Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.36
      1  1.36  thorpej /*	$NetBSD: uvm_pdaemon.c,v 1.36 2001/06/27 18:52:10 thorpej Exp $	*/
      2   1.1      mrg 
      3  1.34      chs /*
      4   1.1      mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  1.34      chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1      mrg  *
      7   1.1      mrg  * All rights reserved.
      8   1.1      mrg  *
      9   1.1      mrg  * This code is derived from software contributed to Berkeley by
     10   1.1      mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1      mrg  *
     12   1.1      mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1      mrg  * modification, are permitted provided that the following conditions
     14   1.1      mrg  * are met:
     15   1.1      mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1      mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1      mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1      mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1      mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1      mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1      mrg  *    must display the following acknowledgement:
     22   1.1      mrg  *	This product includes software developed by Charles D. Cranor,
     23  1.34      chs  *      Washington University, the University of California, Berkeley and
     24   1.1      mrg  *      its contributors.
     25   1.1      mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1      mrg  *    may be used to endorse or promote products derived from this software
     27   1.1      mrg  *    without specific prior written permission.
     28   1.1      mrg  *
     29   1.1      mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1      mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1      mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1      mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1      mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1      mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1      mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1      mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1      mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1      mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1      mrg  * SUCH DAMAGE.
     40   1.1      mrg  *
     41   1.1      mrg  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42   1.4      mrg  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43   1.1      mrg  *
     44   1.1      mrg  *
     45   1.1      mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1      mrg  * All rights reserved.
     47  1.34      chs  *
     48   1.1      mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1      mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1      mrg  * notice and this permission notice appear in all copies of the
     51   1.1      mrg  * software, derivative works or modified versions, and any portions
     52   1.1      mrg  * thereof, and that both notices appear in supporting documentation.
     53  1.34      chs  *
     54  1.34      chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  1.34      chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1      mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  1.34      chs  *
     58   1.1      mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1      mrg  *
     60   1.1      mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1      mrg  *  School of Computer Science
     62   1.1      mrg  *  Carnegie Mellon University
     63   1.1      mrg  *  Pittsburgh PA 15213-3890
     64   1.1      mrg  *
     65   1.1      mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1      mrg  * rights to redistribute these changes.
     67   1.1      mrg  */
     68   1.1      mrg 
     69   1.7      mrg #include "opt_uvmhist.h"
     70   1.7      mrg 
     71   1.1      mrg /*
     72   1.1      mrg  * uvm_pdaemon.c: the page daemon
     73   1.1      mrg  */
     74   1.1      mrg 
     75   1.1      mrg #include <sys/param.h>
     76   1.1      mrg #include <sys/proc.h>
     77   1.1      mrg #include <sys/systm.h>
     78   1.1      mrg #include <sys/kernel.h>
     79   1.9       pk #include <sys/pool.h>
     80  1.24      chs #include <sys/buf.h>
     81  1.30      chs #include <sys/vnode.h>
     82   1.1      mrg 
     83   1.1      mrg #include <uvm/uvm.h>
     84   1.1      mrg 
     85   1.1      mrg /*
     86  1.14      chs  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
     87  1.14      chs  * in a pass thru the inactive list when swap is full.  the value should be
     88  1.14      chs  * "small"... if it's too large we'll cycle the active pages thru the inactive
     89  1.14      chs  * queue too quickly to for them to be referenced and avoid being freed.
     90  1.14      chs  */
     91  1.14      chs 
     92  1.14      chs #define UVMPD_NUMDIRTYREACTS 16
     93  1.14      chs 
     94  1.14      chs 
     95  1.14      chs /*
     96   1.1      mrg  * local prototypes
     97   1.1      mrg  */
     98   1.1      mrg 
     99   1.1      mrg static void		uvmpd_scan __P((void));
    100   1.1      mrg static boolean_t	uvmpd_scan_inactive __P((struct pglist *));
    101   1.1      mrg static void		uvmpd_tune __P((void));
    102   1.1      mrg 
    103   1.1      mrg /*
    104   1.1      mrg  * uvm_wait: wait (sleep) for the page daemon to free some pages
    105   1.1      mrg  *
    106   1.1      mrg  * => should be called with all locks released
    107   1.1      mrg  * => should _not_ be called by the page daemon (to avoid deadlock)
    108   1.1      mrg  */
    109   1.1      mrg 
    110  1.19  thorpej void
    111  1.19  thorpej uvm_wait(wmsg)
    112  1.19  thorpej 	const char *wmsg;
    113   1.8      mrg {
    114   1.8      mrg 	int timo = 0;
    115   1.8      mrg 	int s = splbio();
    116   1.1      mrg 
    117   1.8      mrg 	/*
    118   1.8      mrg 	 * check for page daemon going to sleep (waiting for itself)
    119   1.8      mrg 	 */
    120   1.1      mrg 
    121   1.8      mrg 	if (curproc == uvm.pagedaemon_proc) {
    122   1.8      mrg 		/*
    123   1.8      mrg 		 * now we have a problem: the pagedaemon wants to go to
    124   1.8      mrg 		 * sleep until it frees more memory.   but how can it
    125   1.8      mrg 		 * free more memory if it is asleep?  that is a deadlock.
    126   1.8      mrg 		 * we have two options:
    127   1.8      mrg 		 *  [1] panic now
    128   1.8      mrg 		 *  [2] put a timeout on the sleep, thus causing the
    129   1.8      mrg 		 *      pagedaemon to only pause (rather than sleep forever)
    130   1.8      mrg 		 *
    131   1.8      mrg 		 * note that option [2] will only help us if we get lucky
    132   1.8      mrg 		 * and some other process on the system breaks the deadlock
    133   1.8      mrg 		 * by exiting or freeing memory (thus allowing the pagedaemon
    134   1.8      mrg 		 * to continue).  for now we panic if DEBUG is defined,
    135   1.8      mrg 		 * otherwise we hope for the best with option [2] (better
    136   1.8      mrg 		 * yet, this should never happen in the first place!).
    137   1.8      mrg 		 */
    138   1.1      mrg 
    139   1.8      mrg 		printf("pagedaemon: deadlock detected!\n");
    140   1.8      mrg 		timo = hz >> 3;		/* set timeout */
    141   1.1      mrg #if defined(DEBUG)
    142   1.8      mrg 		/* DEBUG: panic so we can debug it */
    143   1.8      mrg 		panic("pagedaemon deadlock");
    144   1.1      mrg #endif
    145   1.8      mrg 	}
    146   1.1      mrg 
    147   1.8      mrg 	simple_lock(&uvm.pagedaemon_lock);
    148  1.17  thorpej 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    149   1.8      mrg 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    150   1.8      mrg 	    timo);
    151   1.1      mrg 
    152   1.8      mrg 	splx(s);
    153   1.1      mrg }
    154   1.1      mrg 
    155   1.1      mrg 
    156   1.1      mrg /*
    157   1.1      mrg  * uvmpd_tune: tune paging parameters
    158   1.1      mrg  *
    159   1.1      mrg  * => called when ever memory is added (or removed?) to the system
    160   1.1      mrg  * => caller must call with page queues locked
    161   1.1      mrg  */
    162   1.1      mrg 
    163   1.8      mrg static void
    164   1.8      mrg uvmpd_tune()
    165   1.8      mrg {
    166   1.8      mrg 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    167   1.1      mrg 
    168   1.8      mrg 	uvmexp.freemin = uvmexp.npages / 20;
    169   1.1      mrg 
    170   1.8      mrg 	/* between 16k and 256k */
    171   1.8      mrg 	/* XXX:  what are these values good for? */
    172  1.11      chs 	uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    173  1.11      chs 	uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    174  1.23    bjh21 
    175  1.23    bjh21 	/* Make sure there's always a user page free. */
    176  1.23    bjh21 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    177  1.23    bjh21 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    178   1.1      mrg 
    179   1.8      mrg 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    180   1.8      mrg 	if (uvmexp.freetarg <= uvmexp.freemin)
    181   1.8      mrg 		uvmexp.freetarg = uvmexp.freemin + 1;
    182   1.1      mrg 
    183   1.8      mrg 	/* uvmexp.inactarg: computed in main daemon loop */
    184   1.1      mrg 
    185   1.8      mrg 	uvmexp.wiredmax = uvmexp.npages / 3;
    186   1.8      mrg 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    187   1.1      mrg 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    188   1.1      mrg }
    189   1.1      mrg 
    190   1.1      mrg /*
    191   1.1      mrg  * uvm_pageout: the main loop for the pagedaemon
    192   1.1      mrg  */
    193   1.1      mrg 
    194   1.8      mrg void
    195  1.22  thorpej uvm_pageout(void *arg)
    196   1.8      mrg {
    197   1.8      mrg 	int npages = 0;
    198   1.8      mrg 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    199  1.24      chs 
    200   1.8      mrg 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    201   1.8      mrg 
    202   1.8      mrg 	/*
    203   1.8      mrg 	 * ensure correct priority and set paging parameters...
    204   1.8      mrg 	 */
    205   1.8      mrg 
    206   1.8      mrg 	uvm.pagedaemon_proc = curproc;
    207   1.8      mrg 	(void) spl0();
    208   1.8      mrg 	uvm_lock_pageq();
    209   1.8      mrg 	npages = uvmexp.npages;
    210   1.8      mrg 	uvmpd_tune();
    211   1.8      mrg 	uvm_unlock_pageq();
    212   1.8      mrg 
    213   1.8      mrg 	/*
    214   1.8      mrg 	 * main loop
    215   1.8      mrg 	 */
    216  1.24      chs 
    217  1.24      chs 	for (;;) {
    218  1.24      chs 		simple_lock(&uvm.pagedaemon_lock);
    219  1.24      chs 
    220  1.24      chs 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    221  1.24      chs 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    222  1.24      chs 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    223  1.24      chs 		uvmexp.pdwoke++;
    224  1.24      chs 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    225  1.24      chs 
    226  1.24      chs 		/* drain pool resources */
    227  1.24      chs 		pool_drain(0);
    228   1.1      mrg 
    229   1.8      mrg 		/*
    230  1.24      chs 		 * now lock page queues and recompute inactive count
    231   1.8      mrg 		 */
    232   1.8      mrg 
    233  1.24      chs 		uvm_lock_pageq();
    234  1.24      chs 		if (npages != uvmexp.npages) {	/* check for new pages? */
    235  1.24      chs 			npages = uvmexp.npages;
    236  1.24      chs 			uvmpd_tune();
    237  1.24      chs 		}
    238  1.24      chs 
    239  1.24      chs 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    240  1.24      chs 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    241  1.24      chs 			uvmexp.inactarg = uvmexp.freetarg + 1;
    242  1.24      chs 		}
    243  1.24      chs 
    244  1.24      chs 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    245  1.24      chs 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    246  1.24      chs 		    uvmexp.inactarg);
    247   1.8      mrg 
    248   1.8      mrg 		/*
    249  1.24      chs 		 * scan if needed
    250   1.8      mrg 		 */
    251   1.8      mrg 
    252  1.24      chs 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    253  1.30      chs 		    uvmexp.inactive < uvmexp.inactarg) {
    254  1.24      chs 			uvmpd_scan();
    255   1.8      mrg 		}
    256   1.8      mrg 
    257   1.8      mrg 		/*
    258  1.24      chs 		 * if there's any free memory to be had,
    259  1.24      chs 		 * wake up any waiters.
    260   1.8      mrg 		 */
    261   1.8      mrg 
    262  1.24      chs 		if (uvmexp.free > uvmexp.reserve_kernel ||
    263  1.24      chs 		    uvmexp.paging == 0) {
    264  1.24      chs 			wakeup(&uvmexp.free);
    265   1.8      mrg 		}
    266   1.1      mrg 
    267   1.8      mrg 		/*
    268  1.24      chs 		 * scan done.  unlock page queues (the only lock we are holding)
    269   1.8      mrg 		 */
    270   1.8      mrg 
    271  1.24      chs 		uvm_unlock_pageq();
    272  1.24      chs 	}
    273  1.24      chs 	/*NOTREACHED*/
    274  1.24      chs }
    275  1.24      chs 
    276   1.8      mrg 
    277  1.24      chs /*
    278  1.24      chs  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    279  1.24      chs  */
    280   1.8      mrg 
    281  1.24      chs void
    282  1.24      chs uvm_aiodone_daemon(void *arg)
    283  1.24      chs {
    284  1.24      chs 	int s, free;
    285  1.24      chs 	struct buf *bp, *nbp;
    286  1.24      chs 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    287   1.9       pk 
    288  1.24      chs 	for (;;) {
    289   1.8      mrg 
    290   1.8      mrg 		/*
    291  1.24      chs 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    292  1.24      chs 		 * we need splbio because we want to make sure the aio_done list
    293  1.24      chs 		 * is totally empty before we go to sleep.
    294   1.8      mrg 		 */
    295   1.8      mrg 
    296  1.24      chs 		s = splbio();
    297  1.24      chs 		simple_lock(&uvm.aiodoned_lock);
    298  1.24      chs 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    299  1.24      chs 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    300  1.24      chs 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    301  1.24      chs 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    302  1.24      chs 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    303  1.24      chs 
    304  1.24      chs 			/* relock aiodoned_lock, still at splbio */
    305  1.24      chs 			simple_lock(&uvm.aiodoned_lock);
    306   1.8      mrg 		}
    307   1.8      mrg 
    308  1.24      chs 		/*
    309  1.24      chs 		 * check for done aio structures
    310  1.24      chs 		 */
    311   1.8      mrg 
    312  1.24      chs 		bp = TAILQ_FIRST(&uvm.aio_done);
    313  1.24      chs 		if (bp) {
    314  1.24      chs 			TAILQ_INIT(&uvm.aio_done);
    315  1.24      chs 		}
    316   1.8      mrg 
    317  1.24      chs 		simple_unlock(&uvm.aiodoned_lock);
    318  1.24      chs 		splx(s);
    319   1.8      mrg 
    320   1.8      mrg 		/*
    321  1.24      chs 		 * process each i/o that's done.
    322   1.8      mrg 		 */
    323   1.8      mrg 
    324  1.24      chs 		free = uvmexp.free;
    325  1.24      chs 		while (bp != NULL) {
    326  1.24      chs 			if (bp->b_flags & B_PDAEMON) {
    327  1.24      chs 				uvmexp.paging -= bp->b_bufsize >> PAGE_SHIFT;
    328  1.24      chs 			}
    329  1.24      chs 			nbp = TAILQ_NEXT(bp, b_freelist);
    330  1.24      chs 			(*bp->b_iodone)(bp);
    331  1.24      chs 			bp = nbp;
    332  1.24      chs 		}
    333  1.24      chs 		if (free <= uvmexp.reserve_kernel) {
    334  1.24      chs 			s = uvm_lock_fpageq();
    335  1.24      chs 			wakeup(&uvm.pagedaemon);
    336  1.24      chs 			uvm_unlock_fpageq(s);
    337  1.24      chs 		} else {
    338  1.24      chs 			simple_lock(&uvm.pagedaemon_lock);
    339  1.17  thorpej 			wakeup(&uvmexp.free);
    340  1.24      chs 			simple_unlock(&uvm.pagedaemon_lock);
    341  1.24      chs 		}
    342   1.8      mrg 	}
    343   1.1      mrg }
    344   1.1      mrg 
    345  1.24      chs 
    346  1.24      chs 
    347   1.1      mrg /*
    348  1.24      chs  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    349   1.1      mrg  *
    350   1.1      mrg  * => called with page queues locked
    351   1.1      mrg  * => we work on meeting our free target by converting inactive pages
    352   1.1      mrg  *    into free pages.
    353   1.1      mrg  * => we handle the building of swap-backed clusters
    354   1.1      mrg  * => we return TRUE if we are exiting because we met our target
    355   1.1      mrg  */
    356   1.1      mrg 
    357   1.8      mrg static boolean_t
    358   1.8      mrg uvmpd_scan_inactive(pglst)
    359   1.8      mrg 	struct pglist *pglst;
    360   1.8      mrg {
    361   1.8      mrg 	boolean_t retval = FALSE;	/* assume we haven't hit target */
    362   1.8      mrg 	int s, free, result;
    363   1.8      mrg 	struct vm_page *p, *nextpg;
    364   1.8      mrg 	struct uvm_object *uobj;
    365  1.11      chs 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
    366   1.8      mrg 	int npages;
    367  1.11      chs 	struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; 	/* XXX: see below */
    368   1.8      mrg 	int swnpages, swcpages;				/* XXX: see below */
    369  1.14      chs 	int swslot;
    370   1.8      mrg 	struct vm_anon *anon;
    371  1.30      chs 	boolean_t swap_backed;
    372  1.10      eeh 	vaddr_t start;
    373  1.30      chs 	int dirtyreacts, t;
    374   1.8      mrg 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    375   1.1      mrg 
    376   1.8      mrg 	/*
    377   1.8      mrg 	 * swslot is non-zero if we are building a swap cluster.  we want
    378  1.24      chs 	 * to stay in the loop while we have a page to scan or we have
    379   1.8      mrg 	 * a swap-cluster to build.
    380   1.8      mrg 	 */
    381  1.24      chs 
    382   1.8      mrg 	swslot = 0;
    383   1.8      mrg 	swnpages = swcpages = 0;
    384   1.8      mrg 	free = 0;
    385  1.14      chs 	dirtyreacts = 0;
    386   1.8      mrg 
    387  1.24      chs 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
    388   1.8      mrg 
    389   1.8      mrg 		/*
    390   1.8      mrg 		 * note that p can be NULL iff we have traversed the whole
    391   1.8      mrg 		 * list and need to do one final swap-backed clustered pageout.
    392   1.8      mrg 		 */
    393  1.24      chs 
    394  1.24      chs 		uobj = NULL;
    395  1.24      chs 		anon = NULL;
    396  1.24      chs 
    397   1.8      mrg 		if (p) {
    398  1.24      chs 
    399   1.8      mrg 			/*
    400   1.8      mrg 			 * update our copy of "free" and see if we've met
    401   1.8      mrg 			 * our target
    402   1.8      mrg 			 */
    403  1.24      chs 
    404  1.16  thorpej 			s = uvm_lock_fpageq();
    405   1.8      mrg 			free = uvmexp.free;
    406  1.16  thorpej 			uvm_unlock_fpageq(s);
    407   1.8      mrg 
    408  1.30      chs 			if (free + uvmexp.paging >= uvmexp.freetarg << 2 ||
    409  1.30      chs 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    410  1.30      chs 				UVMHIST_LOG(pdhist,"  met free target: "
    411  1.30      chs 					    "exit loop", 0, 0, 0, 0);
    412  1.30      chs 				retval = TRUE;
    413  1.24      chs 
    414  1.30      chs 				if (swslot == 0) {
    415  1.30      chs 					/* exit now if no swap-i/o pending */
    416  1.30      chs 					break;
    417  1.24      chs 				}
    418  1.30      chs 
    419  1.30      chs 				/* set p to null to signal final swap i/o */
    420  1.30      chs 				p = NULL;
    421   1.8      mrg 			}
    422   1.8      mrg 		}
    423   1.8      mrg 
    424  1.24      chs 		if (p) {	/* if (we have a new page to consider) */
    425  1.30      chs 
    426   1.8      mrg 			/*
    427   1.8      mrg 			 * we are below target and have a new page to consider.
    428   1.8      mrg 			 */
    429   1.8      mrg 			uvmexp.pdscans++;
    430  1.24      chs 			nextpg = TAILQ_NEXT(p, pageq);
    431   1.8      mrg 
    432  1.27  mycroft 			/*
    433  1.27  mycroft 			 * move referenced pages back to active queue and
    434  1.30      chs 			 * skip to next page.
    435  1.27  mycroft 			 */
    436  1.30      chs 
    437  1.27  mycroft 			if (pmap_is_referenced(p)) {
    438  1.27  mycroft 				uvm_pageactivate(p);
    439  1.27  mycroft 				uvmexp.pdreact++;
    440  1.27  mycroft 				continue;
    441  1.27  mycroft 			}
    442  1.30      chs 
    443  1.30      chs 			/*
    444  1.30      chs 			 * enforce the minimum thresholds on different
    445  1.30      chs 			 * types of memory usage.  if reusing the current
    446  1.30      chs 			 * page would reduce that type of usage below its
    447  1.30      chs 			 * minimum, reactivate the page instead and move
    448  1.30      chs 			 * on to the next page.
    449  1.30      chs 			 */
    450  1.30      chs 
    451  1.30      chs 			t = uvmexp.active + uvmexp.inactive + uvmexp.free;
    452  1.30      chs 			if (p->uanon &&
    453  1.30      chs 			    uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8) {
    454  1.30      chs 				uvm_pageactivate(p);
    455  1.30      chs 				uvmexp.pdreanon++;
    456  1.30      chs 				continue;
    457  1.30      chs 			}
    458  1.30      chs 			if (p->uobject && UVM_OBJ_IS_VTEXT(p->uobject) &&
    459  1.30      chs 			    uvmexp.vtextpages <= (t * uvmexp.vtextmin) >> 8) {
    460  1.30      chs 				uvm_pageactivate(p);
    461  1.30      chs 				uvmexp.pdrevtext++;
    462  1.30      chs 				continue;
    463  1.30      chs 			}
    464  1.30      chs 			if (p->uobject && UVM_OBJ_IS_VNODE(p->uobject) &&
    465  1.30      chs 			    !UVM_OBJ_IS_VTEXT(p->uobject) &&
    466  1.30      chs 			    uvmexp.vnodepages <= (t * uvmexp.vnodemin) >> 8) {
    467  1.30      chs 				uvm_pageactivate(p);
    468  1.30      chs 				uvmexp.pdrevnode++;
    469  1.30      chs 				continue;
    470  1.30      chs 			}
    471  1.30      chs 
    472   1.8      mrg 			/*
    473   1.8      mrg 			 * first we attempt to lock the object that this page
    474   1.8      mrg 			 * belongs to.  if our attempt fails we skip on to
    475   1.8      mrg 			 * the next page (no harm done).  it is important to
    476   1.8      mrg 			 * "try" locking the object as we are locking in the
    477   1.8      mrg 			 * wrong order (pageq -> object) and we don't want to
    478  1.24      chs 			 * deadlock.
    479   1.8      mrg 			 *
    480  1.24      chs 			 * the only time we expect to see an ownerless page
    481   1.8      mrg 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    482   1.8      mrg 			 * anon has loaned a page from a uvm_object and the
    483   1.8      mrg 			 * uvm_object has dropped the ownership.  in that
    484   1.8      mrg 			 * case, the anon can "take over" the loaned page
    485   1.8      mrg 			 * and make it its own.
    486   1.8      mrg 			 */
    487  1.30      chs 
    488   1.8      mrg 			/* is page part of an anon or ownerless ? */
    489   1.8      mrg 			if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
    490   1.8      mrg 				anon = p->uanon;
    491  1.24      chs 				KASSERT(anon != NULL);
    492  1.30      chs 				if (!simple_lock_try(&anon->an_lock)) {
    493   1.8      mrg 					/* lock failed, skip this page */
    494   1.8      mrg 					continue;
    495  1.30      chs 				}
    496   1.8      mrg 
    497   1.8      mrg 				/*
    498   1.8      mrg 				 * if the page is ownerless, claim it in the
    499   1.8      mrg 				 * name of "anon"!
    500   1.8      mrg 				 */
    501  1.24      chs 
    502   1.8      mrg 				if ((p->pqflags & PQ_ANON) == 0) {
    503  1.24      chs 					KASSERT(p->loan_count > 0);
    504   1.8      mrg 					p->loan_count--;
    505  1.24      chs 					p->pqflags |= PQ_ANON;
    506  1.24      chs 					/* anon now owns it */
    507   1.8      mrg 				}
    508   1.8      mrg 				if (p->flags & PG_BUSY) {
    509   1.8      mrg 					simple_unlock(&anon->an_lock);
    510   1.8      mrg 					uvmexp.pdbusy++;
    511   1.8      mrg 					/* someone else owns page, skip it */
    512   1.8      mrg 					continue;
    513   1.8      mrg 				}
    514   1.8      mrg 				uvmexp.pdanscan++;
    515   1.8      mrg 			} else {
    516   1.8      mrg 				uobj = p->uobject;
    517  1.24      chs 				KASSERT(uobj != NULL);
    518  1.30      chs 				if (!simple_lock_try(&uobj->vmobjlock)) {
    519  1.30      chs 					/* lock failed, skip this page */
    520  1.24      chs 					continue;
    521  1.24      chs 				}
    522   1.8      mrg 				if (p->flags & PG_BUSY) {
    523   1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    524   1.8      mrg 					uvmexp.pdbusy++;
    525   1.8      mrg 					/* someone else owns page, skip it */
    526  1.24      chs 					continue;
    527   1.8      mrg 				}
    528   1.8      mrg 				uvmexp.pdobscan++;
    529   1.8      mrg 			}
    530   1.8      mrg 
    531   1.8      mrg 			/*
    532   1.8      mrg 			 * we now have the object and the page queues locked.
    533  1.29  thorpej 			 * the page is not busy.  remove all the permissions
    534  1.29  thorpej 			 * from the page so we can sync the modified info
    535  1.29  thorpej 			 * without any race conditions.  if the page is clean
    536  1.29  thorpej 			 * we can free it now and continue.
    537   1.8      mrg 			 */
    538   1.8      mrg 
    539  1.29  thorpej 			pmap_page_protect(p, VM_PROT_NONE);
    540  1.30      chs 			if ((p->flags & PG_CLEAN) != 0 && pmap_is_modified(p)) {
    541  1.29  thorpej 				p->flags &= ~PG_CLEAN;
    542  1.30      chs 			}
    543  1.29  thorpej 
    544   1.8      mrg 			if (p->flags & PG_CLEAN) {
    545  1.14      chs 				if (p->pqflags & PQ_SWAPBACKED) {
    546  1.14      chs 					/* this page now lives only in swap */
    547  1.14      chs 					simple_lock(&uvm.swap_data_lock);
    548  1.14      chs 					uvmexp.swpgonly++;
    549  1.14      chs 					simple_unlock(&uvm.swap_data_lock);
    550  1.14      chs 				}
    551  1.14      chs 
    552   1.8      mrg 				uvm_pagefree(p);
    553   1.8      mrg 				uvmexp.pdfreed++;
    554  1.24      chs 
    555   1.8      mrg 				if (anon) {
    556  1.24      chs 
    557   1.8      mrg 					/*
    558   1.8      mrg 					 * an anonymous page can only be clean
    559  1.24      chs 					 * if it has backing store assigned.
    560   1.8      mrg 					 */
    561  1.24      chs 
    562  1.24      chs 					KASSERT(anon->an_swslot != 0);
    563  1.24      chs 
    564   1.8      mrg 					/* remove from object */
    565   1.8      mrg 					anon->u.an_page = NULL;
    566   1.8      mrg 					simple_unlock(&anon->an_lock);
    567   1.8      mrg 				} else {
    568   1.8      mrg 					/* pagefree has already removed the
    569   1.8      mrg 					 * page from the object */
    570   1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    571   1.8      mrg 				}
    572   1.8      mrg 				continue;
    573   1.8      mrg 			}
    574   1.8      mrg 
    575   1.8      mrg 			/*
    576   1.8      mrg 			 * this page is dirty, skip it if we'll have met our
    577   1.8      mrg 			 * free target when all the current pageouts complete.
    578   1.8      mrg 			 */
    579  1.24      chs 
    580  1.30      chs 			if (free + uvmexp.paging > uvmexp.freetarg << 2) {
    581   1.8      mrg 				if (anon) {
    582   1.8      mrg 					simple_unlock(&anon->an_lock);
    583   1.8      mrg 				} else {
    584   1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    585   1.8      mrg 				}
    586   1.8      mrg 				continue;
    587   1.8      mrg 			}
    588   1.8      mrg 
    589   1.8      mrg 			/*
    590  1.14      chs 			 * this page is dirty, but we can't page it out
    591  1.14      chs 			 * since all pages in swap are only in swap.
    592  1.14      chs 			 * reactivate it so that we eventually cycle
    593  1.14      chs 			 * all pages thru the inactive queue.
    594  1.14      chs 			 */
    595  1.24      chs 
    596  1.24      chs 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
    597  1.14      chs 			if ((p->pqflags & PQ_SWAPBACKED) &&
    598  1.14      chs 			    uvmexp.swpgonly == uvmexp.swpages) {
    599  1.14      chs 				dirtyreacts++;
    600  1.14      chs 				uvm_pageactivate(p);
    601  1.14      chs 				if (anon) {
    602  1.14      chs 					simple_unlock(&anon->an_lock);
    603  1.14      chs 				} else {
    604  1.14      chs 					simple_unlock(&uobj->vmobjlock);
    605  1.14      chs 				}
    606  1.14      chs 				continue;
    607  1.14      chs 			}
    608  1.14      chs 
    609  1.14      chs 			/*
    610  1.14      chs 			 * if the page is swap-backed and dirty and swap space
    611  1.14      chs 			 * is full, free any swap allocated to the page
    612  1.14      chs 			 * so that other pages can be paged out.
    613  1.14      chs 			 */
    614  1.24      chs 
    615  1.24      chs 			KASSERT(uvmexp.swpginuse <= uvmexp.swpages);
    616  1.14      chs 			if ((p->pqflags & PQ_SWAPBACKED) &&
    617  1.14      chs 			    uvmexp.swpginuse == uvmexp.swpages) {
    618  1.14      chs 
    619  1.14      chs 				if ((p->pqflags & PQ_ANON) &&
    620  1.14      chs 				    p->uanon->an_swslot) {
    621  1.14      chs 					uvm_swap_free(p->uanon->an_swslot, 1);
    622  1.14      chs 					p->uanon->an_swslot = 0;
    623  1.14      chs 				}
    624  1.14      chs 				if (p->pqflags & PQ_AOBJ) {
    625  1.14      chs 					uao_dropswap(p->uobject,
    626  1.14      chs 						     p->offset >> PAGE_SHIFT);
    627  1.14      chs 				}
    628  1.14      chs 			}
    629  1.14      chs 
    630  1.14      chs 			/*
    631   1.8      mrg 			 * the page we are looking at is dirty.   we must
    632   1.8      mrg 			 * clean it before it can be freed.  to do this we
    633   1.8      mrg 			 * first mark the page busy so that no one else will
    634  1.24      chs 			 * touch the page.
    635   1.8      mrg 			 */
    636  1.30      chs 
    637   1.8      mrg 			swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
    638   1.8      mrg 			p->flags |= PG_BUSY;		/* now we own it */
    639   1.8      mrg 			UVM_PAGE_OWN(p, "scan_inactive");
    640   1.8      mrg 			uvmexp.pgswapout++;
    641   1.8      mrg 
    642   1.8      mrg 			/*
    643   1.8      mrg 			 * for swap-backed pages we need to (re)allocate
    644   1.8      mrg 			 * swap space.
    645   1.8      mrg 			 */
    646  1.24      chs 
    647   1.8      mrg 			if (swap_backed) {
    648   1.8      mrg 
    649   1.8      mrg 				/*
    650   1.8      mrg 				 * free old swap slot (if any)
    651   1.8      mrg 				 */
    652  1.24      chs 
    653   1.8      mrg 				if (anon) {
    654   1.8      mrg 					if (anon->an_swslot) {
    655   1.8      mrg 						uvm_swap_free(anon->an_swslot,
    656   1.8      mrg 						    1);
    657   1.8      mrg 						anon->an_swslot = 0;
    658   1.8      mrg 					}
    659   1.8      mrg 				} else {
    660  1.14      chs 					uao_dropswap(uobj,
    661  1.14      chs 						     p->offset >> PAGE_SHIFT);
    662   1.8      mrg 				}
    663   1.8      mrg 
    664   1.8      mrg 				/*
    665   1.8      mrg 				 * start new cluster (if necessary)
    666   1.8      mrg 				 */
    667  1.24      chs 
    668   1.8      mrg 				if (swslot == 0) {
    669  1.11      chs 					swnpages = MAXBSIZE >> PAGE_SHIFT;
    670   1.8      mrg 					swslot = uvm_swap_alloc(&swnpages,
    671   1.8      mrg 					    TRUE);
    672   1.8      mrg 					if (swslot == 0) {
    673   1.8      mrg 						/* no swap?  give up! */
    674   1.8      mrg 						p->flags &= ~PG_BUSY;
    675   1.8      mrg 						UVM_PAGE_OWN(p, NULL);
    676   1.8      mrg 						if (anon)
    677   1.8      mrg 							simple_unlock(
    678   1.8      mrg 							    &anon->an_lock);
    679   1.8      mrg 						else
    680   1.8      mrg 							simple_unlock(
    681   1.8      mrg 							    &uobj->vmobjlock);
    682   1.8      mrg 						continue;
    683   1.8      mrg 					}
    684   1.8      mrg 					swcpages = 0;	/* cluster is empty */
    685   1.8      mrg 				}
    686   1.8      mrg 
    687   1.8      mrg 				/*
    688   1.8      mrg 				 * add block to cluster
    689   1.8      mrg 				 */
    690  1.24      chs 
    691  1.35      chs 				if (anon) {
    692   1.8      mrg 					anon->an_swslot = swslot + swcpages;
    693  1.35      chs 				} else {
    694  1.35      chs 					result = uao_set_swslot(uobj,
    695  1.11      chs 					    p->offset >> PAGE_SHIFT,
    696   1.8      mrg 					    swslot + swcpages);
    697  1.35      chs 					if (result == -1) {
    698  1.35      chs 						p->flags &= ~PG_BUSY;
    699  1.35      chs 						UVM_PAGE_OWN(p, NULL);
    700  1.35      chs 						simple_unlock(&uobj->vmobjlock);
    701  1.35      chs 						continue;
    702  1.35      chs 					}
    703  1.35      chs 				}
    704  1.35      chs 				swpps[swcpages] = p;
    705   1.8      mrg 				swcpages++;
    706   1.8      mrg 			}
    707   1.8      mrg 		} else {
    708   1.8      mrg 
    709   1.8      mrg 			/* if p == NULL we must be doing a last swap i/o */
    710   1.8      mrg 			swap_backed = TRUE;
    711   1.8      mrg 		}
    712   1.8      mrg 
    713   1.8      mrg 		/*
    714  1.24      chs 		 * now consider doing the pageout.
    715   1.8      mrg 		 *
    716  1.24      chs 		 * for swap-backed pages, we do the pageout if we have either
    717  1.24      chs 		 * filled the cluster (in which case (swnpages == swcpages) or
    718   1.8      mrg 		 * run out of pages (p == NULL).
    719   1.8      mrg 		 *
    720   1.8      mrg 		 * for object pages, we always do the pageout.
    721   1.8      mrg 		 */
    722  1.24      chs 
    723   1.8      mrg 		if (swap_backed) {
    724   1.8      mrg 			if (p) {	/* if we just added a page to cluster */
    725   1.8      mrg 				if (anon)
    726   1.8      mrg 					simple_unlock(&anon->an_lock);
    727   1.8      mrg 				else
    728   1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    729   1.8      mrg 
    730   1.8      mrg 				/* cluster not full yet? */
    731   1.8      mrg 				if (swcpages < swnpages)
    732   1.8      mrg 					continue;
    733   1.8      mrg 			}
    734   1.8      mrg 
    735   1.8      mrg 			/* starting I/O now... set up for it */
    736   1.8      mrg 			npages = swcpages;
    737   1.8      mrg 			ppsp = swpps;
    738   1.8      mrg 			/* for swap-backed pages only */
    739  1.10      eeh 			start = (vaddr_t) swslot;
    740   1.8      mrg 
    741   1.8      mrg 			/* if this is final pageout we could have a few
    742   1.8      mrg 			 * extra swap blocks */
    743   1.8      mrg 			if (swcpages < swnpages) {
    744   1.8      mrg 				uvm_swap_free(swslot + swcpages,
    745   1.8      mrg 				    (swnpages - swcpages));
    746  1.24      chs 			}
    747   1.8      mrg 		} else {
    748   1.8      mrg 			/* normal object pageout */
    749   1.8      mrg 			ppsp = pps;
    750   1.8      mrg 			npages = sizeof(pps) / sizeof(struct vm_page *);
    751   1.8      mrg 			/* not looked at because PGO_ALLPAGES is set */
    752   1.8      mrg 			start = 0;
    753   1.8      mrg 		}
    754   1.8      mrg 
    755   1.8      mrg 		/*
    756   1.8      mrg 		 * now do the pageout.
    757  1.24      chs 		 *
    758   1.8      mrg 		 * for swap_backed pages we have already built the cluster.
    759   1.8      mrg 		 * for !swap_backed pages, uvm_pager_put will call the object's
    760   1.8      mrg 		 * "make put cluster" function to build a cluster on our behalf.
    761   1.8      mrg 		 *
    762   1.8      mrg 		 * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
    763   1.8      mrg 		 * it to free the cluster pages for us on a successful I/O (it
    764   1.8      mrg 		 * always does this for un-successful I/O requests).  this
    765   1.8      mrg 		 * allows us to do clustered pageout without having to deal
    766   1.8      mrg 		 * with cluster pages at this level.
    767   1.8      mrg 		 *
    768   1.8      mrg 		 * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
    769   1.8      mrg 		 *  IN: locked: uobj (if !swap_backed), page queues
    770  1.31      chs 		 * OUT:!locked: pageqs, uobj
    771   1.8      mrg 		 */
    772   1.8      mrg 
    773   1.8      mrg 		/* locked: uobj (if !swap_backed), page queues */
    774   1.8      mrg 		uvmexp.pdpageouts++;
    775  1.24      chs 		result = uvm_pager_put(swap_backed ? NULL : uobj, p,
    776   1.8      mrg 		    &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
    777  1.31      chs 		/* unlocked: pageqs, uobj */
    778   1.8      mrg 
    779   1.8      mrg 		/*
    780   1.8      mrg 		 * if we did i/o to swap, zero swslot to indicate that we are
    781   1.8      mrg 		 * no longer building a swap-backed cluster.
    782   1.8      mrg 		 */
    783   1.8      mrg 
    784   1.8      mrg 		if (swap_backed)
    785   1.8      mrg 			swslot = 0;		/* done with this cluster */
    786   1.8      mrg 
    787   1.8      mrg 		/*
    788  1.31      chs 		 * if the pageout failed, reactivate the page and continue.
    789   1.8      mrg 		 */
    790   1.8      mrg 
    791  1.31      chs 		if (result == EIO && curproc == uvm.pagedaemon_proc) {
    792  1.24      chs 			uvm_lock_pageq();
    793  1.24      chs 			nextpg = TAILQ_NEXT(p, pageq);
    794  1.24      chs 			uvm_pageactivate(p);
    795  1.24      chs 			continue;
    796  1.24      chs 		}
    797  1.24      chs 
    798   1.8      mrg 		/*
    799  1.31      chs 		 * the pageout is in progress.  bump counters and set up
    800  1.31      chs 		 * for the next loop.
    801   1.8      mrg 		 */
    802   1.8      mrg 
    803  1.31      chs 		uvm_lock_pageq();
    804  1.31      chs 		uvmexp.paging += npages;
    805  1.31      chs 		uvmexp.pdpending++;
    806   1.8      mrg 		if (p) {
    807  1.31      chs 			if (p->pqflags & PQ_INACTIVE)
    808  1.24      chs 				nextpg = TAILQ_NEXT(p, pageq);
    809  1.31      chs 			else
    810  1.31      chs 				nextpg = TAILQ_FIRST(pglst);
    811  1.24      chs 		} else {
    812   1.8      mrg 			nextpg = NULL;
    813   1.8      mrg 		}
    814  1.24      chs 	}
    815   1.8      mrg 	return (retval);
    816   1.1      mrg }
    817   1.1      mrg 
    818   1.1      mrg /*
    819   1.1      mrg  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    820   1.1      mrg  *
    821   1.1      mrg  * => called with pageq's locked
    822   1.1      mrg  */
    823   1.1      mrg 
    824   1.8      mrg void
    825   1.8      mrg uvmpd_scan()
    826   1.1      mrg {
    827  1.14      chs 	int s, free, inactive_shortage, swap_shortage, pages_freed;
    828   1.8      mrg 	struct vm_page *p, *nextpg;
    829   1.8      mrg 	struct uvm_object *uobj;
    830   1.8      mrg 	boolean_t got_it;
    831   1.8      mrg 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    832   1.1      mrg 
    833   1.8      mrg 	uvmexp.pdrevs++;		/* counter */
    834  1.24      chs 	uobj = NULL;
    835   1.1      mrg 
    836   1.8      mrg 	/*
    837   1.8      mrg 	 * get current "free" page count
    838   1.8      mrg 	 */
    839  1.16  thorpej 	s = uvm_lock_fpageq();
    840   1.8      mrg 	free = uvmexp.free;
    841  1.16  thorpej 	uvm_unlock_fpageq(s);
    842   1.1      mrg 
    843   1.1      mrg #ifndef __SWAP_BROKEN
    844   1.8      mrg 	/*
    845   1.8      mrg 	 * swap out some processes if we are below our free target.
    846   1.8      mrg 	 * we need to unlock the page queues for this.
    847   1.8      mrg 	 */
    848   1.8      mrg 	if (free < uvmexp.freetarg) {
    849   1.8      mrg 		uvmexp.pdswout++;
    850   1.8      mrg 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout", free,
    851   1.8      mrg 		    uvmexp.freetarg, 0, 0);
    852   1.8      mrg 		uvm_unlock_pageq();
    853   1.8      mrg 		uvm_swapout_threads();
    854   1.8      mrg 		uvm_lock_pageq();
    855   1.1      mrg 
    856   1.8      mrg 	}
    857   1.1      mrg #endif
    858   1.1      mrg 
    859   1.8      mrg 	/*
    860   1.8      mrg 	 * now we want to work on meeting our targets.   first we work on our
    861   1.8      mrg 	 * free target by converting inactive pages into free pages.  then
    862   1.8      mrg 	 * we work on meeting our inactive target by converting active pages
    863   1.8      mrg 	 * to inactive ones.
    864   1.8      mrg 	 */
    865   1.8      mrg 
    866   1.8      mrg 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    867   1.8      mrg 
    868   1.8      mrg 	/*
    869  1.24      chs 	 * alternate starting queue between swap and object based on the
    870  1.24      chs 	 * low bit of uvmexp.pdrevs (which we bump by one each call).
    871   1.8      mrg 	 */
    872   1.8      mrg 
    873   1.8      mrg 	got_it = FALSE;
    874  1.14      chs 	pages_freed = uvmexp.pdfreed;
    875  1.33     ross 	(void) uvmpd_scan_inactive(&uvm.page_inactive);
    876  1.14      chs 	pages_freed = uvmexp.pdfreed - pages_freed;
    877   1.8      mrg 
    878   1.8      mrg 	/*
    879   1.8      mrg 	 * we have done the scan to get free pages.   now we work on meeting
    880   1.8      mrg 	 * our inactive target.
    881   1.8      mrg 	 */
    882   1.8      mrg 
    883  1.14      chs 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
    884  1.14      chs 
    885  1.14      chs 	/*
    886  1.14      chs 	 * detect if we're not going to be able to page anything out
    887  1.14      chs 	 * until we free some swap resources from active pages.
    888  1.14      chs 	 */
    889  1.24      chs 
    890  1.14      chs 	swap_shortage = 0;
    891  1.14      chs 	if (uvmexp.free < uvmexp.freetarg &&
    892  1.14      chs 	    uvmexp.swpginuse == uvmexp.swpages &&
    893  1.14      chs 	    uvmexp.swpgonly < uvmexp.swpages &&
    894  1.14      chs 	    pages_freed == 0) {
    895  1.14      chs 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    896  1.14      chs 	}
    897  1.24      chs 
    898  1.14      chs 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
    899  1.14      chs 		    inactive_shortage, swap_shortage,0,0);
    900  1.24      chs 	for (p = TAILQ_FIRST(&uvm.page_active);
    901  1.14      chs 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
    902  1.14      chs 	     p = nextpg) {
    903  1.24      chs 		nextpg = TAILQ_NEXT(p, pageq);
    904   1.8      mrg 		if (p->flags & PG_BUSY)
    905   1.8      mrg 			continue;	/* quick check before trying to lock */
    906   1.8      mrg 
    907   1.8      mrg 		/*
    908  1.14      chs 		 * lock the page's owner.
    909   1.8      mrg 		 */
    910   1.8      mrg 		/* is page anon owned or ownerless? */
    911   1.8      mrg 		if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
    912  1.24      chs 			KASSERT(p->uanon != NULL);
    913   1.8      mrg 			if (!simple_lock_try(&p->uanon->an_lock))
    914   1.8      mrg 				continue;
    915   1.1      mrg 
    916   1.8      mrg 			/* take over the page? */
    917   1.8      mrg 			if ((p->pqflags & PQ_ANON) == 0) {
    918  1.24      chs 				KASSERT(p->loan_count > 0);
    919   1.8      mrg 				p->loan_count--;
    920   1.8      mrg 				p->pqflags |= PQ_ANON;
    921   1.8      mrg 			}
    922   1.8      mrg 		} else {
    923   1.8      mrg 			if (!simple_lock_try(&p->uobject->vmobjlock))
    924   1.8      mrg 				continue;
    925   1.8      mrg 		}
    926  1.24      chs 
    927  1.14      chs 		/*
    928  1.14      chs 		 * skip this page if it's busy.
    929  1.14      chs 		 */
    930  1.24      chs 
    931  1.14      chs 		if ((p->flags & PG_BUSY) != 0) {
    932  1.14      chs 			if (p->pqflags & PQ_ANON)
    933  1.14      chs 				simple_unlock(&p->uanon->an_lock);
    934  1.14      chs 			else
    935  1.14      chs 				simple_unlock(&p->uobject->vmobjlock);
    936  1.14      chs 			continue;
    937  1.14      chs 		}
    938  1.24      chs 
    939  1.14      chs 		/*
    940  1.14      chs 		 * if there's a shortage of swap, free any swap allocated
    941  1.14      chs 		 * to this page so that other pages can be paged out.
    942  1.14      chs 		 */
    943  1.24      chs 
    944  1.14      chs 		if (swap_shortage > 0) {
    945  1.14      chs 			if ((p->pqflags & PQ_ANON) && p->uanon->an_swslot) {
    946  1.14      chs 				uvm_swap_free(p->uanon->an_swslot, 1);
    947  1.14      chs 				p->uanon->an_swslot = 0;
    948  1.14      chs 				p->flags &= ~PG_CLEAN;
    949  1.14      chs 				swap_shortage--;
    950  1.14      chs 			}
    951  1.14      chs 			if (p->pqflags & PQ_AOBJ) {
    952  1.14      chs 				int slot = uao_set_swslot(p->uobject,
    953  1.14      chs 					p->offset >> PAGE_SHIFT, 0);
    954  1.14      chs 				if (slot) {
    955  1.14      chs 					uvm_swap_free(slot, 1);
    956  1.14      chs 					p->flags &= ~PG_CLEAN;
    957  1.14      chs 					swap_shortage--;
    958  1.14      chs 				}
    959  1.14      chs 			}
    960  1.14      chs 		}
    961  1.24      chs 
    962  1.14      chs 		/*
    963  1.32  thorpej 		 * If we're short on inactive pages, move this over
    964  1.32  thorpej 		 * to the inactive list.  The second hand will sweep
    965  1.32  thorpej 		 * it later, and if it has been referenced again, it
    966  1.32  thorpej 		 * will be moved back to active.
    967  1.14      chs 		 */
    968  1.24      chs 
    969  1.32  thorpej 		if (inactive_shortage > 0) {
    970  1.32  thorpej 			pmap_clear_reference(p);
    971   1.8      mrg 			/* no need to check wire_count as pg is "active" */
    972   1.8      mrg 			uvm_pagedeactivate(p);
    973   1.8      mrg 			uvmexp.pddeact++;
    974  1.14      chs 			inactive_shortage--;
    975   1.8      mrg 		}
    976   1.8      mrg 		if (p->pqflags & PQ_ANON)
    977   1.8      mrg 			simple_unlock(&p->uanon->an_lock);
    978   1.8      mrg 		else
    979   1.8      mrg 			simple_unlock(&p->uobject->vmobjlock);
    980   1.8      mrg 	}
    981   1.1      mrg }
    982