions
534 1.29 thorpej * from the page so we can sync the modified info
535 1.29 thorpej * without any race conditions. if the page is clean
536 1.29 thorpej * we can free it now and continue.
537 1.8 mrg */
538 1.8 mrg
539 1.29 thorpej pmap_page_protect(p, VM_PROT_NONE);
540 1.29.2.1 nathanw if ((p->flags & PG_CLEAN) != 0 && pmap_is_modified(p)) {
541 1.29 thorpej p->flags &= ~PG_CLEAN;
542 1.29.2.1 nathanw }
543 1.29 thorpej
544 1.8 mrg if (p->flags & PG_CLEAN) {
545 1.14 chs if (p->pqflags & PQ_SWAPBACKED) {
546 1.14 chs /* this page now lives only in swap */
547 1.14 chs simple_lock(&uvm.swap_data_lock);
548 1.14 chs uvmexp.swpgonly++;
549 1.14 chs simple_unlock(&uvm.swap_data_lock);
550 1.14 chs }
551 1.14 chs
552 1.8 mrg uvm_pagefree(p);
553 1.8 mrg uvmexp.pdfreed++;
554 1.24 chs
555 1.8 mrg if (anon) {
556 1.24 chs
557 1.8 mrg /*
558 1.8 mrg * an anonymous page can only be clean
559 1.24 chs * if it has backing store assigned.
560 1.8 mrg */
561 1.24 chs
562 1.24 chs KASSERT(anon->an_swslot != 0);
563 1.24 chs
564 1.8 mrg /* remove from object */
565 1.8 mrg anon->u.an_page = NULL;
566 1.8 mrg simple_unlock(&anon->an_lock);
567 1.8 mrg } else {
568 1.8 mrg /* pagefree has already removed the
569 1.8 mrg * page from the object */
570 1.8 mrg simple_unlock(&uobj->vmobjlock);
571 1.8 mrg }
572 1.8 mrg continue;
573 1.8 mrg }
574 1.8 mrg
575 1.8 mrg /*
576 1.8 mrg * this page is dirty, skip it if we'll have met our
577 1.8 mrg * free target when all the current pageouts complete.
578 1.8 mrg */
579 1.24 chs
580 1.29.2.1 nathanw if (free + uvmexp.paging > uvmexp.freetarg << 2) {
581 1.8 mrg if (anon) {
582 1.8 mrg simple_unlock(&anon->an_lock);
583 1.8 mrg } else {
584 1.8 mrg simple_unlock(&uobj->vmobjlock);
585 1.8 mrg }
586 1.8 mrg continue;
587 1.8 mrg }
588 1.8 mrg
589 1.8 mrg /*
590 1.14 chs * this page is dirty, but we can't page it out
591 1.14 chs * since all pages in swap are only in swap.
592 1.14 chs * reactivate it so that we eventually cycle
593 1.14 chs * all pages thru the inactive queue.
594 1.14 chs */
595 1.24 chs
596 1.24 chs KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
597 1.14 chs if ((p->pqflags & PQ_SWAPBACKED) &&
598 1.14 chs uvmexp.swpgonly == uvmexp.swpages) {
599 1.14 chs dirtyreacts++;
600 1.14 chs uvm_pageactivate(p);
601 1.14 chs if (anon) {
602 1.14 chs simple_unlock(&anon->an_lock);
603 1.14 chs } else {
604 1.14 chs simple_unlock(&uobj->vmobjlock);
605 1.14 chs }
606 1.14 chs continue;
607 1.14 chs }
608 1.14 chs
609 1.14 chs /*
610 1.14 chs * if the page is swap-backed and dirty and swap space
611 1.14 chs * is full, free any swap allocated to the page
612 1.14 chs * so that other pages can be paged out.
613 1.14 chs */
614 1.24 chs
615 1.24 chs KASSERT(uvmexp.swpginuse <= uvmexp.swpages);
616 1.14 chs if ((p->pqflags & PQ_SWAPBACKED) &&
617 1.14 chs uvmexp.swpginuse == uvmexp.swpages) {
618 1.14 chs
619 1.14 chs if ((p->pqflags & PQ_ANON) &&
620 1.14 chs p->uanon->an_swslot) {
621 1.14 chs uvm_swap_free(p->uanon->an_swslot, 1);
622 1.14 chs p->uanon->an_swslot = 0;
623 1.14 chs }
624 1.14 chs if (p->pqflags & PQ_AOBJ) {
625 1.14 chs uao_dropswap(p->uobject,
626 1.14 chs p->offset >> PAGE_SHIFT);
627 1.14 chs }
628 1.14 chs }
629 1.14 chs
630 1.14 chs /*
631 1.8 mrg * the page we are looking at is dirty. we must
632 1.8 mrg * clean it before it can be freed. to do this we
633 1.8 mrg * first mark the page busy so that no one else will
634 1.24 chs * touch the page.
635 1.8 mrg */
636 1.29.2.1 nathanw
637 1.8 mrg swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
638 1.8 mrg p->flags |= PG_BUSY; /* now we own it */
639 1.8 mrg UVM_PAGE_OWN(p, "scan_inactive");
640 1.8 mrg uvmexp.pgswapout++;
641 1.8 mrg
642 1.8 mrg /*
643 1.8 mrg * for swap-backed pages we need to (re)allocate
644 1.8 mrg * swap space.
645 1.8 mrg */
646 1.24 chs
647 1.8 mrg if (swap_backed) {
648 1.8 mrg
649 1.8 mrg /*
650 1.8 mrg * free old swap slot (if any)
651 1.8 mrg */
652 1.24 chs
653 1.8 mrg if (anon) {
654 1.8 mrg if (anon->an_swslot) {
655 1.8 mrg uvm_swap_free(anon->an_swslot,
656 1.8 mrg 1);
657 1.8 mrg anon->an_swslot = 0;
658 1.8 mrg }
659 1.8 mrg } else {
660 1.14 chs uao_dropswap(uobj,
661 1.14 chs p->offset >> PAGE_SHIFT);
662 1.8 mrg }
663 1.8 mrg
664 1.8 mrg /*
665 1.8 mrg * start new cluster (if necessary)
666 1.8 mrg */
667 1.24 chs
668 1.8 mrg if (swslot == 0) {
669 1.11 chs swnpages = MAXBSIZE >> PAGE_SHIFT;
670 1.8 mrg swslot = uvm_swap_alloc(&swnpages,
671 1.8 mrg TRUE);
672 1.8 mrg if (swslot == 0) {
673 1.8 mrg /* no swap? give up! */
674 1.8 mrg p->flags &= ~PG_BUSY;
675 1.8 mrg UVM_PAGE_OWN(p, NULL);
676 1.8 mrg if (anon)
677 1.8 mrg simple_unlock(
678 1.8 mrg &anon->an_lock);
679 1.8 mrg else
680 1.8 mrg simple_unlock(
681 1.8 mrg &uobj->vmobjlock);
682 1.8 mrg continue;
683 1.8 mrg }
684 1.8 mrg swcpages = 0; /* cluster is empty */
685 1.8 mrg }
686 1.8 mrg
687 1.8 mrg /*
688 1.8 mrg * add block to cluster
689 1.8 mrg */
690 1.24 chs
691 1.29.2.3 nathanw if (anon) {
692 1.8 mrg anon->an_swslot = swslot + swcpages;
693 1.29.2.3 nathanw } else {
694 1.29.2.3 nathanw result = uao_set_swslot(uobj,
695 1.11 chs p->offset >> PAGE_SHIFT,
696 1.8 mrg swslot + swcpages);
697 1.29.2.3 nathanw if (result == -1) {
698 1.29.2.3 nathanw p->flags &= ~PG_BUSY;
699 1.29.2.3 nathanw UVM_PAGE_OWN(p, NULL);
700 1.29.2.3 nathanw simple_unlock(&uobj->vmobjlock);
701 1.29.2.3 nathanw continue;
702 1.29.2.3 nathanw }
703 1.29.2.3 nathanw }
704 1.29.2.3 nathanw swpps[swcpages] = p;
705 1.8 mrg swcpages++;
706 1.8 mrg }
707 1.8 mrg } else {
708 1.8 mrg
709 1.8 mrg /* if p == NULL we must be doing a last swap i/o */
710 1.8 mrg swap_backed = TRUE;
711 1.8 mrg }
712 1.8 mrg
713 1.8 mrg /*
714 1.24 chs * now consider doing the pageout.
715 1.8 mrg *
716 1.24 chs * for swap-backed pages, we do the pageout if we have either
717 1.24 chs * filled the cluster (in which case (swnpages == swcpages) or
718 1.8 mrg * run out of pages (p == NULL).
719 1.8 mrg *
720 1.8 mrg * for object pages, we always do the pageout.
721 1.8 mrg */
722 1.24 chs
723 1.8 mrg if (swap_backed) {
724 1.8 mrg if (p) { /* if we just added a page to cluster */
725 1.8 mrg if (anon)
726 1.8 mrg simple_unlock(&anon->an_lock);
727 1.8 mrg else
728 1.8 mrg simple_unlock(&uobj->vmobjlock);
729 1.8 mrg
730 1.8 mrg /* cluster not full yet? */
731 1.8 mrg if (swcpages < swnpages)
732 1.8 mrg continue;
733 1.8 mrg }
734 1.8 mrg
735 1.8 mrg /* starting I/O now... set up for it */
736 1.8 mrg npages = swcpages;
737 1.8 mrg ppsp = swpps;
738 1.8 mrg /* for swap-backed pages only */
739 1.10 eeh start = (vaddr_t) swslot;
740 1.8 mrg
741 1.8 mrg /* if this is final pageout we could have a few
742 1.8 mrg * extra swap blocks */
743 1.8 mrg if (swcpages < swnpages) {
744 1.8 mrg uvm_swap_free(swslot + swcpages,
745 1.8 mrg (swnpages - swcpages));
746 1.24 chs }
747 1.8 mrg } else {
748 1.8 mrg /* normal object pageout */
749 1.8 mrg ppsp = pps;
750 1.8 mrg npages = sizeof(pps) / sizeof(struct vm_page *);
751 1.8 mrg /* not looked at because PGO_ALLPAGES is set */
752 1.8 mrg start = 0;
753 1.8 mrg }
754 1.8 mrg
755 1.8 mrg /*
756 1.8 mrg * now do the pageout.
757 1.24 chs *
758 1.8 mrg * for swap_backed pages we have already built the cluster.
759 1.8 mrg * for !swap_backed pages, uvm_pager_put will call the object's
760 1.8 mrg * "make put cluster" function to build a cluster on our behalf.
761 1.8 mrg *
762 1.8 mrg * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
763 1.8 mrg * it to free the cluster pages for us on a successful I/O (it
764 1.8 mrg * always does this for un-successful I/O requests). this
765 1.8 mrg * allows us to do clustered pageout without having to deal
766 1.8 mrg * with cluster pages at this level.
767 1.8 mrg *
768 1.8 mrg * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
769 1.8 mrg * IN: locked: uobj (if !swap_backed), page queues
770 1.29.2.1 nathanw * OUT:!locked: pageqs, uobj
771 1.8 mrg */
772 1.8 mrg
773 1.8 mrg /* locked: uobj (if !swap_backed), page queues */
774 1.8 mrg uvmexp.pdpageouts++;
775 1.24 chs result = uvm_pager_put(swap_backed ? NULL : uobj, p,
776 1.8 mrg &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
777 1.29.2.1 nathanw /* unlocked: pageqs, uobj */
778 1.8 mrg
779 1.8 mrg /*
780 1.8 mrg * if we did i/o to swap, zero swslot to indicate that we are
781 1.8 mrg * no longer building a swap-backed cluster.
782 1.8 mrg */
783 1.8 mrg
784 1.8 mrg if (swap_backed)
785 1.8 mrg swslot = 0; /* done with this cluster */
786 1.8 mrg
787 1.8 mrg /*
788 1.29.2.1 nathanw * if the pageout failed, reactivate the page and continue.
789 1.8 mrg */
790 1.8 mrg
791 1.29.2.1 nathanw if (result == EIO && curproc == uvm.pagedaemon_proc) {
792 1.24 chs uvm_lock_pageq();
793 1.24 chs nextpg = TAILQ_NEXT(p, pageq);
794 1.24 chs uvm_pageactivate(p);
795 1.24 chs continue;
796 1.24 chs }
797 1.24 chs
798 1.8 mrg /*
799 1.29.2.1 nathanw * the pageout is in progress. bump counters and set up
800 1.29.2.1 nathanw * for the next loop.
801 1.8 mrg */
802 1.8 mrg
803 1.29.2.1 nathanw uvm_lock_pageq();
804 1.29.2.1 nathanw uvmexp.paging += npages;
805 1.29.2.1 nathanw uvmexp.pdpending++;
806 1.8 mrg if (p) {
807 1.29.2.1 nathanw if (p->pqflags & PQ_INACTIVE)
808 1.24 chs nextpg = TAILQ_NEXT(p, pageq);
809 1.29.2.1 nathanw else
810 1.29.2.1 nathanw nextpg = TAILQ_FIRST(pglst);
811 1.24 chs } else {
812 1.8 mrg nextpg = NULL;
813 1.8 mrg }
814 1.24 chs }
815 1.8 mrg return (retval);
816 1.1 mrg }
817 1.1 mrg
818 1.1 mrg /*
819 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
820 1.1 mrg *
821 1.1 mrg * => called with pageq's locked
822 1.1 mrg */
823 1.1 mrg
824 1.8 mrg void
825 1.8 mrg uvmpd_scan()
826 1.1 mrg {
827 1.14 chs int s, free, inactive_shortage, swap_shortage, pages_freed;
828 1.8 mrg struct vm_page *p, *nextpg;
829 1.8 mrg struct uvm_object *uobj;
830 1.8 mrg boolean_t got_it;
831 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
832 1.1 mrg
833 1.8 mrg uvmexp.pdrevs++; /* counter */
834 1.24 chs uobj = NULL;
835 1.1 mrg
836 1.8 mrg /*
837 1.8 mrg * get current "free" page count
838 1.8 mrg */
839 1.16 thorpej s = uvm_lock_fpageq();
840 1.8 mrg free = uvmexp.free;
841 1.16 thorpej uvm_unlock_fpageq(s);
842 1.1 mrg
843 1.1 mrg #ifndef __SWAP_BROKEN
844 1.8 mrg /*
845 1.8 mrg * swap out some processes if we are below our free target.
846 1.8 mrg * we need to unlock the page queues for this.
847 1.8 mrg */
848 1.8 mrg if (free < uvmexp.freetarg) {
849 1.8 mrg uvmexp.pdswout++;
850 1.8 mrg UVMHIST_LOG(pdhist," free %d < target %d: swapout", free,
851 1.8 mrg uvmexp.freetarg, 0, 0);
852 1.8 mrg uvm_unlock_pageq();
853 1.8 mrg uvm_swapout_threads();
854 1.8 mrg uvm_lock_pageq();
855 1.1 mrg
856 1.8 mrg }
857 1.1 mrg #endif
858 1.1 mrg
859 1.8 mrg /*
860 1.8 mrg * now we want to work on meeting our targets. first we work on our
861 1.8 mrg * free target by converting inactive pages into free pages. then
862 1.8 mrg * we work on meeting our inactive target by converting active pages
863 1.8 mrg * to inactive ones.
864 1.8 mrg */
865 1.8 mrg
866 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
867 1.8 mrg
868 1.8 mrg /*
869 1.24 chs * alternate starting queue between swap and object based on the
870 1.24 chs * low bit of uvmexp.pdrevs (which we bump by one each call).
871 1.8 mrg */
872 1.8 mrg
873 1.8 mrg got_it = FALSE;
874 1.14 chs pages_freed = uvmexp.pdfreed;
875 1.29.2.2 nathanw (void) uvmpd_scan_inactive(&uvm.page_inactive);
876 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
877 1.8 mrg
878 1.8 mrg /*
879 1.8 mrg * we have done the scan to get free pages. now we work on meeting
880 1.8 mrg * our inactive target.
881 1.8 mrg */
882 1.8 mrg
883 1.14 chs inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
884 1.14 chs
885 1.14 chs /*
886 1.14 chs * detect if we're not going to be able to page anything out
887 1.14 chs * until we free some swap resources from active pages.
888 1.14 chs */
889 1.24 chs
890 1.14 chs swap_shortage = 0;
891 1.14 chs if (uvmexp.free < uvmexp.freetarg &&
892 1.14 chs uvmexp.swpginuse == uvmexp.swpages &&
893 1.14 chs uvmexp.swpgonly < uvmexp.swpages &&
894 1.14 chs pages_freed == 0) {
895 1.14 chs swap_shortage = uvmexp.freetarg - uvmexp.free;
896 1.14 chs }
897 1.24 chs
898 1.14 chs UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
899 1.14 chs inactive_shortage, swap_shortage,0,0);
900 1.24 chs for (p = TAILQ_FIRST(&uvm.page_active);
901 1.14 chs p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
902 1.14 chs p = nextpg) {
903 1.24 chs nextpg = TAILQ_NEXT(p, pageq);
904 1.8 mrg if (p->flags & PG_BUSY)
905 1.8 mrg continue; /* quick check before trying to lock */
906 1.8 mrg
907 1.8 mrg /*
908 1.14 chs * lock the page's owner.
909 1.8 mrg */
910 1.8 mrg /* is page anon owned or ownerless? */
911 1.8 mrg if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
912 1.24 chs KASSERT(p->uanon != NULL);
913 1.8 mrg if (!simple_lock_try(&p->uanon->an_lock))
914 1.8 mrg continue;
915 1.1 mrg
916 1.8 mrg /* take over the page? */
917 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
918 1.24 chs KASSERT(p->loan_count > 0);
919 1.8 mrg p->loan_count--;
920 1.8 mrg p->pqflags |= PQ_ANON;
921 1.8 mrg }
922 1.8 mrg } else {
923 1.8 mrg if (!simple_lock_try(&p->uobject->vmobjlock))
924 1.8 mrg continue;
925 1.8 mrg }
926 1.24 chs
927 1.14 chs /*
928 1.14 chs * skip this page if it's busy.
929 1.14 chs */
930 1.24 chs
931 1.14 chs if ((p->flags & PG_BUSY) != 0) {
932 1.14 chs if (p->pqflags & PQ_ANON)
933 1.14 chs simple_unlock(&p->uanon->an_lock);
934 1.14 chs else
935 1.14 chs simple_unlock(&p->uobject->vmobjlock);
936 1.14 chs continue;
937 1.14 chs }
938 1.24 chs
939 1.14 chs /*
940 1.14 chs * if there's a shortage of swap, free any swap allocated
941 1.14 chs * to this page so that other pages can be paged out.
942 1.14 chs */
943 1.24 chs
944 1.14 chs if (swap_shortage > 0) {
945 1.14 chs if ((p->pqflags & PQ_ANON) && p->uanon->an_swslot) {
946 1.14 chs uvm_swap_free(p->uanon->an_swslot, 1);
947 1.14 chs p->uanon->an_swslot = 0;
948 1.14 chs p->flags &= ~PG_CLEAN;
949 1.14 chs swap_shortage--;
950 1.14 chs }
951 1.14 chs if (p->pqflags & PQ_AOBJ) {
952 1.14 chs int slot = uao_set_swslot(p->uobject,
953 1.14 chs p->offset >> PAGE_SHIFT, 0);
954 1.14 chs if (slot) {
955 1.14 chs uvm_swap_free(slot, 1);
956 1.14 chs p->flags &= ~PG_CLEAN;
957 1.14 chs swap_shortage--;
958 1.14 chs }
959 1.14 chs }
960 1.14 chs }
961 1.24 chs
962 1.14 chs /*
963 1.29.2.2 nathanw * If we're short on inactive pages, move this over
964 1.29.2.2 nathanw * to the inactive list. The second hand will sweep
965 1.29.2.2 nathanw * it later, and if it has been referenced again, it
966 1.29.2.2 nathanw * will be moved back to active.
967 1.14 chs */
968 1.24 chs
969 1.29.2.2 nathanw if (inactive_shortage > 0) {
970 1.29.2.2 nathanw pmap_clear_reference(p);
971 1.8 mrg /* no need to check wire_count as pg is "active" */
972 1.8 mrg uvm_pagedeactivate(p);
973 1.8 mrg uvmexp.pddeact++;
974 1.14 chs inactive_shortage--;
975 1.8 mrg }
976 1.8 mrg if (p->pqflags & PQ_ANON)
977 1.8 mrg simple_unlock(&p->uanon->an_lock);
978 1.8 mrg else
979 1.8 mrg simple_unlock(&p->uobject->vmobjlock);
980 1.8 mrg }
981 1.1 mrg }
982