Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.29.2.3
      1  1.29.2.3  nathanw /*	$NetBSD: uvm_pdaemon.c,v 1.29.2.3 2001/08/24 00:13:44 nathanw Exp $	*/
      2       1.1      mrg 
      3  1.29.2.2  nathanw /*
      4       1.1      mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  1.29.2.2  nathanw  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6       1.1      mrg  *
      7       1.1      mrg  * All rights reserved.
      8       1.1      mrg  *
      9       1.1      mrg  * This code is derived from software contributed to Berkeley by
     10       1.1      mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11       1.1      mrg  *
     12       1.1      mrg  * Redistribution and use in source and binary forms, with or without
     13       1.1      mrg  * modification, are permitted provided that the following conditions
     14       1.1      mrg  * are met:
     15       1.1      mrg  * 1. Redistributions of source code must retain the above copyright
     16       1.1      mrg  *    notice, this list of conditions and the following disclaimer.
     17       1.1      mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.1      mrg  *    notice, this list of conditions and the following disclaimer in the
     19       1.1      mrg  *    documentation and/or other materials provided with the distribution.
     20       1.1      mrg  * 3. All advertising materials mentioning features or use of this software
     21       1.1      mrg  *    must display the following acknowledgement:
     22       1.1      mrg  *	This product includes software developed by Charles D. Cranor,
     23  1.29.2.2  nathanw  *      Washington University, the University of California, Berkeley and
     24       1.1      mrg  *      its contributors.
     25       1.1      mrg  * 4. Neither the name of the University nor the names of its contributors
     26       1.1      mrg  *    may be used to endorse or promote products derived from this software
     27       1.1      mrg  *    without specific prior written permission.
     28       1.1      mrg  *
     29       1.1      mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30       1.1      mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31       1.1      mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32       1.1      mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33       1.1      mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34       1.1      mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35       1.1      mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36       1.1      mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37       1.1      mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38       1.1      mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39       1.1      mrg  * SUCH DAMAGE.
     40       1.1      mrg  *
     41       1.1      mrg  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42       1.4      mrg  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43       1.1      mrg  *
     44       1.1      mrg  *
     45       1.1      mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46       1.1      mrg  * All rights reserved.
     47  1.29.2.2  nathanw  *
     48       1.1      mrg  * Permission to use, copy, modify and distribute this software and
     49       1.1      mrg  * its documentation is hereby granted, provided that both the copyright
     50       1.1      mrg  * notice and this permission notice appear in all copies of the
     51       1.1      mrg  * software, derivative works or modified versions, and any portions
     52       1.1      mrg  * thereof, and that both notices appear in supporting documentation.
     53  1.29.2.2  nathanw  *
     54  1.29.2.2  nathanw  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  1.29.2.2  nathanw  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56       1.1      mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  1.29.2.2  nathanw  *
     58       1.1      mrg  * Carnegie Mellon requests users of this software to return to
     59       1.1      mrg  *
     60       1.1      mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61       1.1      mrg  *  School of Computer Science
     62       1.1      mrg  *  Carnegie Mellon University
     63       1.1      mrg  *  Pittsburgh PA 15213-3890
     64       1.1      mrg  *
     65       1.1      mrg  * any improvements or extensions that they make and grant Carnegie the
     66       1.1      mrg  * rights to redistribute these changes.
     67       1.1      mrg  */
     68       1.1      mrg 
     69       1.7      mrg #include "opt_uvmhist.h"
     70       1.7      mrg 
     71       1.1      mrg /*
     72       1.1      mrg  * uvm_pdaemon.c: the page daemon
     73       1.1      mrg  */
     74       1.1      mrg 
     75       1.1      mrg #include <sys/param.h>
     76       1.1      mrg #include <sys/proc.h>
     77       1.1      mrg #include <sys/systm.h>
     78       1.1      mrg #include <sys/kernel.h>
     79       1.9       pk #include <sys/pool.h>
     80      1.24      chs #include <sys/buf.h>
     81  1.29.2.1  nathanw #include <sys/vnode.h>
     82       1.1      mrg 
     83       1.1      mrg #include <uvm/uvm.h>
     84       1.1      mrg 
     85       1.1      mrg /*
     86      1.14      chs  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
     87      1.14      chs  * in a pass thru the inactive list when swap is full.  the value should be
     88      1.14      chs  * "small"... if it's too large we'll cycle the active pages thru the inactive
     89      1.14      chs  * queue too quickly to for them to be referenced and avoid being freed.
     90      1.14      chs  */
     91      1.14      chs 
     92      1.14      chs #define UVMPD_NUMDIRTYREACTS 16
     93      1.14      chs 
     94      1.14      chs 
     95      1.14      chs /*
     96       1.1      mrg  * local prototypes
     97       1.1      mrg  */
     98       1.1      mrg 
     99       1.1      mrg static void		uvmpd_scan __P((void));
    100       1.1      mrg static boolean_t	uvmpd_scan_inactive __P((struct pglist *));
    101       1.1      mrg static void		uvmpd_tune __P((void));
    102       1.1      mrg 
    103       1.1      mrg /*
    104       1.1      mrg  * uvm_wait: wait (sleep) for the page daemon to free some pages
    105       1.1      mrg  *
    106       1.1      mrg  * => should be called with all locks released
    107       1.1      mrg  * => should _not_ be called by the page daemon (to avoid deadlock)
    108       1.1      mrg  */
    109       1.1      mrg 
    110      1.19  thorpej void
    111      1.19  thorpej uvm_wait(wmsg)
    112      1.19  thorpej 	const char *wmsg;
    113       1.8      mrg {
    114       1.8      mrg 	int timo = 0;
    115       1.8      mrg 	int s = splbio();
    116       1.1      mrg 
    117       1.8      mrg 	/*
    118       1.8      mrg 	 * check for page daemon going to sleep (waiting for itself)
    119       1.8      mrg 	 */
    120       1.1      mrg 
    121       1.8      mrg 	if (curproc == uvm.pagedaemon_proc) {
    122       1.8      mrg 		/*
    123       1.8      mrg 		 * now we have a problem: the pagedaemon wants to go to
    124       1.8      mrg 		 * sleep until it frees more memory.   but how can it
    125       1.8      mrg 		 * free more memory if it is asleep?  that is a deadlock.
    126       1.8      mrg 		 * we have two options:
    127       1.8      mrg 		 *  [1] panic now
    128       1.8      mrg 		 *  [2] put a timeout on the sleep, thus causing the
    129       1.8      mrg 		 *      pagedaemon to only pause (rather than sleep forever)
    130       1.8      mrg 		 *
    131       1.8      mrg 		 * note that option [2] will only help us if we get lucky
    132       1.8      mrg 		 * and some other process on the system breaks the deadlock
    133       1.8      mrg 		 * by exiting or freeing memory (thus allowing the pagedaemon
    134       1.8      mrg 		 * to continue).  for now we panic if DEBUG is defined,
    135       1.8      mrg 		 * otherwise we hope for the best with option [2] (better
    136       1.8      mrg 		 * yet, this should never happen in the first place!).
    137       1.8      mrg 		 */
    138       1.1      mrg 
    139       1.8      mrg 		printf("pagedaemon: deadlock detected!\n");
    140       1.8      mrg 		timo = hz >> 3;		/* set timeout */
    141       1.1      mrg #if defined(DEBUG)
    142       1.8      mrg 		/* DEBUG: panic so we can debug it */
    143       1.8      mrg 		panic("pagedaemon deadlock");
    144       1.1      mrg #endif
    145       1.8      mrg 	}
    146       1.1      mrg 
    147       1.8      mrg 	simple_lock(&uvm.pagedaemon_lock);
    148      1.17  thorpej 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    149       1.8      mrg 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    150       1.8      mrg 	    timo);
    151       1.1      mrg 
    152       1.8      mrg 	splx(s);
    153       1.1      mrg }
    154       1.1      mrg 
    155       1.1      mrg 
    156       1.1      mrg /*
    157       1.1      mrg  * uvmpd_tune: tune paging parameters
    158       1.1      mrg  *
    159       1.1      mrg  * => called when ever memory is added (or removed?) to the system
    160       1.1      mrg  * => caller must call with page queues locked
    161       1.1      mrg  */
    162       1.1      mrg 
    163       1.8      mrg static void
    164       1.8      mrg uvmpd_tune()
    165       1.8      mrg {
    166       1.8      mrg 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    167       1.1      mrg 
    168       1.8      mrg 	uvmexp.freemin = uvmexp.npages / 20;
    169       1.1      mrg 
    170       1.8      mrg 	/* between 16k and 256k */
    171       1.8      mrg 	/* XXX:  what are these values good for? */
    172      1.11      chs 	uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    173      1.11      chs 	uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    174      1.23    bjh21 
    175      1.23    bjh21 	/* Make sure there's always a user page free. */
    176      1.23    bjh21 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    177      1.23    bjh21 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    178       1.1      mrg 
    179       1.8      mrg 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    180       1.8      mrg 	if (uvmexp.freetarg <= uvmexp.freemin)
    181       1.8      mrg 		uvmexp.freetarg = uvmexp.freemin + 1;
    182       1.1      mrg 
    183       1.8      mrg 	/* uvmexp.inactarg: computed in main daemon loop */
    184       1.1      mrg 
    185       1.8      mrg 	uvmexp.wiredmax = uvmexp.npages / 3;
    186       1.8      mrg 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    187       1.1      mrg 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    188       1.1      mrg }
    189       1.1      mrg 
    190       1.1      mrg /*
    191       1.1      mrg  * uvm_pageout: the main loop for the pagedaemon
    192       1.1      mrg  */
    193       1.1      mrg 
    194       1.8      mrg void
    195      1.22  thorpej uvm_pageout(void *arg)
    196       1.8      mrg {
    197       1.8      mrg 	int npages = 0;
    198       1.8      mrg 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    199      1.24      chs 
    200       1.8      mrg 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    201       1.8      mrg 
    202       1.8      mrg 	/*
    203       1.8      mrg 	 * ensure correct priority and set paging parameters...
    204       1.8      mrg 	 */
    205       1.8      mrg 
    206       1.8      mrg 	uvm.pagedaemon_proc = curproc;
    207       1.8      mrg 	(void) spl0();
    208       1.8      mrg 	uvm_lock_pageq();
    209       1.8      mrg 	npages = uvmexp.npages;
    210       1.8      mrg 	uvmpd_tune();
    211       1.8      mrg 	uvm_unlock_pageq();
    212       1.8      mrg 
    213       1.8      mrg 	/*
    214       1.8      mrg 	 * main loop
    215       1.8      mrg 	 */
    216      1.24      chs 
    217      1.24      chs 	for (;;) {
    218      1.24      chs 		simple_lock(&uvm.pagedaemon_lock);
    219      1.24      chs 
    220      1.24      chs 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    221      1.24      chs 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    222      1.24      chs 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    223      1.24      chs 		uvmexp.pdwoke++;
    224      1.24      chs 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    225      1.24      chs 
    226      1.24      chs 		/* drain pool resources */
    227      1.24      chs 		pool_drain(0);
    228       1.1      mrg 
    229       1.8      mrg 		/*
    230      1.24      chs 		 * now lock page queues and recompute inactive count
    231       1.8      mrg 		 */
    232       1.8      mrg 
    233      1.24      chs 		uvm_lock_pageq();
    234      1.24      chs 		if (npages != uvmexp.npages) {	/* check for new pages? */
    235      1.24      chs 			npages = uvmexp.npages;
    236      1.24      chs 			uvmpd_tune();
    237      1.24      chs 		}
    238      1.24      chs 
    239      1.24      chs 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    240      1.24      chs 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    241      1.24      chs 			uvmexp.inactarg = uvmexp.freetarg + 1;
    242      1.24      chs 		}
    243      1.24      chs 
    244      1.24      chs 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    245      1.24      chs 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    246      1.24      chs 		    uvmexp.inactarg);
    247       1.8      mrg 
    248       1.8      mrg 		/*
    249      1.24      chs 		 * scan if needed
    250       1.8      mrg 		 */
    251       1.8      mrg 
    252      1.24      chs 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    253  1.29.2.1  nathanw 		    uvmexp.inactive < uvmexp.inactarg) {
    254      1.24      chs 			uvmpd_scan();
    255       1.8      mrg 		}
    256       1.8      mrg 
    257       1.8      mrg 		/*
    258      1.24      chs 		 * if there's any free memory to be had,
    259      1.24      chs 		 * wake up any waiters.
    260       1.8      mrg 		 */
    261       1.8      mrg 
    262      1.24      chs 		if (uvmexp.free > uvmexp.reserve_kernel ||
    263      1.24      chs 		    uvmexp.paging == 0) {
    264      1.24      chs 			wakeup(&uvmexp.free);
    265       1.8      mrg 		}
    266       1.1      mrg 
    267       1.8      mrg 		/*
    268      1.24      chs 		 * scan done.  unlock page queues (the only lock we are holding)
    269       1.8      mrg 		 */
    270       1.8      mrg 
    271      1.24      chs 		uvm_unlock_pageq();
    272      1.24      chs 	}
    273      1.24      chs 	/*NOTREACHED*/
    274      1.24      chs }
    275      1.24      chs 
    276       1.8      mrg 
    277      1.24      chs /*
    278      1.24      chs  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    279      1.24      chs  */
    280       1.8      mrg 
    281      1.24      chs void
    282      1.24      chs uvm_aiodone_daemon(void *arg)
    283      1.24      chs {
    284      1.24      chs 	int s, free;
    285      1.24      chs 	struct buf *bp, *nbp;
    286      1.24      chs 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    287       1.9       pk 
    288      1.24      chs 	for (;;) {
    289       1.8      mrg 
    290       1.8      mrg 		/*
    291      1.24      chs 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    292      1.24      chs 		 * we need splbio because we want to make sure the aio_done list
    293      1.24      chs 		 * is totally empty before we go to sleep.
    294       1.8      mrg 		 */
    295       1.8      mrg 
    296      1.24      chs 		s = splbio();
    297      1.24      chs 		simple_lock(&uvm.aiodoned_lock);
    298      1.24      chs 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    299      1.24      chs 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    300      1.24      chs 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    301      1.24      chs 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    302      1.24      chs 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    303      1.24      chs 
    304      1.24      chs 			/* relock aiodoned_lock, still at splbio */
    305      1.24      chs 			simple_lock(&uvm.aiodoned_lock);
    306       1.8      mrg 		}
    307       1.8      mrg 
    308      1.24      chs 		/*
    309      1.24      chs 		 * check for done aio structures
    310      1.24      chs 		 */
    311       1.8      mrg 
    312      1.24      chs 		bp = TAILQ_FIRST(&uvm.aio_done);
    313      1.24      chs 		if (bp) {
    314      1.24      chs 			TAILQ_INIT(&uvm.aio_done);
    315      1.24      chs 		}
    316       1.8      mrg 
    317      1.24      chs 		simple_unlock(&uvm.aiodoned_lock);
    318      1.24      chs 		splx(s);
    319       1.8      mrg 
    320       1.8      mrg 		/*
    321      1.24      chs 		 * process each i/o that's done.
    322       1.8      mrg 		 */
    323       1.8      mrg 
    324      1.24      chs 		free = uvmexp.free;
    325      1.24      chs 		while (bp != NULL) {
    326      1.24      chs 			if (bp->b_flags & B_PDAEMON) {
    327      1.24      chs 				uvmexp.paging -= bp->b_bufsize >> PAGE_SHIFT;
    328      1.24      chs 			}
    329      1.24      chs 			nbp = TAILQ_NEXT(bp, b_freelist);
    330      1.24      chs 			(*bp->b_iodone)(bp);
    331      1.24      chs 			bp = nbp;
    332      1.24      chs 		}
    333      1.24      chs 		if (free <= uvmexp.reserve_kernel) {
    334      1.24      chs 			s = uvm_lock_fpageq();
    335      1.24      chs 			wakeup(&uvm.pagedaemon);
    336      1.24      chs 			uvm_unlock_fpageq(s);
    337      1.24      chs 		} else {
    338      1.24      chs 			simple_lock(&uvm.pagedaemon_lock);
    339      1.17  thorpej 			wakeup(&uvmexp.free);
    340      1.24      chs 			simple_unlock(&uvm.pagedaemon_lock);
    341      1.24      chs 		}
    342       1.8      mrg 	}
    343       1.1      mrg }
    344       1.1      mrg 
    345      1.24      chs 
    346      1.24      chs 
    347       1.1      mrg /*
    348      1.24      chs  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    349       1.1      mrg  *
    350       1.1      mrg  * => called with page queues locked
    351       1.1      mrg  * => we work on meeting our free target by converting inactive pages
    352       1.1      mrg  *    into free pages.
    353       1.1      mrg  * => we handle the building of swap-backed clusters
    354       1.1      mrg  * => we return TRUE if we are exiting because we met our target
    355       1.1      mrg  */
    356       1.1      mrg 
    357       1.8      mrg static boolean_t
    358       1.8      mrg uvmpd_scan_inactive(pglst)
    359       1.8      mrg 	struct pglist *pglst;
    360       1.8      mrg {
    361       1.8      mrg 	boolean_t retval = FALSE;	/* assume we haven't hit target */
    362       1.8      mrg 	int s, free, result;
    363       1.8      mrg 	struct vm_page *p, *nextpg;
    364       1.8      mrg 	struct uvm_object *uobj;
    365      1.11      chs 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
    366       1.8      mrg 	int npages;
    367      1.11      chs 	struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; 	/* XXX: see below */
    368       1.8      mrg 	int swnpages, swcpages;				/* XXX: see below */
    369      1.14      chs 	int swslot;
    370       1.8      mrg 	struct vm_anon *anon;
    371  1.29.2.1  nathanw 	boolean_t swap_backed;
    372      1.10      eeh 	vaddr_t start;
    373  1.29.2.1  nathanw 	int dirtyreacts, t;
    374       1.8      mrg 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    375       1.1      mrg 
    376       1.8      mrg 	/*
    377       1.8      mrg 	 * swslot is non-zero if we are building a swap cluster.  we want
    378      1.24      chs 	 * to stay in the loop while we have a page to scan or we have
    379       1.8      mrg 	 * a swap-cluster to build.
    380       1.8      mrg 	 */
    381      1.24      chs 
    382       1.8      mrg 	swslot = 0;
    383       1.8      mrg 	swnpages = swcpages = 0;
    384       1.8      mrg 	free = 0;
    385      1.14      chs 	dirtyreacts = 0;
    386       1.8      mrg 
    387      1.24      chs 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
    388       1.8      mrg 
    389       1.8      mrg 		/*
    390       1.8      mrg 		 * note that p can be NULL iff we have traversed the whole
    391       1.8      mrg 		 * list and need to do one final swap-backed clustered pageout.
    392       1.8      mrg 		 */
    393      1.24      chs 
    394      1.24      chs 		uobj = NULL;
    395      1.24      chs 		anon = NULL;
    396      1.24      chs 
    397       1.8      mrg 		if (p) {
    398      1.24      chs 
    399       1.8      mrg 			/*
    400       1.8      mrg 			 * update our copy of "free" and see if we've met
    401       1.8      mrg 			 * our target
    402       1.8      mrg 			 */
    403      1.24      chs 
    404      1.16  thorpej 			s = uvm_lock_fpageq();
    405       1.8      mrg 			free = uvmexp.free;
    406      1.16  thorpej 			uvm_unlock_fpageq(s);
    407       1.8      mrg 
    408      1.14      chs 			if (free + uvmexp.paging >= uvmexp.freetarg << 2 ||
    409  1.29.2.1  nathanw 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    410  1.29.2.1  nathanw 				UVMHIST_LOG(pdhist,"  met free target: "
    411  1.29.2.1  nathanw 					    "exit loop", 0, 0, 0, 0);
    412  1.29.2.1  nathanw 				retval = TRUE;
    413  1.29.2.1  nathanw 
    414  1.29.2.1  nathanw 				if (swslot == 0) {
    415  1.29.2.1  nathanw 					/* exit now if no swap-i/o pending */
    416  1.29.2.1  nathanw 					break;
    417      1.24      chs 				}
    418  1.29.2.1  nathanw 
    419  1.29.2.1  nathanw 				/* set p to null to signal final swap i/o */
    420  1.29.2.1  nathanw 				p = NULL;
    421       1.8      mrg 			}
    422       1.8      mrg 		}
    423       1.8      mrg 
    424      1.24      chs 		if (p) {	/* if (we have a new page to consider) */
    425  1.29.2.1  nathanw 
    426       1.8      mrg 			/*
    427       1.8      mrg 			 * we are below target and have a new page to consider.
    428       1.8      mrg 			 */
    429       1.8      mrg 			uvmexp.pdscans++;
    430      1.24      chs 			nextpg = TAILQ_NEXT(p, pageq);
    431       1.8      mrg 
    432      1.27  mycroft 			/*
    433      1.27  mycroft 			 * move referenced pages back to active queue and
    434  1.29.2.1  nathanw 			 * skip to next page.
    435      1.27  mycroft 			 */
    436  1.29.2.1  nathanw 
    437      1.27  mycroft 			if (pmap_is_referenced(p)) {
    438      1.27  mycroft 				uvm_pageactivate(p);
    439      1.27  mycroft 				uvmexp.pdreact++;
    440      1.27  mycroft 				continue;
    441      1.27  mycroft 			}
    442  1.29.2.1  nathanw 
    443  1.29.2.1  nathanw 			/*
    444  1.29.2.1  nathanw 			 * enforce the minimum thresholds on different
    445  1.29.2.1  nathanw 			 * types of memory usage.  if reusing the current
    446  1.29.2.1  nathanw 			 * page would reduce that type of usage below its
    447  1.29.2.1  nathanw 			 * minimum, reactivate the page instead and move
    448  1.29.2.1  nathanw 			 * on to the next page.
    449  1.29.2.1  nathanw 			 */
    450  1.29.2.1  nathanw 
    451  1.29.2.1  nathanw 			t = uvmexp.active + uvmexp.inactive + uvmexp.free;
    452  1.29.2.1  nathanw 			if (p->uanon &&
    453  1.29.2.1  nathanw 			    uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8) {
    454  1.29.2.1  nathanw 				uvm_pageactivate(p);
    455  1.29.2.1  nathanw 				uvmexp.pdreanon++;
    456  1.29.2.1  nathanw 				continue;
    457  1.29.2.1  nathanw 			}
    458  1.29.2.1  nathanw 			if (p->uobject && UVM_OBJ_IS_VTEXT(p->uobject) &&
    459  1.29.2.1  nathanw 			    uvmexp.vtextpages <= (t * uvmexp.vtextmin) >> 8) {
    460  1.29.2.1  nathanw 				uvm_pageactivate(p);
    461  1.29.2.1  nathanw 				uvmexp.pdrevtext++;
    462  1.29.2.1  nathanw 				continue;
    463  1.29.2.1  nathanw 			}
    464  1.29.2.1  nathanw 			if (p->uobject && UVM_OBJ_IS_VNODE(p->uobject) &&
    465  1.29.2.1  nathanw 			    !UVM_OBJ_IS_VTEXT(p->uobject) &&
    466  1.29.2.1  nathanw 			    uvmexp.vnodepages <= (t * uvmexp.vnodemin) >> 8) {
    467  1.29.2.1  nathanw 				uvm_pageactivate(p);
    468  1.29.2.1  nathanw 				uvmexp.pdrevnode++;
    469  1.29.2.1  nathanw 				continue;
    470  1.29.2.1  nathanw 			}
    471  1.29.2.1  nathanw 
    472       1.8      mrg 			/*
    473       1.8      mrg 			 * first we attempt to lock the object that this page
    474       1.8      mrg 			 * belongs to.  if our attempt fails we skip on to
    475       1.8      mrg 			 * the next page (no harm done).  it is important to
    476       1.8      mrg 			 * "try" locking the object as we are locking in the
    477       1.8      mrg 			 * wrong order (pageq -> object) and we don't want to
    478      1.24      chs 			 * deadlock.
    479       1.8      mrg 			 *
    480      1.24      chs 			 * the only time we expect to see an ownerless page
    481       1.8      mrg 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    482       1.8      mrg 			 * anon has loaned a page from a uvm_object and the
    483       1.8      mrg 			 * uvm_object has dropped the ownership.  in that
    484       1.8      mrg 			 * case, the anon can "take over" the loaned page
    485       1.8      mrg 			 * and make it its own.
    486       1.8      mrg 			 */
    487  1.29.2.1  nathanw 
    488       1.8      mrg 			/* is page part of an anon or ownerless ? */
    489       1.8      mrg 			if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
    490       1.8      mrg 				anon = p->uanon;
    491      1.24      chs 				KASSERT(anon != NULL);
    492  1.29.2.1  nathanw 				if (!simple_lock_try(&anon->an_lock)) {
    493       1.8      mrg 					/* lock failed, skip this page */
    494       1.8      mrg 					continue;
    495  1.29.2.1  nathanw 				}
    496       1.8      mrg 
    497       1.8      mrg 				/*
    498       1.8      mrg 				 * if the page is ownerless, claim it in the
    499       1.8      mrg 				 * name of "anon"!
    500       1.8      mrg 				 */
    501      1.24      chs 
    502       1.8      mrg 				if ((p->pqflags & PQ_ANON) == 0) {
    503      1.24      chs 					KASSERT(p->loan_count > 0);
    504       1.8      mrg 					p->loan_count--;
    505      1.24      chs 					p->pqflags |= PQ_ANON;
    506      1.24      chs 					/* anon now owns it */
    507       1.8      mrg 				}
    508       1.8      mrg 				if (p->flags & PG_BUSY) {
    509       1.8      mrg 					simple_unlock(&anon->an_lock);
    510       1.8      mrg 					uvmexp.pdbusy++;
    511       1.8      mrg 					/* someone else owns page, skip it */
    512       1.8      mrg 					continue;
    513       1.8      mrg 				}
    514       1.8      mrg 				uvmexp.pdanscan++;
    515       1.8      mrg 			} else {
    516       1.8      mrg 				uobj = p->uobject;
    517      1.24      chs 				KASSERT(uobj != NULL);
    518  1.29.2.1  nathanw 				if (!simple_lock_try(&uobj->vmobjlock)) {
    519       1.8      mrg 					/* lock failed, skip this page */
    520      1.24      chs 					continue;
    521  1.29.2.1  nathanw 				}
    522       1.8      mrg 				if (p->flags & PG_BUSY) {
    523       1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    524       1.8      mrg 					uvmexp.pdbusy++;
    525       1.8      mrg 					/* someone else owns page, skip it */
    526      1.24      chs 					continue;
    527       1.8      mrg 				}
    528       1.8      mrg 				uvmexp.pdobscan++;
    529       1.8      mrg 			}
    530       1.8      mrg 
    531       1.8      mrg 			/*
    532       1.8      mrg 			 * we now have the object and the page queues locked.
    533      1.29  thorpej 			 * the page is not busy.  remove all the permissions
    534      1.29  thorpej 			 * from the page so we can sync the modified info
    535      1.29  thorpej 			 * without any race conditions.  if the page is clean
    536      1.29  thorpej 			 * we can free it now and continue.
    537       1.8      mrg 			 */
    538       1.8      mrg 
    539      1.29  thorpej 			pmap_page_protect(p, VM_PROT_NONE);
    540  1.29.2.1  nathanw 			if ((p->flags & PG_CLEAN) != 0 && pmap_is_modified(p)) {
    541      1.29  thorpej 				p->flags &= ~PG_CLEAN;
    542  1.29.2.1  nathanw 			}
    543      1.29  thorpej 
    544       1.8      mrg 			if (p->flags & PG_CLEAN) {
    545      1.14      chs 				if (p->pqflags & PQ_SWAPBACKED) {
    546      1.14      chs 					/* this page now lives only in swap */
    547      1.14      chs 					simple_lock(&uvm.swap_data_lock);
    548      1.14      chs 					uvmexp.swpgonly++;
    549      1.14      chs 					simple_unlock(&uvm.swap_data_lock);
    550      1.14      chs 				}
    551      1.14      chs 
    552       1.8      mrg 				uvm_pagefree(p);
    553       1.8      mrg 				uvmexp.pdfreed++;
    554      1.24      chs 
    555       1.8      mrg 				if (anon) {
    556      1.24      chs 
    557       1.8      mrg 					/*
    558       1.8      mrg 					 * an anonymous page can only be clean
    559      1.24      chs 					 * if it has backing store assigned.
    560       1.8      mrg 					 */
    561      1.24      chs 
    562      1.24      chs 					KASSERT(anon->an_swslot != 0);
    563      1.24      chs 
    564       1.8      mrg 					/* remove from object */
    565       1.8      mrg 					anon->u.an_page = NULL;
    566       1.8      mrg 					simple_unlock(&anon->an_lock);
    567       1.8      mrg 				} else {
    568       1.8      mrg 					/* pagefree has already removed the
    569       1.8      mrg 					 * page from the object */
    570       1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    571       1.8      mrg 				}
    572       1.8      mrg 				continue;
    573       1.8      mrg 			}
    574       1.8      mrg 
    575       1.8      mrg 			/*
    576       1.8      mrg 			 * this page is dirty, skip it if we'll have met our
    577       1.8      mrg 			 * free target when all the current pageouts complete.
    578       1.8      mrg 			 */
    579      1.24      chs 
    580  1.29.2.1  nathanw 			if (free + uvmexp.paging > uvmexp.freetarg << 2) {
    581       1.8      mrg 				if (anon) {
    582       1.8      mrg 					simple_unlock(&anon->an_lock);
    583       1.8      mrg 				} else {
    584       1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    585       1.8      mrg 				}
    586       1.8      mrg 				continue;
    587       1.8      mrg 			}
    588       1.8      mrg 
    589       1.8      mrg 			/*
    590      1.14      chs 			 * this page is dirty, but we can't page it out
    591      1.14      chs 			 * since all pages in swap are only in swap.
    592      1.14      chs 			 * reactivate it so that we eventually cycle
    593      1.14      chs 			 * all pages thru the inactive queue.
    594      1.14      chs 			 */
    595      1.24      chs 
    596      1.24      chs 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
    597      1.14      chs 			if ((p->pqflags & PQ_SWAPBACKED) &&
    598      1.14      chs 			    uvmexp.swpgonly == uvmexp.swpages) {
    599      1.14      chs 				dirtyreacts++;
    600      1.14      chs 				uvm_pageactivate(p);
    601      1.14      chs 				if (anon) {
    602      1.14      chs 					simple_unlock(&anon->an_lock);
    603      1.14      chs 				} else {
    604      1.14      chs 					simple_unlock(&uobj->vmobjlock);
    605      1.14      chs 				}
    606      1.14      chs 				continue;
    607      1.14      chs 			}
    608      1.14      chs 
    609      1.14      chs 			/*
    610      1.14      chs 			 * if the page is swap-backed and dirty and swap space
    611      1.14      chs 			 * is full, free any swap allocated to the page
    612      1.14      chs 			 * so that other pages can be paged out.
    613      1.14      chs 			 */
    614      1.24      chs 
    615      1.24      chs 			KASSERT(uvmexp.swpginuse <= uvmexp.swpages);
    616      1.14      chs 			if ((p->pqflags & PQ_SWAPBACKED) &&
    617      1.14      chs 			    uvmexp.swpginuse == uvmexp.swpages) {
    618      1.14      chs 
    619      1.14      chs 				if ((p->pqflags & PQ_ANON) &&
    620      1.14      chs 				    p->uanon->an_swslot) {
    621      1.14      chs 					uvm_swap_free(p->uanon->an_swslot, 1);
    622      1.14      chs 					p->uanon->an_swslot = 0;
    623      1.14      chs 				}
    624      1.14      chs 				if (p->pqflags & PQ_AOBJ) {
    625      1.14      chs 					uao_dropswap(p->uobject,
    626      1.14      chs 						     p->offset >> PAGE_SHIFT);
    627      1.14      chs 				}
    628      1.14      chs 			}
    629      1.14      chs 
    630      1.14      chs 			/*
    631       1.8      mrg 			 * the page we are looking at is dirty.   we must
    632       1.8      mrg 			 * clean it before it can be freed.  to do this we
    633       1.8      mrg 			 * first mark the page busy so that no one else will
    634      1.24      chs 			 * touch the page.
    635       1.8      mrg 			 */
    636  1.29.2.1  nathanw 
    637       1.8      mrg 			swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
    638       1.8      mrg 			p->flags |= PG_BUSY;		/* now we own it */
    639       1.8      mrg 			UVM_PAGE_OWN(p, "scan_inactive");
    640       1.8      mrg 			uvmexp.pgswapout++;
    641       1.8      mrg 
    642       1.8      mrg 			/*
    643       1.8      mrg 			 * for swap-backed pages we need to (re)allocate
    644       1.8      mrg 			 * swap space.
    645       1.8      mrg 			 */
    646      1.24      chs 
    647       1.8      mrg 			if (swap_backed) {
    648       1.8      mrg 
    649       1.8      mrg 				/*
    650       1.8      mrg 				 * free old swap slot (if any)
    651       1.8      mrg 				 */
    652      1.24      chs 
    653       1.8      mrg 				if (anon) {
    654       1.8      mrg 					if (anon->an_swslot) {
    655       1.8      mrg 						uvm_swap_free(anon->an_swslot,
    656       1.8      mrg 						    1);
    657       1.8      mrg 						anon->an_swslot = 0;
    658       1.8      mrg 					}
    659       1.8      mrg 				} else {
    660      1.14      chs 					uao_dropswap(uobj,
    661      1.14      chs 						     p->offset >> PAGE_SHIFT);
    662       1.8      mrg 				}
    663       1.8      mrg 
    664       1.8      mrg 				/*
    665       1.8      mrg 				 * start new cluster (if necessary)
    666       1.8      mrg 				 */
    667      1.24      chs 
    668       1.8      mrg 				if (swslot == 0) {
    669      1.11      chs 					swnpages = MAXBSIZE >> PAGE_SHIFT;
    670       1.8      mrg 					swslot = uvm_swap_alloc(&swnpages,
    671       1.8      mrg 					    TRUE);
    672       1.8      mrg 					if (swslot == 0) {
    673       1.8      mrg 						/* no swap?  give up! */
    674       1.8      mrg 						p->flags &= ~PG_BUSY;
    675       1.8      mrg 						UVM_PAGE_OWN(p, NULL);
    676       1.8      mrg 						if (anon)
    677       1.8      mrg 							simple_unlock(
    678       1.8      mrg 							    &anon->an_lock);
    679       1.8      mrg 						else
    680       1.8      mrg 							simple_unlock(
    681       1.8      mrg 							    &uobj->vmobjlock);
    682       1.8      mrg 						continue;
    683       1.8      mrg 					}
    684       1.8      mrg 					swcpages = 0;	/* cluster is empty */
    685       1.8      mrg 				}
    686       1.8      mrg 
    687       1.8      mrg 				/*
    688       1.8      mrg 				 * add block to cluster
    689       1.8      mrg 				 */
    690      1.24      chs 
    691  1.29.2.3  nathanw 				if (anon) {
    692       1.8      mrg 					anon->an_swslot = swslot + swcpages;
    693  1.29.2.3  nathanw 				} else {
    694  1.29.2.3  nathanw 					result = uao_set_swslot(uobj,
    695      1.11      chs 					    p->offset >> PAGE_SHIFT,
    696       1.8      mrg 					    swslot + swcpages);
    697  1.29.2.3  nathanw 					if (result == -1) {
    698  1.29.2.3  nathanw 						p->flags &= ~PG_BUSY;
    699  1.29.2.3  nathanw 						UVM_PAGE_OWN(p, NULL);
    700  1.29.2.3  nathanw 						simple_unlock(&uobj->vmobjlock);
    701  1.29.2.3  nathanw 						continue;
    702  1.29.2.3  nathanw 					}
    703  1.29.2.3  nathanw 				}
    704  1.29.2.3  nathanw 				swpps[swcpages] = p;
    705       1.8      mrg 				swcpages++;
    706       1.8      mrg 			}
    707       1.8      mrg 		} else {
    708       1.8      mrg 
    709       1.8      mrg 			/* if p == NULL we must be doing a last swap i/o */
    710       1.8      mrg 			swap_backed = TRUE;
    711       1.8      mrg 		}
    712       1.8      mrg 
    713       1.8      mrg 		/*
    714      1.24      chs 		 * now consider doing the pageout.
    715       1.8      mrg 		 *
    716      1.24      chs 		 * for swap-backed pages, we do the pageout if we have either
    717      1.24      chs 		 * filled the cluster (in which case (swnpages == swcpages) or
    718       1.8      mrg 		 * run out of pages (p == NULL).
    719       1.8      mrg 		 *
    720       1.8      mrg 		 * for object pages, we always do the pageout.
    721       1.8      mrg 		 */
    722      1.24      chs 
    723       1.8      mrg 		if (swap_backed) {
    724       1.8      mrg 			if (p) {	/* if we just added a page to cluster */
    725       1.8      mrg 				if (anon)
    726       1.8      mrg 					simple_unlock(&anon->an_lock);
    727       1.8      mrg 				else
    728       1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    729       1.8      mrg 
    730       1.8      mrg 				/* cluster not full yet? */
    731       1.8      mrg 				if (swcpages < swnpages)
    732       1.8      mrg 					continue;
    733       1.8      mrg 			}
    734       1.8      mrg 
    735       1.8      mrg 			/* starting I/O now... set up for it */
    736       1.8      mrg 			npages = swcpages;
    737       1.8      mrg 			ppsp = swpps;
    738       1.8      mrg 			/* for swap-backed pages only */
    739      1.10      eeh 			start = (vaddr_t) swslot;
    740       1.8      mrg 
    741       1.8      mrg 			/* if this is final pageout we could have a few
    742       1.8      mrg 			 * extra swap blocks */
    743       1.8      mrg 			if (swcpages < swnpages) {
    744       1.8      mrg 				uvm_swap_free(swslot + swcpages,
    745       1.8      mrg 				    (swnpages - swcpages));
    746      1.24      chs 			}
    747       1.8      mrg 		} else {
    748       1.8      mrg 			/* normal object pageout */
    749       1.8      mrg 			ppsp = pps;
    750       1.8      mrg 			npages = sizeof(pps) / sizeof(struct vm_page *);
    751       1.8      mrg 			/* not looked at because PGO_ALLPAGES is set */
    752       1.8      mrg 			start = 0;
    753       1.8      mrg 		}
    754       1.8      mrg 
    755       1.8      mrg 		/*
    756       1.8      mrg 		 * now do the pageout.
    757      1.24      chs 		 *
    758       1.8      mrg 		 * for swap_backed pages we have already built the cluster.
    759       1.8      mrg 		 * for !swap_backed pages, uvm_pager_put will call the object's
    760       1.8      mrg 		 * "make put cluster" function to build a cluster on our behalf.
    761       1.8      mrg 		 *
    762       1.8      mrg 		 * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
    763       1.8      mrg 		 * it to free the cluster pages for us on a successful I/O (it
    764       1.8      mrg 		 * always does this for un-successful I/O requests).  this
    765       1.8      mrg 		 * allows us to do clustered pageout without having to deal
    766       1.8      mrg 		 * with cluster pages at this level.
    767       1.8      mrg 		 *
    768       1.8      mrg 		 * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
    769       1.8      mrg 		 *  IN: locked: uobj (if !swap_backed), page queues
    770  1.29.2.1  nathanw 		 * OUT:!locked: pageqs, uobj
    771       1.8      mrg 		 */
    772       1.8      mrg 
    773       1.8      mrg 		/* locked: uobj (if !swap_backed), page queues */
    774       1.8      mrg 		uvmexp.pdpageouts++;
    775      1.24      chs 		result = uvm_pager_put(swap_backed ? NULL : uobj, p,
    776       1.8      mrg 		    &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
    777  1.29.2.1  nathanw 		/* unlocked: pageqs, uobj */
    778       1.8      mrg 
    779       1.8      mrg 		/*
    780       1.8      mrg 		 * if we did i/o to swap, zero swslot to indicate that we are
    781       1.8      mrg 		 * no longer building a swap-backed cluster.
    782       1.8      mrg 		 */
    783       1.8      mrg 
    784       1.8      mrg 		if (swap_backed)
    785       1.8      mrg 			swslot = 0;		/* done with this cluster */
    786       1.8      mrg 
    787       1.8      mrg 		/*
    788  1.29.2.1  nathanw 		 * if the pageout failed, reactivate the page and continue.
    789       1.8      mrg 		 */
    790       1.8      mrg 
    791  1.29.2.1  nathanw 		if (result == EIO && curproc == uvm.pagedaemon_proc) {
    792      1.24      chs 			uvm_lock_pageq();
    793      1.24      chs 			nextpg = TAILQ_NEXT(p, pageq);
    794      1.24      chs 			uvm_pageactivate(p);
    795      1.24      chs 			continue;
    796      1.24      chs 		}
    797      1.24      chs 
    798       1.8      mrg 		/*
    799  1.29.2.1  nathanw 		 * the pageout is in progress.  bump counters and set up
    800  1.29.2.1  nathanw 		 * for the next loop.
    801       1.8      mrg 		 */
    802       1.8      mrg 
    803  1.29.2.1  nathanw 		uvm_lock_pageq();
    804  1.29.2.1  nathanw 		uvmexp.paging += npages;
    805  1.29.2.1  nathanw 		uvmexp.pdpending++;
    806       1.8      mrg 		if (p) {
    807  1.29.2.1  nathanw 			if (p->pqflags & PQ_INACTIVE)
    808      1.24      chs 				nextpg = TAILQ_NEXT(p, pageq);
    809  1.29.2.1  nathanw 			else
    810  1.29.2.1  nathanw 				nextpg = TAILQ_FIRST(pglst);
    811      1.24      chs 		} else {
    812       1.8      mrg 			nextpg = NULL;
    813       1.8      mrg 		}
    814      1.24      chs 	}
    815       1.8      mrg 	return (retval);
    816       1.1      mrg }
    817       1.1      mrg 
    818       1.1      mrg /*
    819       1.1      mrg  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    820       1.1      mrg  *
    821       1.1      mrg  * => called with pageq's locked
    822       1.1      mrg  */
    823       1.1      mrg 
    824       1.8      mrg void
    825       1.8      mrg uvmpd_scan()
    826       1.1      mrg {
    827      1.14      chs 	int s, free, inactive_shortage, swap_shortage, pages_freed;
    828       1.8      mrg 	struct vm_page *p, *nextpg;
    829       1.8      mrg 	struct uvm_object *uobj;
    830       1.8      mrg 	boolean_t got_it;
    831       1.8      mrg 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    832       1.1      mrg 
    833       1.8      mrg 	uvmexp.pdrevs++;		/* counter */
    834      1.24      chs 	uobj = NULL;
    835       1.1      mrg 
    836       1.8      mrg 	/*
    837       1.8      mrg 	 * get current "free" page count
    838       1.8      mrg 	 */
    839      1.16  thorpej 	s = uvm_lock_fpageq();
    840       1.8      mrg 	free = uvmexp.free;
    841      1.16  thorpej 	uvm_unlock_fpageq(s);
    842       1.1      mrg 
    843       1.1      mrg #ifndef __SWAP_BROKEN
    844       1.8      mrg 	/*
    845       1.8      mrg 	 * swap out some processes if we are below our free target.
    846       1.8      mrg 	 * we need to unlock the page queues for this.
    847       1.8      mrg 	 */
    848       1.8      mrg 	if (free < uvmexp.freetarg) {
    849       1.8      mrg 		uvmexp.pdswout++;
    850       1.8      mrg 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout", free,
    851       1.8      mrg 		    uvmexp.freetarg, 0, 0);
    852       1.8      mrg 		uvm_unlock_pageq();
    853       1.8      mrg 		uvm_swapout_threads();
    854       1.8      mrg 		uvm_lock_pageq();
    855       1.1      mrg 
    856       1.8      mrg 	}
    857       1.1      mrg #endif
    858       1.1      mrg 
    859       1.8      mrg 	/*
    860       1.8      mrg 	 * now we want to work on meeting our targets.   first we work on our
    861       1.8      mrg 	 * free target by converting inactive pages into free pages.  then
    862       1.8      mrg 	 * we work on meeting our inactive target by converting active pages
    863       1.8      mrg 	 * to inactive ones.
    864       1.8      mrg 	 */
    865       1.8      mrg 
    866       1.8      mrg 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    867       1.8      mrg 
    868       1.8      mrg 	/*
    869      1.24      chs 	 * alternate starting queue between swap and object based on the
    870      1.24      chs 	 * low bit of uvmexp.pdrevs (which we bump by one each call).
    871       1.8      mrg 	 */
    872       1.8      mrg 
    873       1.8      mrg 	got_it = FALSE;
    874      1.14      chs 	pages_freed = uvmexp.pdfreed;
    875  1.29.2.2  nathanw 	(void) uvmpd_scan_inactive(&uvm.page_inactive);
    876      1.14      chs 	pages_freed = uvmexp.pdfreed - pages_freed;
    877       1.8      mrg 
    878       1.8      mrg 	/*
    879       1.8      mrg 	 * we have done the scan to get free pages.   now we work on meeting
    880       1.8      mrg 	 * our inactive target.
    881       1.8      mrg 	 */
    882       1.8      mrg 
    883      1.14      chs 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
    884      1.14      chs 
    885      1.14      chs 	/*
    886      1.14      chs 	 * detect if we're not going to be able to page anything out
    887      1.14      chs 	 * until we free some swap resources from active pages.
    888      1.14      chs 	 */
    889      1.24      chs 
    890      1.14      chs 	swap_shortage = 0;
    891      1.14      chs 	if (uvmexp.free < uvmexp.freetarg &&
    892      1.14      chs 	    uvmexp.swpginuse == uvmexp.swpages &&
    893      1.14      chs 	    uvmexp.swpgonly < uvmexp.swpages &&
    894      1.14      chs 	    pages_freed == 0) {
    895      1.14      chs 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    896      1.14      chs 	}
    897      1.24      chs 
    898      1.14      chs 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
    899      1.14      chs 		    inactive_shortage, swap_shortage,0,0);
    900      1.24      chs 	for (p = TAILQ_FIRST(&uvm.page_active);
    901      1.14      chs 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
    902      1.14      chs 	     p = nextpg) {
    903      1.24      chs 		nextpg = TAILQ_NEXT(p, pageq);
    904       1.8      mrg 		if (p->flags & PG_BUSY)
    905       1.8      mrg 			continue;	/* quick check before trying to lock */
    906       1.8      mrg 
    907       1.8      mrg 		/*
    908      1.14      chs 		 * lock the page's owner.
    909       1.8      mrg 		 */
    910       1.8      mrg 		/* is page anon owned or ownerless? */
    911       1.8      mrg 		if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
    912      1.24      chs 			KASSERT(p->uanon != NULL);
    913       1.8      mrg 			if (!simple_lock_try(&p->uanon->an_lock))
    914       1.8      mrg 				continue;
    915       1.1      mrg 
    916       1.8      mrg 			/* take over the page? */
    917       1.8      mrg 			if ((p->pqflags & PQ_ANON) == 0) {
    918      1.24      chs 				KASSERT(p->loan_count > 0);
    919       1.8      mrg 				p->loan_count--;
    920       1.8      mrg 				p->pqflags |= PQ_ANON;
    921       1.8      mrg 			}
    922       1.8      mrg 		} else {
    923       1.8      mrg 			if (!simple_lock_try(&p->uobject->vmobjlock))
    924       1.8      mrg 				continue;
    925       1.8      mrg 		}
    926      1.24      chs 
    927      1.14      chs 		/*
    928      1.14      chs 		 * skip this page if it's busy.
    929      1.14      chs 		 */
    930      1.24      chs 
    931      1.14      chs 		if ((p->flags & PG_BUSY) != 0) {
    932      1.14      chs 			if (p->pqflags & PQ_ANON)
    933      1.14      chs 				simple_unlock(&p->uanon->an_lock);
    934      1.14      chs 			else
    935      1.14      chs 				simple_unlock(&p->uobject->vmobjlock);
    936      1.14      chs 			continue;
    937      1.14      chs 		}
    938      1.24      chs 
    939      1.14      chs 		/*
    940      1.14      chs 		 * if there's a shortage of swap, free any swap allocated
    941      1.14      chs 		 * to this page so that other pages can be paged out.
    942      1.14      chs 		 */
    943      1.24      chs 
    944      1.14      chs 		if (swap_shortage > 0) {
    945      1.14      chs 			if ((p->pqflags & PQ_ANON) && p->uanon->an_swslot) {
    946      1.14      chs 				uvm_swap_free(p->uanon->an_swslot, 1);
    947      1.14      chs 				p->uanon->an_swslot = 0;
    948      1.14      chs 				p->flags &= ~PG_CLEAN;
    949      1.14      chs 				swap_shortage--;
    950      1.14      chs 			}
    951      1.14      chs 			if (p->pqflags & PQ_AOBJ) {
    952      1.14      chs 				int slot = uao_set_swslot(p->uobject,
    953      1.14      chs 					p->offset >> PAGE_SHIFT, 0);
    954      1.14      chs 				if (slot) {
    955      1.14      chs 					uvm_swap_free(slot, 1);
    956      1.14      chs 					p->flags &= ~PG_CLEAN;
    957      1.14      chs 					swap_shortage--;
    958      1.14      chs 				}
    959      1.14      chs 			}
    960      1.14      chs 		}
    961      1.24      chs 
    962      1.14      chs 		/*
    963  1.29.2.2  nathanw 		 * If we're short on inactive pages, move this over
    964  1.29.2.2  nathanw 		 * to the inactive list.  The second hand will sweep
    965  1.29.2.2  nathanw 		 * it later, and if it has been referenced again, it
    966  1.29.2.2  nathanw 		 * will be moved back to active.
    967      1.14      chs 		 */
    968      1.24      chs 
    969  1.29.2.2  nathanw 		if (inactive_shortage > 0) {
    970  1.29.2.2  nathanw 			pmap_clear_reference(p);
    971       1.8      mrg 			/* no need to check wire_count as pg is "active" */
    972       1.8      mrg 			uvm_pagedeactivate(p);
    973       1.8      mrg 			uvmexp.pddeact++;
    974      1.14      chs 			inactive_shortage--;
    975       1.8      mrg 		}
    976       1.8      mrg 		if (p->pqflags & PQ_ANON)
    977       1.8      mrg 			simple_unlock(&p->uanon->an_lock);
    978       1.8      mrg 		else
    979       1.8      mrg 			simple_unlock(&p->uobject->vmobjlock);
    980       1.8      mrg 	}
    981       1.1      mrg }
    982