uvm_pdaemon.c revision 1.37 1 1.37 chs /* $NetBSD: uvm_pdaemon.c,v 1.37 2001/09/15 20:36:47 chs Exp $ */
2 1.1 mrg
3 1.34 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.34 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.34 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.34 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.34 chs *
54 1.34 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.34 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.34 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.7 mrg #include "opt_uvmhist.h"
70 1.7 mrg
71 1.1 mrg /*
72 1.1 mrg * uvm_pdaemon.c: the page daemon
73 1.1 mrg */
74 1.1 mrg
75 1.1 mrg #include <sys/param.h>
76 1.1 mrg #include <sys/proc.h>
77 1.1 mrg #include <sys/systm.h>
78 1.1 mrg #include <sys/kernel.h>
79 1.9 pk #include <sys/pool.h>
80 1.24 chs #include <sys/buf.h>
81 1.30 chs #include <sys/vnode.h>
82 1.1 mrg
83 1.1 mrg #include <uvm/uvm.h>
84 1.1 mrg
85 1.1 mrg /*
86 1.14 chs * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
87 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
88 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
89 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
90 1.14 chs */
91 1.14 chs
92 1.14 chs #define UVMPD_NUMDIRTYREACTS 16
93 1.14 chs
94 1.14 chs
95 1.14 chs /*
96 1.1 mrg * local prototypes
97 1.1 mrg */
98 1.1 mrg
99 1.37 chs void uvmpd_scan __P((void));
100 1.37 chs boolean_t uvmpd_scan_inactive __P((struct pglist *));
101 1.37 chs void uvmpd_tune __P((void));
102 1.1 mrg
103 1.1 mrg /*
104 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
105 1.1 mrg *
106 1.1 mrg * => should be called with all locks released
107 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
108 1.1 mrg */
109 1.1 mrg
110 1.19 thorpej void
111 1.19 thorpej uvm_wait(wmsg)
112 1.19 thorpej const char *wmsg;
113 1.8 mrg {
114 1.8 mrg int timo = 0;
115 1.8 mrg int s = splbio();
116 1.1 mrg
117 1.8 mrg /*
118 1.8 mrg * check for page daemon going to sleep (waiting for itself)
119 1.8 mrg */
120 1.1 mrg
121 1.37 chs if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
122 1.8 mrg /*
123 1.8 mrg * now we have a problem: the pagedaemon wants to go to
124 1.8 mrg * sleep until it frees more memory. but how can it
125 1.8 mrg * free more memory if it is asleep? that is a deadlock.
126 1.8 mrg * we have two options:
127 1.8 mrg * [1] panic now
128 1.8 mrg * [2] put a timeout on the sleep, thus causing the
129 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
130 1.8 mrg *
131 1.8 mrg * note that option [2] will only help us if we get lucky
132 1.8 mrg * and some other process on the system breaks the deadlock
133 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
134 1.8 mrg * to continue). for now we panic if DEBUG is defined,
135 1.8 mrg * otherwise we hope for the best with option [2] (better
136 1.8 mrg * yet, this should never happen in the first place!).
137 1.8 mrg */
138 1.1 mrg
139 1.8 mrg printf("pagedaemon: deadlock detected!\n");
140 1.8 mrg timo = hz >> 3; /* set timeout */
141 1.1 mrg #if defined(DEBUG)
142 1.8 mrg /* DEBUG: panic so we can debug it */
143 1.8 mrg panic("pagedaemon deadlock");
144 1.1 mrg #endif
145 1.8 mrg }
146 1.1 mrg
147 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
148 1.17 thorpej wakeup(&uvm.pagedaemon); /* wake the daemon! */
149 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
150 1.8 mrg timo);
151 1.1 mrg
152 1.8 mrg splx(s);
153 1.1 mrg }
154 1.1 mrg
155 1.1 mrg
156 1.1 mrg /*
157 1.1 mrg * uvmpd_tune: tune paging parameters
158 1.1 mrg *
159 1.1 mrg * => called when ever memory is added (or removed?) to the system
160 1.1 mrg * => caller must call with page queues locked
161 1.1 mrg */
162 1.1 mrg
163 1.37 chs void
164 1.37 chs uvmpd_tune(void)
165 1.8 mrg {
166 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
167 1.1 mrg
168 1.8 mrg uvmexp.freemin = uvmexp.npages / 20;
169 1.1 mrg
170 1.8 mrg /* between 16k and 256k */
171 1.8 mrg /* XXX: what are these values good for? */
172 1.37 chs uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
173 1.37 chs uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
174 1.23 bjh21
175 1.23 bjh21 /* Make sure there's always a user page free. */
176 1.23 bjh21 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
177 1.23 bjh21 uvmexp.freemin = uvmexp.reserve_kernel + 1;
178 1.1 mrg
179 1.8 mrg uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
180 1.8 mrg if (uvmexp.freetarg <= uvmexp.freemin)
181 1.8 mrg uvmexp.freetarg = uvmexp.freemin + 1;
182 1.1 mrg
183 1.8 mrg /* uvmexp.inactarg: computed in main daemon loop */
184 1.1 mrg
185 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
186 1.8 mrg UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
187 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
188 1.1 mrg }
189 1.1 mrg
190 1.1 mrg /*
191 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
192 1.1 mrg */
193 1.1 mrg
194 1.8 mrg void
195 1.22 thorpej uvm_pageout(void *arg)
196 1.8 mrg {
197 1.8 mrg int npages = 0;
198 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
199 1.24 chs
200 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
201 1.8 mrg
202 1.8 mrg /*
203 1.8 mrg * ensure correct priority and set paging parameters...
204 1.8 mrg */
205 1.8 mrg
206 1.8 mrg uvm.pagedaemon_proc = curproc;
207 1.8 mrg uvm_lock_pageq();
208 1.8 mrg npages = uvmexp.npages;
209 1.8 mrg uvmpd_tune();
210 1.8 mrg uvm_unlock_pageq();
211 1.8 mrg
212 1.8 mrg /*
213 1.8 mrg * main loop
214 1.8 mrg */
215 1.24 chs
216 1.24 chs for (;;) {
217 1.24 chs simple_lock(&uvm.pagedaemon_lock);
218 1.24 chs
219 1.24 chs UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
220 1.24 chs UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
221 1.24 chs &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
222 1.24 chs uvmexp.pdwoke++;
223 1.24 chs UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
224 1.24 chs
225 1.24 chs /* drain pool resources */
226 1.24 chs pool_drain(0);
227 1.1 mrg
228 1.8 mrg /*
229 1.24 chs * now lock page queues and recompute inactive count
230 1.8 mrg */
231 1.8 mrg
232 1.24 chs uvm_lock_pageq();
233 1.24 chs if (npages != uvmexp.npages) { /* check for new pages? */
234 1.24 chs npages = uvmexp.npages;
235 1.24 chs uvmpd_tune();
236 1.24 chs }
237 1.24 chs
238 1.24 chs uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
239 1.24 chs if (uvmexp.inactarg <= uvmexp.freetarg) {
240 1.24 chs uvmexp.inactarg = uvmexp.freetarg + 1;
241 1.24 chs }
242 1.24 chs
243 1.24 chs UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
244 1.24 chs uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
245 1.24 chs uvmexp.inactarg);
246 1.8 mrg
247 1.8 mrg /*
248 1.24 chs * scan if needed
249 1.8 mrg */
250 1.8 mrg
251 1.24 chs if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
252 1.30 chs uvmexp.inactive < uvmexp.inactarg) {
253 1.24 chs uvmpd_scan();
254 1.8 mrg }
255 1.8 mrg
256 1.8 mrg /*
257 1.24 chs * if there's any free memory to be had,
258 1.24 chs * wake up any waiters.
259 1.8 mrg */
260 1.8 mrg
261 1.24 chs if (uvmexp.free > uvmexp.reserve_kernel ||
262 1.24 chs uvmexp.paging == 0) {
263 1.24 chs wakeup(&uvmexp.free);
264 1.8 mrg }
265 1.1 mrg
266 1.8 mrg /*
267 1.24 chs * scan done. unlock page queues (the only lock we are holding)
268 1.8 mrg */
269 1.8 mrg
270 1.24 chs uvm_unlock_pageq();
271 1.24 chs }
272 1.24 chs /*NOTREACHED*/
273 1.24 chs }
274 1.24 chs
275 1.8 mrg
276 1.24 chs /*
277 1.24 chs * uvm_aiodone_daemon: main loop for the aiodone daemon.
278 1.24 chs */
279 1.8 mrg
280 1.24 chs void
281 1.24 chs uvm_aiodone_daemon(void *arg)
282 1.24 chs {
283 1.24 chs int s, free;
284 1.24 chs struct buf *bp, *nbp;
285 1.24 chs UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
286 1.9 pk
287 1.24 chs for (;;) {
288 1.8 mrg
289 1.8 mrg /*
290 1.24 chs * carefully attempt to go to sleep (without losing "wakeups"!).
291 1.24 chs * we need splbio because we want to make sure the aio_done list
292 1.24 chs * is totally empty before we go to sleep.
293 1.8 mrg */
294 1.8 mrg
295 1.24 chs s = splbio();
296 1.24 chs simple_lock(&uvm.aiodoned_lock);
297 1.24 chs if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
298 1.24 chs UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
299 1.24 chs UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
300 1.24 chs &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
301 1.24 chs UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
302 1.24 chs
303 1.24 chs /* relock aiodoned_lock, still at splbio */
304 1.24 chs simple_lock(&uvm.aiodoned_lock);
305 1.8 mrg }
306 1.8 mrg
307 1.24 chs /*
308 1.24 chs * check for done aio structures
309 1.24 chs */
310 1.8 mrg
311 1.24 chs bp = TAILQ_FIRST(&uvm.aio_done);
312 1.24 chs if (bp) {
313 1.24 chs TAILQ_INIT(&uvm.aio_done);
314 1.24 chs }
315 1.8 mrg
316 1.24 chs simple_unlock(&uvm.aiodoned_lock);
317 1.24 chs splx(s);
318 1.8 mrg
319 1.8 mrg /*
320 1.24 chs * process each i/o that's done.
321 1.8 mrg */
322 1.8 mrg
323 1.24 chs free = uvmexp.free;
324 1.24 chs while (bp != NULL) {
325 1.24 chs nbp = TAILQ_NEXT(bp, b_freelist);
326 1.24 chs (*bp->b_iodone)(bp);
327 1.24 chs bp = nbp;
328 1.24 chs }
329 1.24 chs if (free <= uvmexp.reserve_kernel) {
330 1.24 chs s = uvm_lock_fpageq();
331 1.24 chs wakeup(&uvm.pagedaemon);
332 1.24 chs uvm_unlock_fpageq(s);
333 1.24 chs } else {
334 1.24 chs simple_lock(&uvm.pagedaemon_lock);
335 1.17 thorpej wakeup(&uvmexp.free);
336 1.24 chs simple_unlock(&uvm.pagedaemon_lock);
337 1.24 chs }
338 1.8 mrg }
339 1.1 mrg }
340 1.1 mrg
341 1.1 mrg /*
342 1.24 chs * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
343 1.1 mrg *
344 1.1 mrg * => called with page queues locked
345 1.1 mrg * => we work on meeting our free target by converting inactive pages
346 1.1 mrg * into free pages.
347 1.1 mrg * => we handle the building of swap-backed clusters
348 1.1 mrg * => we return TRUE if we are exiting because we met our target
349 1.1 mrg */
350 1.1 mrg
351 1.37 chs boolean_t
352 1.8 mrg uvmpd_scan_inactive(pglst)
353 1.8 mrg struct pglist *pglst;
354 1.8 mrg {
355 1.8 mrg boolean_t retval = FALSE; /* assume we haven't hit target */
356 1.37 chs int error;
357 1.8 mrg struct vm_page *p, *nextpg;
358 1.8 mrg struct uvm_object *uobj;
359 1.37 chs struct vm_anon *anon;
360 1.37 chs struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT];
361 1.37 chs struct simplelock *slock;
362 1.37 chs int swnpages, swcpages;
363 1.14 chs int swslot;
364 1.37 chs int dirtyreacts, t, result;
365 1.8 mrg UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
366 1.1 mrg
367 1.8 mrg /*
368 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
369 1.24 chs * to stay in the loop while we have a page to scan or we have
370 1.8 mrg * a swap-cluster to build.
371 1.8 mrg */
372 1.24 chs
373 1.8 mrg swslot = 0;
374 1.8 mrg swnpages = swcpages = 0;
375 1.14 chs dirtyreacts = 0;
376 1.24 chs for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
377 1.24 chs uobj = NULL;
378 1.24 chs anon = NULL;
379 1.8 mrg if (p) {
380 1.24 chs
381 1.8 mrg /*
382 1.37 chs * see if we've met the free target.
383 1.8 mrg */
384 1.24 chs
385 1.37 chs if (uvmexp.free + uvmexp.paging >=
386 1.37 chs uvmexp.freetarg << 2 ||
387 1.30 chs dirtyreacts == UVMPD_NUMDIRTYREACTS) {
388 1.30 chs UVMHIST_LOG(pdhist," met free target: "
389 1.30 chs "exit loop", 0, 0, 0, 0);
390 1.30 chs retval = TRUE;
391 1.24 chs
392 1.30 chs if (swslot == 0) {
393 1.30 chs /* exit now if no swap-i/o pending */
394 1.30 chs break;
395 1.24 chs }
396 1.30 chs
397 1.30 chs /* set p to null to signal final swap i/o */
398 1.30 chs p = NULL;
399 1.37 chs nextpg = NULL;
400 1.8 mrg }
401 1.8 mrg }
402 1.24 chs if (p) { /* if (we have a new page to consider) */
403 1.30 chs
404 1.8 mrg /*
405 1.8 mrg * we are below target and have a new page to consider.
406 1.8 mrg */
407 1.37 chs
408 1.8 mrg uvmexp.pdscans++;
409 1.24 chs nextpg = TAILQ_NEXT(p, pageq);
410 1.8 mrg
411 1.27 mycroft /*
412 1.27 mycroft * move referenced pages back to active queue and
413 1.30 chs * skip to next page.
414 1.27 mycroft */
415 1.30 chs
416 1.37 chs if (pmap_clear_reference(p)) {
417 1.27 mycroft uvm_pageactivate(p);
418 1.27 mycroft uvmexp.pdreact++;
419 1.27 mycroft continue;
420 1.27 mycroft }
421 1.37 chs anon = p->uanon;
422 1.37 chs uobj = p->uobject;
423 1.30 chs
424 1.30 chs /*
425 1.30 chs * enforce the minimum thresholds on different
426 1.30 chs * types of memory usage. if reusing the current
427 1.30 chs * page would reduce that type of usage below its
428 1.30 chs * minimum, reactivate the page instead and move
429 1.30 chs * on to the next page.
430 1.30 chs */
431 1.30 chs
432 1.30 chs t = uvmexp.active + uvmexp.inactive + uvmexp.free;
433 1.37 chs if (anon &&
434 1.30 chs uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8) {
435 1.30 chs uvm_pageactivate(p);
436 1.30 chs uvmexp.pdreanon++;
437 1.30 chs continue;
438 1.30 chs }
439 1.37 chs if (uobj && UVM_OBJ_IS_VTEXT(uobj) &&
440 1.30 chs uvmexp.vtextpages <= (t * uvmexp.vtextmin) >> 8) {
441 1.30 chs uvm_pageactivate(p);
442 1.30 chs uvmexp.pdrevtext++;
443 1.30 chs continue;
444 1.30 chs }
445 1.37 chs if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
446 1.37 chs !UVM_OBJ_IS_VTEXT(uobj) &&
447 1.30 chs uvmexp.vnodepages <= (t * uvmexp.vnodemin) >> 8) {
448 1.30 chs uvm_pageactivate(p);
449 1.30 chs uvmexp.pdrevnode++;
450 1.30 chs continue;
451 1.30 chs }
452 1.30 chs
453 1.8 mrg /*
454 1.8 mrg * first we attempt to lock the object that this page
455 1.8 mrg * belongs to. if our attempt fails we skip on to
456 1.8 mrg * the next page (no harm done). it is important to
457 1.8 mrg * "try" locking the object as we are locking in the
458 1.8 mrg * wrong order (pageq -> object) and we don't want to
459 1.24 chs * deadlock.
460 1.8 mrg *
461 1.24 chs * the only time we expect to see an ownerless page
462 1.8 mrg * (i.e. a page with no uobject and !PQ_ANON) is if an
463 1.8 mrg * anon has loaned a page from a uvm_object and the
464 1.8 mrg * uvm_object has dropped the ownership. in that
465 1.8 mrg * case, the anon can "take over" the loaned page
466 1.8 mrg * and make it its own.
467 1.8 mrg */
468 1.30 chs
469 1.8 mrg /* is page part of an anon or ownerless ? */
470 1.37 chs if ((p->pqflags & PQ_ANON) || uobj == NULL) {
471 1.24 chs KASSERT(anon != NULL);
472 1.37 chs slock = &anon->an_lock;
473 1.37 chs if (!simple_lock_try(slock)) {
474 1.8 mrg /* lock failed, skip this page */
475 1.8 mrg continue;
476 1.30 chs }
477 1.8 mrg
478 1.8 mrg /*
479 1.8 mrg * if the page is ownerless, claim it in the
480 1.8 mrg * name of "anon"!
481 1.8 mrg */
482 1.24 chs
483 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
484 1.24 chs KASSERT(p->loan_count > 0);
485 1.8 mrg p->loan_count--;
486 1.24 chs p->pqflags |= PQ_ANON;
487 1.24 chs /* anon now owns it */
488 1.8 mrg }
489 1.8 mrg if (p->flags & PG_BUSY) {
490 1.37 chs simple_unlock(slock);
491 1.8 mrg uvmexp.pdbusy++;
492 1.8 mrg continue;
493 1.8 mrg }
494 1.8 mrg uvmexp.pdanscan++;
495 1.8 mrg } else {
496 1.24 chs KASSERT(uobj != NULL);
497 1.37 chs slock = &uobj->vmobjlock;
498 1.37 chs if (!simple_lock_try(slock)) {
499 1.24 chs continue;
500 1.24 chs }
501 1.8 mrg if (p->flags & PG_BUSY) {
502 1.37 chs simple_unlock(slock);
503 1.8 mrg uvmexp.pdbusy++;
504 1.24 chs continue;
505 1.8 mrg }
506 1.8 mrg uvmexp.pdobscan++;
507 1.8 mrg }
508 1.8 mrg
509 1.37 chs
510 1.8 mrg /*
511 1.8 mrg * we now have the object and the page queues locked.
512 1.37 chs * if the page is not swap-backed, call the object's
513 1.37 chs * pager to flush and free the page.
514 1.37 chs */
515 1.37 chs
516 1.37 chs if ((p->pqflags & PQ_SWAPBACKED) == 0) {
517 1.37 chs uvm_unlock_pageq();
518 1.37 chs error = (uobj->pgops->pgo_put)(uobj, p->offset,
519 1.37 chs p->offset + PAGE_SIZE,
520 1.37 chs PGO_CLEANIT|PGO_FREE);
521 1.37 chs uvm_lock_pageq();
522 1.37 chs if (nextpg &&
523 1.37 chs (nextpg->flags & PQ_INACTIVE) == 0) {
524 1.37 chs nextpg = TAILQ_FIRST(pglst);
525 1.37 chs }
526 1.37 chs continue;
527 1.37 chs }
528 1.37 chs
529 1.37 chs /*
530 1.37 chs * the page is swap-backed. remove all the permissions
531 1.29 thorpej * from the page so we can sync the modified info
532 1.29 thorpej * without any race conditions. if the page is clean
533 1.29 thorpej * we can free it now and continue.
534 1.8 mrg */
535 1.8 mrg
536 1.29 thorpej pmap_page_protect(p, VM_PROT_NONE);
537 1.37 chs if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
538 1.37 chs p->flags &= ~(PG_CLEAN);
539 1.30 chs }
540 1.8 mrg if (p->flags & PG_CLEAN) {
541 1.8 mrg uvm_pagefree(p);
542 1.8 mrg uvmexp.pdfreed++;
543 1.24 chs
544 1.37 chs /*
545 1.37 chs * for anons, we need to remove the page
546 1.37 chs * from the anon ourselves. for aobjs,
547 1.37 chs * pagefree did that for us.
548 1.37 chs */
549 1.37 chs
550 1.8 mrg if (anon) {
551 1.24 chs KASSERT(anon->an_swslot != 0);
552 1.8 mrg anon->u.an_page = NULL;
553 1.8 mrg }
554 1.37 chs simple_unlock(slock);
555 1.8 mrg continue;
556 1.8 mrg }
557 1.8 mrg
558 1.8 mrg /*
559 1.8 mrg * this page is dirty, skip it if we'll have met our
560 1.8 mrg * free target when all the current pageouts complete.
561 1.8 mrg */
562 1.24 chs
563 1.37 chs if (uvmexp.free + uvmexp.paging >
564 1.37 chs uvmexp.freetarg << 2) {
565 1.37 chs simple_unlock(slock);
566 1.8 mrg continue;
567 1.8 mrg }
568 1.8 mrg
569 1.8 mrg /*
570 1.37 chs * free any swap space allocated to the page since
571 1.37 chs * we'll have to write it again with its new data.
572 1.37 chs */
573 1.37 chs
574 1.37 chs if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
575 1.37 chs uvm_swap_free(anon->an_swslot, 1);
576 1.37 chs anon->an_swslot = 0;
577 1.37 chs } else if (p->pqflags & PQ_AOBJ) {
578 1.37 chs uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
579 1.37 chs }
580 1.37 chs
581 1.37 chs /*
582 1.37 chs * if all pages in swap are only in swap,
583 1.37 chs * the swap space is full and we can't page out
584 1.37 chs * any more swap-backed pages. reactivate this page
585 1.37 chs * so that we eventually cycle all pages through
586 1.37 chs * the inactive queue.
587 1.14 chs */
588 1.24 chs
589 1.24 chs KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
590 1.37 chs if (uvmexp.swpgonly == uvmexp.swpages) {
591 1.14 chs dirtyreacts++;
592 1.14 chs uvm_pageactivate(p);
593 1.37 chs simple_unlock(slock);
594 1.14 chs continue;
595 1.14 chs }
596 1.14 chs
597 1.14 chs /*
598 1.37 chs * start new swap pageout cluster (if necessary).
599 1.14 chs */
600 1.24 chs
601 1.37 chs if (swslot == 0) {
602 1.37 chs swnpages = MAXBSIZE >> PAGE_SHIFT;
603 1.37 chs swslot = uvm_swap_alloc(&swnpages, TRUE);
604 1.37 chs if (swslot == 0) {
605 1.37 chs simple_unlock(slock);
606 1.37 chs continue;
607 1.14 chs }
608 1.37 chs swcpages = 0;
609 1.14 chs }
610 1.14 chs
611 1.14 chs /*
612 1.37 chs * at this point, we're definitely going reuse this
613 1.37 chs * page. mark the page busy and delayed-free.
614 1.37 chs * we should remove the page from the page queues
615 1.37 chs * so we don't ever look at it again.
616 1.37 chs * adjust counters and such.
617 1.8 mrg */
618 1.30 chs
619 1.37 chs p->flags |= PG_BUSY;
620 1.8 mrg UVM_PAGE_OWN(p, "scan_inactive");
621 1.37 chs
622 1.37 chs p->flags |= PG_PAGEOUT;
623 1.37 chs uvmexp.paging++;
624 1.37 chs uvm_pagedequeue(p);
625 1.37 chs
626 1.8 mrg uvmexp.pgswapout++;
627 1.8 mrg
628 1.8 mrg /*
629 1.37 chs * add the new page to the cluster.
630 1.8 mrg */
631 1.24 chs
632 1.37 chs if (anon) {
633 1.37 chs anon->an_swslot = swslot + swcpages;
634 1.37 chs simple_unlock(slock);
635 1.37 chs } else {
636 1.37 chs result = uao_set_swslot(uobj,
637 1.37 chs p->offset >> PAGE_SHIFT, swslot + swcpages);
638 1.37 chs if (result == -1) {
639 1.37 chs p->flags &= ~(PG_BUSY|PG_PAGEOUT);
640 1.37 chs UVM_PAGE_OWN(p, NULL);
641 1.37 chs uvmexp.paging--;
642 1.37 chs uvm_pageactivate(p);
643 1.37 chs simple_unlock(slock);
644 1.37 chs continue;
645 1.8 mrg }
646 1.37 chs simple_unlock(slock);
647 1.37 chs }
648 1.37 chs swpps[swcpages] = p;
649 1.37 chs swcpages++;
650 1.8 mrg
651 1.37 chs /*
652 1.37 chs * if the cluster isn't full, look for more pages
653 1.37 chs * before starting the i/o.
654 1.37 chs */
655 1.24 chs
656 1.37 chs if (swcpages < swnpages) {
657 1.37 chs continue;
658 1.8 mrg }
659 1.8 mrg }
660 1.8 mrg
661 1.8 mrg /*
662 1.37 chs * if this is the final pageout we could have a few
663 1.37 chs * unused swap blocks. if so, free them now.
664 1.8 mrg */
665 1.24 chs
666 1.37 chs if (swcpages < swnpages) {
667 1.37 chs uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
668 1.8 mrg }
669 1.8 mrg
670 1.8 mrg /*
671 1.37 chs * now start the pageout.
672 1.8 mrg */
673 1.8 mrg
674 1.37 chs uvm_unlock_pageq();
675 1.8 mrg uvmexp.pdpageouts++;
676 1.37 chs error = uvm_swap_put(swslot, swpps, swcpages, 0);
677 1.37 chs KASSERT(error == 0);
678 1.37 chs uvm_lock_pageq();
679 1.8 mrg
680 1.8 mrg /*
681 1.37 chs * zero swslot to indicate that we are
682 1.8 mrg * no longer building a swap-backed cluster.
683 1.8 mrg */
684 1.8 mrg
685 1.37 chs swslot = 0;
686 1.24 chs
687 1.8 mrg /*
688 1.31 chs * the pageout is in progress. bump counters and set up
689 1.31 chs * for the next loop.
690 1.8 mrg */
691 1.8 mrg
692 1.31 chs uvmexp.pdpending++;
693 1.37 chs if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
694 1.37 chs nextpg = TAILQ_FIRST(pglst);
695 1.8 mrg }
696 1.24 chs }
697 1.37 chs return (error);
698 1.1 mrg }
699 1.1 mrg
700 1.1 mrg /*
701 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
702 1.1 mrg *
703 1.1 mrg * => called with pageq's locked
704 1.1 mrg */
705 1.1 mrg
706 1.8 mrg void
707 1.37 chs uvmpd_scan(void)
708 1.1 mrg {
709 1.37 chs int inactive_shortage, swap_shortage, pages_freed;
710 1.8 mrg struct vm_page *p, *nextpg;
711 1.8 mrg struct uvm_object *uobj;
712 1.37 chs struct vm_anon *anon;
713 1.8 mrg boolean_t got_it;
714 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
715 1.1 mrg
716 1.37 chs uvmexp.pdrevs++;
717 1.24 chs uobj = NULL;
718 1.37 chs anon = NULL;
719 1.1 mrg
720 1.1 mrg #ifndef __SWAP_BROKEN
721 1.8 mrg /*
722 1.8 mrg * swap out some processes if we are below our free target.
723 1.8 mrg * we need to unlock the page queues for this.
724 1.8 mrg */
725 1.37 chs if (uvmexp.free < uvmexp.freetarg) {
726 1.8 mrg uvmexp.pdswout++;
727 1.37 chs UVMHIST_LOG(pdhist," free %d < target %d: swapout",
728 1.37 chs uvmexp.free, uvmexp.freetarg, 0, 0);
729 1.8 mrg uvm_unlock_pageq();
730 1.8 mrg uvm_swapout_threads();
731 1.8 mrg uvm_lock_pageq();
732 1.1 mrg
733 1.8 mrg }
734 1.1 mrg #endif
735 1.1 mrg
736 1.8 mrg /*
737 1.8 mrg * now we want to work on meeting our targets. first we work on our
738 1.8 mrg * free target by converting inactive pages into free pages. then
739 1.8 mrg * we work on meeting our inactive target by converting active pages
740 1.8 mrg * to inactive ones.
741 1.8 mrg */
742 1.8 mrg
743 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
744 1.8 mrg
745 1.8 mrg /*
746 1.24 chs * alternate starting queue between swap and object based on the
747 1.24 chs * low bit of uvmexp.pdrevs (which we bump by one each call).
748 1.8 mrg */
749 1.8 mrg
750 1.8 mrg got_it = FALSE;
751 1.14 chs pages_freed = uvmexp.pdfreed;
752 1.33 ross (void) uvmpd_scan_inactive(&uvm.page_inactive);
753 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
754 1.8 mrg
755 1.8 mrg /*
756 1.8 mrg * we have done the scan to get free pages. now we work on meeting
757 1.8 mrg * our inactive target.
758 1.8 mrg */
759 1.8 mrg
760 1.14 chs inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
761 1.14 chs
762 1.14 chs /*
763 1.14 chs * detect if we're not going to be able to page anything out
764 1.14 chs * until we free some swap resources from active pages.
765 1.14 chs */
766 1.24 chs
767 1.14 chs swap_shortage = 0;
768 1.14 chs if (uvmexp.free < uvmexp.freetarg &&
769 1.14 chs uvmexp.swpginuse == uvmexp.swpages &&
770 1.14 chs uvmexp.swpgonly < uvmexp.swpages &&
771 1.14 chs pages_freed == 0) {
772 1.14 chs swap_shortage = uvmexp.freetarg - uvmexp.free;
773 1.14 chs }
774 1.24 chs
775 1.14 chs UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
776 1.14 chs inactive_shortage, swap_shortage,0,0);
777 1.24 chs for (p = TAILQ_FIRST(&uvm.page_active);
778 1.14 chs p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
779 1.14 chs p = nextpg) {
780 1.24 chs nextpg = TAILQ_NEXT(p, pageq);
781 1.37 chs if (p->flags & PG_BUSY) {
782 1.37 chs continue;
783 1.37 chs }
784 1.8 mrg
785 1.8 mrg /*
786 1.14 chs * lock the page's owner.
787 1.8 mrg */
788 1.8 mrg /* is page anon owned or ownerless? */
789 1.8 mrg if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
790 1.37 chs anon = p->uanon;
791 1.37 chs KASSERT(anon != NULL);
792 1.37 chs if (!simple_lock_try(&anon->an_lock)) {
793 1.8 mrg continue;
794 1.37 chs }
795 1.1 mrg
796 1.8 mrg /* take over the page? */
797 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
798 1.24 chs KASSERT(p->loan_count > 0);
799 1.8 mrg p->loan_count--;
800 1.8 mrg p->pqflags |= PQ_ANON;
801 1.8 mrg }
802 1.8 mrg } else {
803 1.37 chs uobj = p->uobject;
804 1.37 chs if (!simple_lock_try(&uobj->vmobjlock)) {
805 1.8 mrg continue;
806 1.37 chs }
807 1.8 mrg }
808 1.24 chs
809 1.14 chs /*
810 1.14 chs * skip this page if it's busy.
811 1.14 chs */
812 1.24 chs
813 1.14 chs if ((p->flags & PG_BUSY) != 0) {
814 1.14 chs if (p->pqflags & PQ_ANON)
815 1.37 chs simple_unlock(&anon->an_lock);
816 1.14 chs else
817 1.37 chs simple_unlock(&uobj->vmobjlock);
818 1.14 chs continue;
819 1.14 chs }
820 1.24 chs
821 1.14 chs /*
822 1.14 chs * if there's a shortage of swap, free any swap allocated
823 1.14 chs * to this page so that other pages can be paged out.
824 1.14 chs */
825 1.24 chs
826 1.14 chs if (swap_shortage > 0) {
827 1.37 chs if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
828 1.37 chs uvm_swap_free(anon->an_swslot, 1);
829 1.37 chs anon->an_swslot = 0;
830 1.14 chs p->flags &= ~PG_CLEAN;
831 1.14 chs swap_shortage--;
832 1.37 chs } else if (p->pqflags & PQ_AOBJ) {
833 1.37 chs int slot = uao_set_swslot(uobj,
834 1.14 chs p->offset >> PAGE_SHIFT, 0);
835 1.14 chs if (slot) {
836 1.14 chs uvm_swap_free(slot, 1);
837 1.14 chs p->flags &= ~PG_CLEAN;
838 1.14 chs swap_shortage--;
839 1.14 chs }
840 1.14 chs }
841 1.14 chs }
842 1.24 chs
843 1.14 chs /*
844 1.37 chs * if there's a shortage of inactive pages, deactivate.
845 1.14 chs */
846 1.24 chs
847 1.32 thorpej if (inactive_shortage > 0) {
848 1.8 mrg /* no need to check wire_count as pg is "active" */
849 1.8 mrg uvm_pagedeactivate(p);
850 1.8 mrg uvmexp.pddeact++;
851 1.14 chs inactive_shortage--;
852 1.8 mrg }
853 1.37 chs
854 1.37 chs /*
855 1.37 chs * we're done with this page.
856 1.37 chs */
857 1.37 chs
858 1.8 mrg if (p->pqflags & PQ_ANON)
859 1.37 chs simple_unlock(&anon->an_lock);
860 1.8 mrg else
861 1.37 chs simple_unlock(&uobj->vmobjlock);
862 1.8 mrg }
863 1.1 mrg }
864