Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.29.2.4
      1  1.29.2.4  nathanw /*	$NetBSD: uvm_pdaemon.c,v 1.29.2.4 2001/09/21 22:37:17 nathanw Exp $	*/
      2       1.1      mrg 
      3  1.29.2.2  nathanw /*
      4       1.1      mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  1.29.2.2  nathanw  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6       1.1      mrg  *
      7       1.1      mrg  * All rights reserved.
      8       1.1      mrg  *
      9       1.1      mrg  * This code is derived from software contributed to Berkeley by
     10       1.1      mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11       1.1      mrg  *
     12       1.1      mrg  * Redistribution and use in source and binary forms, with or without
     13       1.1      mrg  * modification, are permitted provided that the following conditions
     14       1.1      mrg  * are met:
     15       1.1      mrg  * 1. Redistributions of source code must retain the above copyright
     16       1.1      mrg  *    notice, this list of conditions and the following disclaimer.
     17       1.1      mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.1      mrg  *    notice, this list of conditions and the following disclaimer in the
     19       1.1      mrg  *    documentation and/or other materials provided with the distribution.
     20       1.1      mrg  * 3. All advertising materials mentioning features or use of this software
     21       1.1      mrg  *    must display the following acknowledgement:
     22       1.1      mrg  *	This product includes software developed by Charles D. Cranor,
     23  1.29.2.2  nathanw  *      Washington University, the University of California, Berkeley and
     24       1.1      mrg  *      its contributors.
     25       1.1      mrg  * 4. Neither the name of the University nor the names of its contributors
     26       1.1      mrg  *    may be used to endorse or promote products derived from this software
     27       1.1      mrg  *    without specific prior written permission.
     28       1.1      mrg  *
     29       1.1      mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30       1.1      mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31       1.1      mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32       1.1      mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33       1.1      mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34       1.1      mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35       1.1      mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36       1.1      mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37       1.1      mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38       1.1      mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39       1.1      mrg  * SUCH DAMAGE.
     40       1.1      mrg  *
     41       1.1      mrg  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42       1.4      mrg  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43       1.1      mrg  *
     44       1.1      mrg  *
     45       1.1      mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46       1.1      mrg  * All rights reserved.
     47  1.29.2.2  nathanw  *
     48       1.1      mrg  * Permission to use, copy, modify and distribute this software and
     49       1.1      mrg  * its documentation is hereby granted, provided that both the copyright
     50       1.1      mrg  * notice and this permission notice appear in all copies of the
     51       1.1      mrg  * software, derivative works or modified versions, and any portions
     52       1.1      mrg  * thereof, and that both notices appear in supporting documentation.
     53  1.29.2.2  nathanw  *
     54  1.29.2.2  nathanw  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  1.29.2.2  nathanw  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56       1.1      mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  1.29.2.2  nathanw  *
     58       1.1      mrg  * Carnegie Mellon requests users of this software to return to
     59       1.1      mrg  *
     60       1.1      mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61       1.1      mrg  *  School of Computer Science
     62       1.1      mrg  *  Carnegie Mellon University
     63       1.1      mrg  *  Pittsburgh PA 15213-3890
     64       1.1      mrg  *
     65       1.1      mrg  * any improvements or extensions that they make and grant Carnegie the
     66       1.1      mrg  * rights to redistribute these changes.
     67       1.1      mrg  */
     68       1.1      mrg 
     69       1.7      mrg #include "opt_uvmhist.h"
     70       1.7      mrg 
     71       1.1      mrg /*
     72       1.1      mrg  * uvm_pdaemon.c: the page daemon
     73       1.1      mrg  */
     74       1.1      mrg 
     75       1.1      mrg #include <sys/param.h>
     76       1.1      mrg #include <sys/proc.h>
     77       1.1      mrg #include <sys/systm.h>
     78       1.1      mrg #include <sys/kernel.h>
     79       1.9       pk #include <sys/pool.h>
     80      1.24      chs #include <sys/buf.h>
     81  1.29.2.1  nathanw #include <sys/vnode.h>
     82       1.1      mrg 
     83       1.1      mrg #include <uvm/uvm.h>
     84       1.1      mrg 
     85       1.1      mrg /*
     86      1.14      chs  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
     87      1.14      chs  * in a pass thru the inactive list when swap is full.  the value should be
     88      1.14      chs  * "small"... if it's too large we'll cycle the active pages thru the inactive
     89      1.14      chs  * queue too quickly to for them to be referenced and avoid being freed.
     90      1.14      chs  */
     91      1.14      chs 
     92      1.14      chs #define UVMPD_NUMDIRTYREACTS 16
     93      1.14      chs 
     94      1.14      chs 
     95      1.14      chs /*
     96       1.1      mrg  * local prototypes
     97       1.1      mrg  */
     98       1.1      mrg 
     99  1.29.2.4  nathanw void		uvmpd_scan __P((void));
    100  1.29.2.4  nathanw boolean_t	uvmpd_scan_inactive __P((struct pglist *));
    101  1.29.2.4  nathanw void		uvmpd_tune __P((void));
    102       1.1      mrg 
    103       1.1      mrg /*
    104       1.1      mrg  * uvm_wait: wait (sleep) for the page daemon to free some pages
    105       1.1      mrg  *
    106       1.1      mrg  * => should be called with all locks released
    107       1.1      mrg  * => should _not_ be called by the page daemon (to avoid deadlock)
    108       1.1      mrg  */
    109       1.1      mrg 
    110      1.19  thorpej void
    111      1.19  thorpej uvm_wait(wmsg)
    112      1.19  thorpej 	const char *wmsg;
    113       1.8      mrg {
    114       1.8      mrg 	int timo = 0;
    115       1.8      mrg 	int s = splbio();
    116       1.1      mrg 
    117       1.8      mrg 	/*
    118       1.8      mrg 	 * check for page daemon going to sleep (waiting for itself)
    119       1.8      mrg 	 */
    120       1.1      mrg 
    121  1.29.2.4  nathanw 	if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
    122       1.8      mrg 		/*
    123       1.8      mrg 		 * now we have a problem: the pagedaemon wants to go to
    124       1.8      mrg 		 * sleep until it frees more memory.   but how can it
    125       1.8      mrg 		 * free more memory if it is asleep?  that is a deadlock.
    126       1.8      mrg 		 * we have two options:
    127       1.8      mrg 		 *  [1] panic now
    128       1.8      mrg 		 *  [2] put a timeout on the sleep, thus causing the
    129       1.8      mrg 		 *      pagedaemon to only pause (rather than sleep forever)
    130       1.8      mrg 		 *
    131       1.8      mrg 		 * note that option [2] will only help us if we get lucky
    132       1.8      mrg 		 * and some other process on the system breaks the deadlock
    133       1.8      mrg 		 * by exiting or freeing memory (thus allowing the pagedaemon
    134       1.8      mrg 		 * to continue).  for now we panic if DEBUG is defined,
    135       1.8      mrg 		 * otherwise we hope for the best with option [2] (better
    136       1.8      mrg 		 * yet, this should never happen in the first place!).
    137       1.8      mrg 		 */
    138       1.1      mrg 
    139       1.8      mrg 		printf("pagedaemon: deadlock detected!\n");
    140       1.8      mrg 		timo = hz >> 3;		/* set timeout */
    141       1.1      mrg #if defined(DEBUG)
    142       1.8      mrg 		/* DEBUG: panic so we can debug it */
    143       1.8      mrg 		panic("pagedaemon deadlock");
    144       1.1      mrg #endif
    145       1.8      mrg 	}
    146       1.1      mrg 
    147       1.8      mrg 	simple_lock(&uvm.pagedaemon_lock);
    148      1.17  thorpej 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    149       1.8      mrg 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    150       1.8      mrg 	    timo);
    151       1.1      mrg 
    152       1.8      mrg 	splx(s);
    153       1.1      mrg }
    154       1.1      mrg 
    155       1.1      mrg 
    156       1.1      mrg /*
    157       1.1      mrg  * uvmpd_tune: tune paging parameters
    158       1.1      mrg  *
    159       1.1      mrg  * => called when ever memory is added (or removed?) to the system
    160       1.1      mrg  * => caller must call with page queues locked
    161       1.1      mrg  */
    162       1.1      mrg 
    163  1.29.2.4  nathanw void
    164  1.29.2.4  nathanw uvmpd_tune(void)
    165       1.8      mrg {
    166       1.8      mrg 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    167       1.1      mrg 
    168       1.8      mrg 	uvmexp.freemin = uvmexp.npages / 20;
    169       1.1      mrg 
    170       1.8      mrg 	/* between 16k and 256k */
    171       1.8      mrg 	/* XXX:  what are these values good for? */
    172  1.29.2.4  nathanw 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    173  1.29.2.4  nathanw 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    174      1.23    bjh21 
    175      1.23    bjh21 	/* Make sure there's always a user page free. */
    176      1.23    bjh21 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    177      1.23    bjh21 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    178       1.1      mrg 
    179       1.8      mrg 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    180       1.8      mrg 	if (uvmexp.freetarg <= uvmexp.freemin)
    181       1.8      mrg 		uvmexp.freetarg = uvmexp.freemin + 1;
    182       1.1      mrg 
    183       1.8      mrg 	/* uvmexp.inactarg: computed in main daemon loop */
    184       1.1      mrg 
    185       1.8      mrg 	uvmexp.wiredmax = uvmexp.npages / 3;
    186       1.8      mrg 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    187       1.1      mrg 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    188       1.1      mrg }
    189       1.1      mrg 
    190       1.1      mrg /*
    191       1.1      mrg  * uvm_pageout: the main loop for the pagedaemon
    192       1.1      mrg  */
    193       1.1      mrg 
    194       1.8      mrg void
    195      1.22  thorpej uvm_pageout(void *arg)
    196       1.8      mrg {
    197       1.8      mrg 	int npages = 0;
    198       1.8      mrg 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    199      1.24      chs 
    200       1.8      mrg 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    201       1.8      mrg 
    202       1.8      mrg 	/*
    203       1.8      mrg 	 * ensure correct priority and set paging parameters...
    204       1.8      mrg 	 */
    205       1.8      mrg 
    206       1.8      mrg 	uvm.pagedaemon_proc = curproc;
    207       1.8      mrg 	uvm_lock_pageq();
    208       1.8      mrg 	npages = uvmexp.npages;
    209       1.8      mrg 	uvmpd_tune();
    210       1.8      mrg 	uvm_unlock_pageq();
    211       1.8      mrg 
    212       1.8      mrg 	/*
    213       1.8      mrg 	 * main loop
    214       1.8      mrg 	 */
    215      1.24      chs 
    216      1.24      chs 	for (;;) {
    217      1.24      chs 		simple_lock(&uvm.pagedaemon_lock);
    218      1.24      chs 
    219      1.24      chs 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    220      1.24      chs 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    221      1.24      chs 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    222      1.24      chs 		uvmexp.pdwoke++;
    223      1.24      chs 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    224      1.24      chs 
    225      1.24      chs 		/* drain pool resources */
    226      1.24      chs 		pool_drain(0);
    227       1.1      mrg 
    228       1.8      mrg 		/*
    229      1.24      chs 		 * now lock page queues and recompute inactive count
    230       1.8      mrg 		 */
    231       1.8      mrg 
    232      1.24      chs 		uvm_lock_pageq();
    233      1.24      chs 		if (npages != uvmexp.npages) {	/* check for new pages? */
    234      1.24      chs 			npages = uvmexp.npages;
    235      1.24      chs 			uvmpd_tune();
    236      1.24      chs 		}
    237      1.24      chs 
    238      1.24      chs 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    239      1.24      chs 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    240      1.24      chs 			uvmexp.inactarg = uvmexp.freetarg + 1;
    241      1.24      chs 		}
    242      1.24      chs 
    243      1.24      chs 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    244      1.24      chs 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    245      1.24      chs 		    uvmexp.inactarg);
    246       1.8      mrg 
    247       1.8      mrg 		/*
    248      1.24      chs 		 * scan if needed
    249       1.8      mrg 		 */
    250       1.8      mrg 
    251      1.24      chs 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    252  1.29.2.1  nathanw 		    uvmexp.inactive < uvmexp.inactarg) {
    253      1.24      chs 			uvmpd_scan();
    254       1.8      mrg 		}
    255       1.8      mrg 
    256       1.8      mrg 		/*
    257      1.24      chs 		 * if there's any free memory to be had,
    258      1.24      chs 		 * wake up any waiters.
    259       1.8      mrg 		 */
    260       1.8      mrg 
    261      1.24      chs 		if (uvmexp.free > uvmexp.reserve_kernel ||
    262      1.24      chs 		    uvmexp.paging == 0) {
    263      1.24      chs 			wakeup(&uvmexp.free);
    264       1.8      mrg 		}
    265       1.1      mrg 
    266       1.8      mrg 		/*
    267      1.24      chs 		 * scan done.  unlock page queues (the only lock we are holding)
    268       1.8      mrg 		 */
    269       1.8      mrg 
    270      1.24      chs 		uvm_unlock_pageq();
    271      1.24      chs 	}
    272      1.24      chs 	/*NOTREACHED*/
    273      1.24      chs }
    274      1.24      chs 
    275       1.8      mrg 
    276      1.24      chs /*
    277      1.24      chs  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    278      1.24      chs  */
    279       1.8      mrg 
    280      1.24      chs void
    281      1.24      chs uvm_aiodone_daemon(void *arg)
    282      1.24      chs {
    283      1.24      chs 	int s, free;
    284      1.24      chs 	struct buf *bp, *nbp;
    285      1.24      chs 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    286       1.9       pk 
    287      1.24      chs 	for (;;) {
    288       1.8      mrg 
    289       1.8      mrg 		/*
    290      1.24      chs 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    291      1.24      chs 		 * we need splbio because we want to make sure the aio_done list
    292      1.24      chs 		 * is totally empty before we go to sleep.
    293       1.8      mrg 		 */
    294       1.8      mrg 
    295      1.24      chs 		s = splbio();
    296      1.24      chs 		simple_lock(&uvm.aiodoned_lock);
    297      1.24      chs 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    298      1.24      chs 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    299      1.24      chs 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    300      1.24      chs 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    301      1.24      chs 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    302      1.24      chs 
    303      1.24      chs 			/* relock aiodoned_lock, still at splbio */
    304      1.24      chs 			simple_lock(&uvm.aiodoned_lock);
    305       1.8      mrg 		}
    306       1.8      mrg 
    307      1.24      chs 		/*
    308      1.24      chs 		 * check for done aio structures
    309      1.24      chs 		 */
    310       1.8      mrg 
    311      1.24      chs 		bp = TAILQ_FIRST(&uvm.aio_done);
    312      1.24      chs 		if (bp) {
    313      1.24      chs 			TAILQ_INIT(&uvm.aio_done);
    314      1.24      chs 		}
    315       1.8      mrg 
    316      1.24      chs 		simple_unlock(&uvm.aiodoned_lock);
    317      1.24      chs 		splx(s);
    318       1.8      mrg 
    319       1.8      mrg 		/*
    320      1.24      chs 		 * process each i/o that's done.
    321       1.8      mrg 		 */
    322       1.8      mrg 
    323      1.24      chs 		free = uvmexp.free;
    324      1.24      chs 		while (bp != NULL) {
    325      1.24      chs 			nbp = TAILQ_NEXT(bp, b_freelist);
    326      1.24      chs 			(*bp->b_iodone)(bp);
    327      1.24      chs 			bp = nbp;
    328      1.24      chs 		}
    329      1.24      chs 		if (free <= uvmexp.reserve_kernel) {
    330      1.24      chs 			s = uvm_lock_fpageq();
    331      1.24      chs 			wakeup(&uvm.pagedaemon);
    332      1.24      chs 			uvm_unlock_fpageq(s);
    333      1.24      chs 		} else {
    334      1.24      chs 			simple_lock(&uvm.pagedaemon_lock);
    335      1.17  thorpej 			wakeup(&uvmexp.free);
    336      1.24      chs 			simple_unlock(&uvm.pagedaemon_lock);
    337      1.24      chs 		}
    338       1.8      mrg 	}
    339       1.1      mrg }
    340       1.1      mrg 
    341       1.1      mrg /*
    342      1.24      chs  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    343       1.1      mrg  *
    344       1.1      mrg  * => called with page queues locked
    345       1.1      mrg  * => we work on meeting our free target by converting inactive pages
    346       1.1      mrg  *    into free pages.
    347       1.1      mrg  * => we handle the building of swap-backed clusters
    348       1.1      mrg  * => we return TRUE if we are exiting because we met our target
    349       1.1      mrg  */
    350       1.1      mrg 
    351  1.29.2.4  nathanw boolean_t
    352       1.8      mrg uvmpd_scan_inactive(pglst)
    353       1.8      mrg 	struct pglist *pglst;
    354       1.8      mrg {
    355       1.8      mrg 	boolean_t retval = FALSE;	/* assume we haven't hit target */
    356  1.29.2.4  nathanw 	int error;
    357       1.8      mrg 	struct vm_page *p, *nextpg;
    358       1.8      mrg 	struct uvm_object *uobj;
    359       1.8      mrg 	struct vm_anon *anon;
    360  1.29.2.4  nathanw 	struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT];
    361  1.29.2.4  nathanw 	struct simplelock *slock;
    362  1.29.2.4  nathanw 	int swnpages, swcpages;
    363  1.29.2.4  nathanw 	int swslot;
    364  1.29.2.4  nathanw 	int dirtyreacts, t, result;
    365       1.8      mrg 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    366       1.1      mrg 
    367       1.8      mrg 	/*
    368       1.8      mrg 	 * swslot is non-zero if we are building a swap cluster.  we want
    369      1.24      chs 	 * to stay in the loop while we have a page to scan or we have
    370       1.8      mrg 	 * a swap-cluster to build.
    371       1.8      mrg 	 */
    372      1.24      chs 
    373       1.8      mrg 	swslot = 0;
    374       1.8      mrg 	swnpages = swcpages = 0;
    375      1.14      chs 	dirtyreacts = 0;
    376      1.24      chs 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
    377      1.24      chs 		uobj = NULL;
    378      1.24      chs 		anon = NULL;
    379       1.8      mrg 		if (p) {
    380      1.24      chs 
    381       1.8      mrg 			/*
    382  1.29.2.4  nathanw 			 * see if we've met the free target.
    383       1.8      mrg 			 */
    384      1.24      chs 
    385  1.29.2.4  nathanw 			if (uvmexp.free + uvmexp.paging >=
    386  1.29.2.4  nathanw 			    uvmexp.freetarg << 2 ||
    387  1.29.2.1  nathanw 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    388  1.29.2.1  nathanw 				UVMHIST_LOG(pdhist,"  met free target: "
    389  1.29.2.1  nathanw 					    "exit loop", 0, 0, 0, 0);
    390  1.29.2.1  nathanw 				retval = TRUE;
    391  1.29.2.1  nathanw 
    392  1.29.2.1  nathanw 				if (swslot == 0) {
    393  1.29.2.1  nathanw 					/* exit now if no swap-i/o pending */
    394  1.29.2.1  nathanw 					break;
    395      1.24      chs 				}
    396  1.29.2.1  nathanw 
    397  1.29.2.1  nathanw 				/* set p to null to signal final swap i/o */
    398  1.29.2.1  nathanw 				p = NULL;
    399  1.29.2.4  nathanw 				nextpg = NULL;
    400       1.8      mrg 			}
    401       1.8      mrg 		}
    402      1.24      chs 		if (p) {	/* if (we have a new page to consider) */
    403  1.29.2.1  nathanw 
    404       1.8      mrg 			/*
    405       1.8      mrg 			 * we are below target and have a new page to consider.
    406       1.8      mrg 			 */
    407  1.29.2.4  nathanw 
    408       1.8      mrg 			uvmexp.pdscans++;
    409      1.24      chs 			nextpg = TAILQ_NEXT(p, pageq);
    410       1.8      mrg 
    411      1.27  mycroft 			/*
    412      1.27  mycroft 			 * move referenced pages back to active queue and
    413  1.29.2.1  nathanw 			 * skip to next page.
    414      1.27  mycroft 			 */
    415  1.29.2.1  nathanw 
    416  1.29.2.4  nathanw 			if (pmap_clear_reference(p)) {
    417      1.27  mycroft 				uvm_pageactivate(p);
    418      1.27  mycroft 				uvmexp.pdreact++;
    419      1.27  mycroft 				continue;
    420      1.27  mycroft 			}
    421  1.29.2.4  nathanw 			anon = p->uanon;
    422  1.29.2.4  nathanw 			uobj = p->uobject;
    423  1.29.2.1  nathanw 
    424  1.29.2.1  nathanw 			/*
    425  1.29.2.1  nathanw 			 * enforce the minimum thresholds on different
    426  1.29.2.1  nathanw 			 * types of memory usage.  if reusing the current
    427  1.29.2.1  nathanw 			 * page would reduce that type of usage below its
    428  1.29.2.1  nathanw 			 * minimum, reactivate the page instead and move
    429  1.29.2.1  nathanw 			 * on to the next page.
    430  1.29.2.1  nathanw 			 */
    431  1.29.2.1  nathanw 
    432  1.29.2.1  nathanw 			t = uvmexp.active + uvmexp.inactive + uvmexp.free;
    433  1.29.2.4  nathanw 			if (anon &&
    434  1.29.2.1  nathanw 			    uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8) {
    435  1.29.2.1  nathanw 				uvm_pageactivate(p);
    436  1.29.2.1  nathanw 				uvmexp.pdreanon++;
    437  1.29.2.1  nathanw 				continue;
    438  1.29.2.1  nathanw 			}
    439  1.29.2.4  nathanw 			if (uobj && UVM_OBJ_IS_VTEXT(uobj) &&
    440  1.29.2.1  nathanw 			    uvmexp.vtextpages <= (t * uvmexp.vtextmin) >> 8) {
    441  1.29.2.1  nathanw 				uvm_pageactivate(p);
    442  1.29.2.1  nathanw 				uvmexp.pdrevtext++;
    443  1.29.2.1  nathanw 				continue;
    444  1.29.2.1  nathanw 			}
    445  1.29.2.4  nathanw 			if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
    446  1.29.2.4  nathanw 			    !UVM_OBJ_IS_VTEXT(uobj) &&
    447  1.29.2.1  nathanw 			    uvmexp.vnodepages <= (t * uvmexp.vnodemin) >> 8) {
    448  1.29.2.1  nathanw 				uvm_pageactivate(p);
    449  1.29.2.1  nathanw 				uvmexp.pdrevnode++;
    450  1.29.2.1  nathanw 				continue;
    451  1.29.2.1  nathanw 			}
    452  1.29.2.1  nathanw 
    453       1.8      mrg 			/*
    454       1.8      mrg 			 * first we attempt to lock the object that this page
    455       1.8      mrg 			 * belongs to.  if our attempt fails we skip on to
    456       1.8      mrg 			 * the next page (no harm done).  it is important to
    457       1.8      mrg 			 * "try" locking the object as we are locking in the
    458       1.8      mrg 			 * wrong order (pageq -> object) and we don't want to
    459      1.24      chs 			 * deadlock.
    460       1.8      mrg 			 *
    461      1.24      chs 			 * the only time we expect to see an ownerless page
    462       1.8      mrg 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    463       1.8      mrg 			 * anon has loaned a page from a uvm_object and the
    464       1.8      mrg 			 * uvm_object has dropped the ownership.  in that
    465       1.8      mrg 			 * case, the anon can "take over" the loaned page
    466       1.8      mrg 			 * and make it its own.
    467       1.8      mrg 			 */
    468  1.29.2.1  nathanw 
    469       1.8      mrg 			/* is page part of an anon or ownerless ? */
    470  1.29.2.4  nathanw 			if ((p->pqflags & PQ_ANON) || uobj == NULL) {
    471      1.24      chs 				KASSERT(anon != NULL);
    472  1.29.2.4  nathanw 				slock = &anon->an_lock;
    473  1.29.2.4  nathanw 				if (!simple_lock_try(slock)) {
    474       1.8      mrg 					/* lock failed, skip this page */
    475       1.8      mrg 					continue;
    476  1.29.2.1  nathanw 				}
    477       1.8      mrg 
    478       1.8      mrg 				/*
    479       1.8      mrg 				 * if the page is ownerless, claim it in the
    480       1.8      mrg 				 * name of "anon"!
    481       1.8      mrg 				 */
    482      1.24      chs 
    483       1.8      mrg 				if ((p->pqflags & PQ_ANON) == 0) {
    484      1.24      chs 					KASSERT(p->loan_count > 0);
    485       1.8      mrg 					p->loan_count--;
    486      1.24      chs 					p->pqflags |= PQ_ANON;
    487      1.24      chs 					/* anon now owns it */
    488       1.8      mrg 				}
    489       1.8      mrg 				if (p->flags & PG_BUSY) {
    490  1.29.2.4  nathanw 					simple_unlock(slock);
    491       1.8      mrg 					uvmexp.pdbusy++;
    492       1.8      mrg 					continue;
    493       1.8      mrg 				}
    494       1.8      mrg 				uvmexp.pdanscan++;
    495       1.8      mrg 			} else {
    496      1.24      chs 				KASSERT(uobj != NULL);
    497  1.29.2.4  nathanw 				slock = &uobj->vmobjlock;
    498  1.29.2.4  nathanw 				if (!simple_lock_try(slock)) {
    499      1.24      chs 					continue;
    500  1.29.2.1  nathanw 				}
    501       1.8      mrg 				if (p->flags & PG_BUSY) {
    502  1.29.2.4  nathanw 					simple_unlock(slock);
    503       1.8      mrg 					uvmexp.pdbusy++;
    504      1.24      chs 					continue;
    505       1.8      mrg 				}
    506       1.8      mrg 				uvmexp.pdobscan++;
    507       1.8      mrg 			}
    508       1.8      mrg 
    509  1.29.2.4  nathanw 
    510       1.8      mrg 			/*
    511       1.8      mrg 			 * we now have the object and the page queues locked.
    512  1.29.2.4  nathanw 			 * if the page is not swap-backed, call the object's
    513  1.29.2.4  nathanw 			 * pager to flush and free the page.
    514  1.29.2.4  nathanw 			 */
    515  1.29.2.4  nathanw 
    516  1.29.2.4  nathanw 			if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    517  1.29.2.4  nathanw 				uvm_unlock_pageq();
    518  1.29.2.4  nathanw 				error = (uobj->pgops->pgo_put)(uobj, p->offset,
    519  1.29.2.4  nathanw 				    p->offset + PAGE_SIZE,
    520  1.29.2.4  nathanw 				    PGO_CLEANIT|PGO_FREE);
    521  1.29.2.4  nathanw 				uvm_lock_pageq();
    522  1.29.2.4  nathanw 				if (nextpg &&
    523  1.29.2.4  nathanw 				    (nextpg->flags & PQ_INACTIVE) == 0) {
    524  1.29.2.4  nathanw 					nextpg = TAILQ_FIRST(pglst);
    525  1.29.2.4  nathanw 				}
    526  1.29.2.4  nathanw 				continue;
    527  1.29.2.4  nathanw 			}
    528  1.29.2.4  nathanw 
    529  1.29.2.4  nathanw 			/*
    530  1.29.2.4  nathanw 			 * the page is swap-backed.  remove all the permissions
    531      1.29  thorpej 			 * from the page so we can sync the modified info
    532      1.29  thorpej 			 * without any race conditions.  if the page is clean
    533      1.29  thorpej 			 * we can free it now and continue.
    534       1.8      mrg 			 */
    535       1.8      mrg 
    536      1.29  thorpej 			pmap_page_protect(p, VM_PROT_NONE);
    537  1.29.2.4  nathanw 			if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    538  1.29.2.4  nathanw 				p->flags &= ~(PG_CLEAN);
    539  1.29.2.1  nathanw 			}
    540       1.8      mrg 			if (p->flags & PG_CLEAN) {
    541       1.8      mrg 				uvm_pagefree(p);
    542       1.8      mrg 				uvmexp.pdfreed++;
    543      1.24      chs 
    544  1.29.2.4  nathanw 				/*
    545  1.29.2.4  nathanw 				 * for anons, we need to remove the page
    546  1.29.2.4  nathanw 				 * from the anon ourselves.  for aobjs,
    547  1.29.2.4  nathanw 				 * pagefree did that for us.
    548  1.29.2.4  nathanw 				 */
    549      1.24      chs 
    550  1.29.2.4  nathanw 				if (anon) {
    551      1.24      chs 					KASSERT(anon->an_swslot != 0);
    552       1.8      mrg 					anon->u.an_page = NULL;
    553       1.8      mrg 				}
    554  1.29.2.4  nathanw 				simple_unlock(slock);
    555       1.8      mrg 				continue;
    556       1.8      mrg 			}
    557       1.8      mrg 
    558       1.8      mrg 			/*
    559       1.8      mrg 			 * this page is dirty, skip it if we'll have met our
    560       1.8      mrg 			 * free target when all the current pageouts complete.
    561       1.8      mrg 			 */
    562      1.24      chs 
    563  1.29.2.4  nathanw 			if (uvmexp.free + uvmexp.paging >
    564  1.29.2.4  nathanw 			    uvmexp.freetarg << 2) {
    565  1.29.2.4  nathanw 				simple_unlock(slock);
    566       1.8      mrg 				continue;
    567       1.8      mrg 			}
    568       1.8      mrg 
    569       1.8      mrg 			/*
    570  1.29.2.4  nathanw 			 * free any swap space allocated to the page since
    571  1.29.2.4  nathanw 			 * we'll have to write it again with its new data.
    572  1.29.2.4  nathanw 			 */
    573  1.29.2.4  nathanw 
    574  1.29.2.4  nathanw 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    575  1.29.2.4  nathanw 				uvm_swap_free(anon->an_swslot, 1);
    576  1.29.2.4  nathanw 				anon->an_swslot = 0;
    577  1.29.2.4  nathanw 			} else if (p->pqflags & PQ_AOBJ) {
    578  1.29.2.4  nathanw 				uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
    579  1.29.2.4  nathanw 			}
    580  1.29.2.4  nathanw 
    581  1.29.2.4  nathanw 			/*
    582  1.29.2.4  nathanw 			 * if all pages in swap are only in swap,
    583  1.29.2.4  nathanw 			 * the swap space is full and we can't page out
    584  1.29.2.4  nathanw 			 * any more swap-backed pages.  reactivate this page
    585  1.29.2.4  nathanw 			 * so that we eventually cycle all pages through
    586  1.29.2.4  nathanw 			 * the inactive queue.
    587      1.14      chs 			 */
    588      1.24      chs 
    589      1.24      chs 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
    590  1.29.2.4  nathanw 			if (uvmexp.swpgonly == uvmexp.swpages) {
    591      1.14      chs 				dirtyreacts++;
    592      1.14      chs 				uvm_pageactivate(p);
    593  1.29.2.4  nathanw 				simple_unlock(slock);
    594      1.14      chs 				continue;
    595      1.14      chs 			}
    596      1.14      chs 
    597      1.14      chs 			/*
    598  1.29.2.4  nathanw 			 * start new swap pageout cluster (if necessary).
    599      1.14      chs 			 */
    600      1.24      chs 
    601  1.29.2.4  nathanw 			if (swslot == 0) {
    602  1.29.2.4  nathanw 				swnpages = MAXBSIZE >> PAGE_SHIFT;
    603  1.29.2.4  nathanw 				swslot = uvm_swap_alloc(&swnpages, TRUE);
    604  1.29.2.4  nathanw 				if (swslot == 0) {
    605  1.29.2.4  nathanw 					simple_unlock(slock);
    606  1.29.2.4  nathanw 					continue;
    607      1.14      chs 				}
    608  1.29.2.4  nathanw 				swcpages = 0;
    609      1.14      chs 			}
    610      1.14      chs 
    611      1.14      chs 			/*
    612  1.29.2.4  nathanw 			 * at this point, we're definitely going reuse this
    613  1.29.2.4  nathanw 			 * page.  mark the page busy and delayed-free.
    614  1.29.2.4  nathanw 			 * we should remove the page from the page queues
    615  1.29.2.4  nathanw 			 * so we don't ever look at it again.
    616  1.29.2.4  nathanw 			 * adjust counters and such.
    617       1.8      mrg 			 */
    618  1.29.2.1  nathanw 
    619  1.29.2.4  nathanw 			p->flags |= PG_BUSY;
    620       1.8      mrg 			UVM_PAGE_OWN(p, "scan_inactive");
    621  1.29.2.4  nathanw 
    622  1.29.2.4  nathanw 			p->flags |= PG_PAGEOUT;
    623  1.29.2.4  nathanw 			uvmexp.paging++;
    624  1.29.2.4  nathanw 			uvm_pagedequeue(p);
    625  1.29.2.4  nathanw 
    626       1.8      mrg 			uvmexp.pgswapout++;
    627       1.8      mrg 
    628       1.8      mrg 			/*
    629  1.29.2.4  nathanw 			 * add the new page to the cluster.
    630       1.8      mrg 			 */
    631      1.24      chs 
    632  1.29.2.4  nathanw 			if (anon) {
    633  1.29.2.4  nathanw 				anon->an_swslot = swslot + swcpages;
    634  1.29.2.4  nathanw 				simple_unlock(slock);
    635  1.29.2.4  nathanw 			} else {
    636  1.29.2.4  nathanw 				result = uao_set_swslot(uobj,
    637  1.29.2.4  nathanw 				    p->offset >> PAGE_SHIFT, swslot + swcpages);
    638  1.29.2.4  nathanw 				if (result == -1) {
    639  1.29.2.4  nathanw 					p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    640  1.29.2.4  nathanw 					UVM_PAGE_OWN(p, NULL);
    641  1.29.2.4  nathanw 					uvmexp.paging--;
    642  1.29.2.4  nathanw 					uvm_pageactivate(p);
    643  1.29.2.4  nathanw 					simple_unlock(slock);
    644  1.29.2.4  nathanw 					continue;
    645       1.8      mrg 				}
    646  1.29.2.4  nathanw 				simple_unlock(slock);
    647  1.29.2.4  nathanw 			}
    648  1.29.2.4  nathanw 			swpps[swcpages] = p;
    649  1.29.2.4  nathanw 			swcpages++;
    650       1.8      mrg 
    651  1.29.2.4  nathanw 			/*
    652  1.29.2.4  nathanw 			 * if the cluster isn't full, look for more pages
    653  1.29.2.4  nathanw 			 * before starting the i/o.
    654  1.29.2.4  nathanw 			 */
    655      1.24      chs 
    656  1.29.2.4  nathanw 			if (swcpages < swnpages) {
    657  1.29.2.4  nathanw 				continue;
    658       1.8      mrg 			}
    659       1.8      mrg 		}
    660       1.8      mrg 
    661       1.8      mrg 		/*
    662  1.29.2.4  nathanw 		 * if this is the final pageout we could have a few
    663  1.29.2.4  nathanw 		 * unused swap blocks.  if so, free them now.
    664       1.8      mrg 		 */
    665      1.24      chs 
    666  1.29.2.4  nathanw 		if (swcpages < swnpages) {
    667  1.29.2.4  nathanw 			uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
    668       1.8      mrg 		}
    669       1.8      mrg 
    670       1.8      mrg 		/*
    671  1.29.2.4  nathanw 		 * now start the pageout.
    672       1.8      mrg 		 */
    673       1.8      mrg 
    674  1.29.2.4  nathanw 		uvm_unlock_pageq();
    675       1.8      mrg 		uvmexp.pdpageouts++;
    676  1.29.2.4  nathanw 		error = uvm_swap_put(swslot, swpps, swcpages, 0);
    677  1.29.2.4  nathanw 		KASSERT(error == 0);
    678  1.29.2.4  nathanw 		uvm_lock_pageq();
    679       1.8      mrg 
    680       1.8      mrg 		/*
    681  1.29.2.4  nathanw 		 * zero swslot to indicate that we are
    682       1.8      mrg 		 * no longer building a swap-backed cluster.
    683       1.8      mrg 		 */
    684       1.8      mrg 
    685  1.29.2.4  nathanw 		swslot = 0;
    686      1.24      chs 
    687       1.8      mrg 		/*
    688  1.29.2.1  nathanw 		 * the pageout is in progress.  bump counters and set up
    689  1.29.2.1  nathanw 		 * for the next loop.
    690       1.8      mrg 		 */
    691       1.8      mrg 
    692  1.29.2.1  nathanw 		uvmexp.pdpending++;
    693  1.29.2.4  nathanw 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    694  1.29.2.4  nathanw 			nextpg = TAILQ_FIRST(pglst);
    695       1.8      mrg 		}
    696      1.24      chs 	}
    697  1.29.2.4  nathanw 	return (error);
    698       1.1      mrg }
    699       1.1      mrg 
    700       1.1      mrg /*
    701       1.1      mrg  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    702       1.1      mrg  *
    703       1.1      mrg  * => called with pageq's locked
    704       1.1      mrg  */
    705       1.1      mrg 
    706       1.8      mrg void
    707  1.29.2.4  nathanw uvmpd_scan(void)
    708       1.1      mrg {
    709  1.29.2.4  nathanw 	int inactive_shortage, swap_shortage, pages_freed;
    710       1.8      mrg 	struct vm_page *p, *nextpg;
    711       1.8      mrg 	struct uvm_object *uobj;
    712  1.29.2.4  nathanw 	struct vm_anon *anon;
    713       1.8      mrg 	boolean_t got_it;
    714       1.8      mrg 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    715       1.1      mrg 
    716  1.29.2.4  nathanw 	uvmexp.pdrevs++;
    717      1.24      chs 	uobj = NULL;
    718  1.29.2.4  nathanw 	anon = NULL;
    719       1.1      mrg 
    720       1.1      mrg #ifndef __SWAP_BROKEN
    721       1.8      mrg 	/*
    722       1.8      mrg 	 * swap out some processes if we are below our free target.
    723       1.8      mrg 	 * we need to unlock the page queues for this.
    724       1.8      mrg 	 */
    725  1.29.2.4  nathanw 	if (uvmexp.free < uvmexp.freetarg) {
    726       1.8      mrg 		uvmexp.pdswout++;
    727  1.29.2.4  nathanw 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    728  1.29.2.4  nathanw 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    729       1.8      mrg 		uvm_unlock_pageq();
    730       1.8      mrg 		uvm_swapout_threads();
    731       1.8      mrg 		uvm_lock_pageq();
    732       1.1      mrg 
    733       1.8      mrg 	}
    734       1.1      mrg #endif
    735       1.1      mrg 
    736       1.8      mrg 	/*
    737       1.8      mrg 	 * now we want to work on meeting our targets.   first we work on our
    738       1.8      mrg 	 * free target by converting inactive pages into free pages.  then
    739       1.8      mrg 	 * we work on meeting our inactive target by converting active pages
    740       1.8      mrg 	 * to inactive ones.
    741       1.8      mrg 	 */
    742       1.8      mrg 
    743       1.8      mrg 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    744       1.8      mrg 
    745       1.8      mrg 	/*
    746      1.24      chs 	 * alternate starting queue between swap and object based on the
    747      1.24      chs 	 * low bit of uvmexp.pdrevs (which we bump by one each call).
    748       1.8      mrg 	 */
    749       1.8      mrg 
    750       1.8      mrg 	got_it = FALSE;
    751      1.14      chs 	pages_freed = uvmexp.pdfreed;
    752  1.29.2.2  nathanw 	(void) uvmpd_scan_inactive(&uvm.page_inactive);
    753      1.14      chs 	pages_freed = uvmexp.pdfreed - pages_freed;
    754       1.8      mrg 
    755       1.8      mrg 	/*
    756       1.8      mrg 	 * we have done the scan to get free pages.   now we work on meeting
    757       1.8      mrg 	 * our inactive target.
    758       1.8      mrg 	 */
    759       1.8      mrg 
    760      1.14      chs 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
    761      1.14      chs 
    762      1.14      chs 	/*
    763      1.14      chs 	 * detect if we're not going to be able to page anything out
    764      1.14      chs 	 * until we free some swap resources from active pages.
    765      1.14      chs 	 */
    766      1.24      chs 
    767      1.14      chs 	swap_shortage = 0;
    768      1.14      chs 	if (uvmexp.free < uvmexp.freetarg &&
    769      1.14      chs 	    uvmexp.swpginuse == uvmexp.swpages &&
    770      1.14      chs 	    uvmexp.swpgonly < uvmexp.swpages &&
    771      1.14      chs 	    pages_freed == 0) {
    772      1.14      chs 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    773      1.14      chs 	}
    774      1.24      chs 
    775      1.14      chs 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
    776      1.14      chs 		    inactive_shortage, swap_shortage,0,0);
    777      1.24      chs 	for (p = TAILQ_FIRST(&uvm.page_active);
    778      1.14      chs 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
    779      1.14      chs 	     p = nextpg) {
    780      1.24      chs 		nextpg = TAILQ_NEXT(p, pageq);
    781  1.29.2.4  nathanw 		if (p->flags & PG_BUSY) {
    782  1.29.2.4  nathanw 			continue;
    783  1.29.2.4  nathanw 		}
    784       1.8      mrg 
    785       1.8      mrg 		/*
    786      1.14      chs 		 * lock the page's owner.
    787       1.8      mrg 		 */
    788       1.8      mrg 		/* is page anon owned or ownerless? */
    789       1.8      mrg 		if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
    790  1.29.2.4  nathanw 			anon = p->uanon;
    791  1.29.2.4  nathanw 			KASSERT(anon != NULL);
    792  1.29.2.4  nathanw 			if (!simple_lock_try(&anon->an_lock)) {
    793       1.8      mrg 				continue;
    794  1.29.2.4  nathanw 			}
    795       1.1      mrg 
    796       1.8      mrg 			/* take over the page? */
    797       1.8      mrg 			if ((p->pqflags & PQ_ANON) == 0) {
    798      1.24      chs 				KASSERT(p->loan_count > 0);
    799       1.8      mrg 				p->loan_count--;
    800       1.8      mrg 				p->pqflags |= PQ_ANON;
    801       1.8      mrg 			}
    802       1.8      mrg 		} else {
    803  1.29.2.4  nathanw 			uobj = p->uobject;
    804  1.29.2.4  nathanw 			if (!simple_lock_try(&uobj->vmobjlock)) {
    805       1.8      mrg 				continue;
    806  1.29.2.4  nathanw 			}
    807       1.8      mrg 		}
    808      1.24      chs 
    809      1.14      chs 		/*
    810      1.14      chs 		 * skip this page if it's busy.
    811      1.14      chs 		 */
    812      1.24      chs 
    813      1.14      chs 		if ((p->flags & PG_BUSY) != 0) {
    814      1.14      chs 			if (p->pqflags & PQ_ANON)
    815  1.29.2.4  nathanw 				simple_unlock(&anon->an_lock);
    816      1.14      chs 			else
    817  1.29.2.4  nathanw 				simple_unlock(&uobj->vmobjlock);
    818      1.14      chs 			continue;
    819      1.14      chs 		}
    820      1.24      chs 
    821      1.14      chs 		/*
    822      1.14      chs 		 * if there's a shortage of swap, free any swap allocated
    823      1.14      chs 		 * to this page so that other pages can be paged out.
    824      1.14      chs 		 */
    825      1.24      chs 
    826      1.14      chs 		if (swap_shortage > 0) {
    827  1.29.2.4  nathanw 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    828  1.29.2.4  nathanw 				uvm_swap_free(anon->an_swslot, 1);
    829  1.29.2.4  nathanw 				anon->an_swslot = 0;
    830      1.14      chs 				p->flags &= ~PG_CLEAN;
    831      1.14      chs 				swap_shortage--;
    832  1.29.2.4  nathanw 			} else if (p->pqflags & PQ_AOBJ) {
    833  1.29.2.4  nathanw 				int slot = uao_set_swslot(uobj,
    834      1.14      chs 					p->offset >> PAGE_SHIFT, 0);
    835      1.14      chs 				if (slot) {
    836      1.14      chs 					uvm_swap_free(slot, 1);
    837      1.14      chs 					p->flags &= ~PG_CLEAN;
    838      1.14      chs 					swap_shortage--;
    839      1.14      chs 				}
    840      1.14      chs 			}
    841      1.14      chs 		}
    842      1.24      chs 
    843      1.14      chs 		/*
    844  1.29.2.4  nathanw 		 * if there's a shortage of inactive pages, deactivate.
    845      1.14      chs 		 */
    846      1.24      chs 
    847  1.29.2.2  nathanw 		if (inactive_shortage > 0) {
    848       1.8      mrg 			/* no need to check wire_count as pg is "active" */
    849       1.8      mrg 			uvm_pagedeactivate(p);
    850       1.8      mrg 			uvmexp.pddeact++;
    851      1.14      chs 			inactive_shortage--;
    852       1.8      mrg 		}
    853  1.29.2.4  nathanw 
    854  1.29.2.4  nathanw 		/*
    855  1.29.2.4  nathanw 		 * we're done with this page.
    856  1.29.2.4  nathanw 		 */
    857  1.29.2.4  nathanw 
    858       1.8      mrg 		if (p->pqflags & PQ_ANON)
    859  1.29.2.4  nathanw 			simple_unlock(&anon->an_lock);
    860       1.8      mrg 		else
    861  1.29.2.4  nathanw 			simple_unlock(&uobj->vmobjlock);
    862       1.8      mrg 	}
    863       1.1      mrg }
    864