Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.45
      1  1.45      wiz /*	$NetBSD: uvm_pdaemon.c,v 1.45 2002/01/21 14:42:27 wiz Exp $	*/
      2   1.1      mrg 
      3  1.34      chs /*
      4   1.1      mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  1.34      chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1      mrg  *
      7   1.1      mrg  * All rights reserved.
      8   1.1      mrg  *
      9   1.1      mrg  * This code is derived from software contributed to Berkeley by
     10   1.1      mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1      mrg  *
     12   1.1      mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1      mrg  * modification, are permitted provided that the following conditions
     14   1.1      mrg  * are met:
     15   1.1      mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1      mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1      mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1      mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1      mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1      mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1      mrg  *    must display the following acknowledgement:
     22   1.1      mrg  *	This product includes software developed by Charles D. Cranor,
     23  1.34      chs  *      Washington University, the University of California, Berkeley and
     24   1.1      mrg  *      its contributors.
     25   1.1      mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1      mrg  *    may be used to endorse or promote products derived from this software
     27   1.1      mrg  *    without specific prior written permission.
     28   1.1      mrg  *
     29   1.1      mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1      mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1      mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1      mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1      mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1      mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1      mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1      mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1      mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1      mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1      mrg  * SUCH DAMAGE.
     40   1.1      mrg  *
     41   1.1      mrg  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42   1.4      mrg  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43   1.1      mrg  *
     44   1.1      mrg  *
     45   1.1      mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1      mrg  * All rights reserved.
     47  1.34      chs  *
     48   1.1      mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1      mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1      mrg  * notice and this permission notice appear in all copies of the
     51   1.1      mrg  * software, derivative works or modified versions, and any portions
     52   1.1      mrg  * thereof, and that both notices appear in supporting documentation.
     53  1.34      chs  *
     54  1.34      chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  1.34      chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1      mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  1.34      chs  *
     58   1.1      mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1      mrg  *
     60   1.1      mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1      mrg  *  School of Computer Science
     62   1.1      mrg  *  Carnegie Mellon University
     63   1.1      mrg  *  Pittsburgh PA 15213-3890
     64   1.1      mrg  *
     65   1.1      mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1      mrg  * rights to redistribute these changes.
     67   1.1      mrg  */
     68   1.1      mrg 
     69   1.1      mrg /*
     70   1.1      mrg  * uvm_pdaemon.c: the page daemon
     71   1.1      mrg  */
     72  1.42    lukem 
     73  1.42    lukem #include <sys/cdefs.h>
     74  1.45      wiz __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.45 2002/01/21 14:42:27 wiz Exp $");
     75  1.42    lukem 
     76  1.42    lukem #include "opt_uvmhist.h"
     77   1.1      mrg 
     78   1.1      mrg #include <sys/param.h>
     79   1.1      mrg #include <sys/proc.h>
     80   1.1      mrg #include <sys/systm.h>
     81   1.1      mrg #include <sys/kernel.h>
     82   1.9       pk #include <sys/pool.h>
     83  1.24      chs #include <sys/buf.h>
     84  1.30      chs #include <sys/vnode.h>
     85   1.1      mrg 
     86   1.1      mrg #include <uvm/uvm.h>
     87   1.1      mrg 
     88   1.1      mrg /*
     89  1.45      wiz  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     90  1.14      chs  * in a pass thru the inactive list when swap is full.  the value should be
     91  1.14      chs  * "small"... if it's too large we'll cycle the active pages thru the inactive
     92  1.14      chs  * queue too quickly to for them to be referenced and avoid being freed.
     93  1.14      chs  */
     94  1.14      chs 
     95  1.14      chs #define UVMPD_NUMDIRTYREACTS 16
     96  1.14      chs 
     97  1.14      chs 
     98  1.14      chs /*
     99   1.1      mrg  * local prototypes
    100   1.1      mrg  */
    101   1.1      mrg 
    102  1.37      chs void		uvmpd_scan __P((void));
    103  1.37      chs boolean_t	uvmpd_scan_inactive __P((struct pglist *));
    104  1.37      chs void		uvmpd_tune __P((void));
    105   1.1      mrg 
    106   1.1      mrg /*
    107   1.1      mrg  * uvm_wait: wait (sleep) for the page daemon to free some pages
    108   1.1      mrg  *
    109   1.1      mrg  * => should be called with all locks released
    110   1.1      mrg  * => should _not_ be called by the page daemon (to avoid deadlock)
    111   1.1      mrg  */
    112   1.1      mrg 
    113  1.19  thorpej void
    114  1.19  thorpej uvm_wait(wmsg)
    115  1.19  thorpej 	const char *wmsg;
    116   1.8      mrg {
    117   1.8      mrg 	int timo = 0;
    118   1.8      mrg 	int s = splbio();
    119   1.1      mrg 
    120   1.8      mrg 	/*
    121   1.8      mrg 	 * check for page daemon going to sleep (waiting for itself)
    122   1.8      mrg 	 */
    123   1.1      mrg 
    124  1.37      chs 	if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
    125   1.8      mrg 		/*
    126   1.8      mrg 		 * now we have a problem: the pagedaemon wants to go to
    127   1.8      mrg 		 * sleep until it frees more memory.   but how can it
    128   1.8      mrg 		 * free more memory if it is asleep?  that is a deadlock.
    129   1.8      mrg 		 * we have two options:
    130   1.8      mrg 		 *  [1] panic now
    131   1.8      mrg 		 *  [2] put a timeout on the sleep, thus causing the
    132   1.8      mrg 		 *      pagedaemon to only pause (rather than sleep forever)
    133   1.8      mrg 		 *
    134   1.8      mrg 		 * note that option [2] will only help us if we get lucky
    135   1.8      mrg 		 * and some other process on the system breaks the deadlock
    136   1.8      mrg 		 * by exiting or freeing memory (thus allowing the pagedaemon
    137   1.8      mrg 		 * to continue).  for now we panic if DEBUG is defined,
    138   1.8      mrg 		 * otherwise we hope for the best with option [2] (better
    139   1.8      mrg 		 * yet, this should never happen in the first place!).
    140   1.8      mrg 		 */
    141   1.1      mrg 
    142   1.8      mrg 		printf("pagedaemon: deadlock detected!\n");
    143   1.8      mrg 		timo = hz >> 3;		/* set timeout */
    144   1.1      mrg #if defined(DEBUG)
    145   1.8      mrg 		/* DEBUG: panic so we can debug it */
    146   1.8      mrg 		panic("pagedaemon deadlock");
    147   1.1      mrg #endif
    148   1.8      mrg 	}
    149   1.1      mrg 
    150   1.8      mrg 	simple_lock(&uvm.pagedaemon_lock);
    151  1.17  thorpej 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    152   1.8      mrg 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    153   1.8      mrg 	    timo);
    154   1.1      mrg 
    155   1.8      mrg 	splx(s);
    156   1.1      mrg }
    157   1.1      mrg 
    158   1.1      mrg 
    159   1.1      mrg /*
    160   1.1      mrg  * uvmpd_tune: tune paging parameters
    161   1.1      mrg  *
    162   1.1      mrg  * => called when ever memory is added (or removed?) to the system
    163   1.1      mrg  * => caller must call with page queues locked
    164   1.1      mrg  */
    165   1.1      mrg 
    166  1.37      chs void
    167  1.37      chs uvmpd_tune(void)
    168   1.8      mrg {
    169   1.8      mrg 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    170   1.1      mrg 
    171   1.8      mrg 	uvmexp.freemin = uvmexp.npages / 20;
    172   1.1      mrg 
    173   1.8      mrg 	/* between 16k and 256k */
    174   1.8      mrg 	/* XXX:  what are these values good for? */
    175  1.37      chs 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    176  1.37      chs 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    177  1.23    bjh21 
    178  1.23    bjh21 	/* Make sure there's always a user page free. */
    179  1.23    bjh21 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    180  1.23    bjh21 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    181   1.1      mrg 
    182   1.8      mrg 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    183   1.8      mrg 	if (uvmexp.freetarg <= uvmexp.freemin)
    184   1.8      mrg 		uvmexp.freetarg = uvmexp.freemin + 1;
    185   1.1      mrg 
    186   1.8      mrg 	/* uvmexp.inactarg: computed in main daemon loop */
    187   1.1      mrg 
    188   1.8      mrg 	uvmexp.wiredmax = uvmexp.npages / 3;
    189   1.8      mrg 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    190   1.1      mrg 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    191   1.1      mrg }
    192   1.1      mrg 
    193   1.1      mrg /*
    194   1.1      mrg  * uvm_pageout: the main loop for the pagedaemon
    195   1.1      mrg  */
    196   1.1      mrg 
    197   1.8      mrg void
    198  1.22  thorpej uvm_pageout(void *arg)
    199   1.8      mrg {
    200   1.8      mrg 	int npages = 0;
    201   1.8      mrg 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    202  1.24      chs 
    203   1.8      mrg 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    204   1.8      mrg 
    205   1.8      mrg 	/*
    206   1.8      mrg 	 * ensure correct priority and set paging parameters...
    207   1.8      mrg 	 */
    208   1.8      mrg 
    209   1.8      mrg 	uvm.pagedaemon_proc = curproc;
    210   1.8      mrg 	uvm_lock_pageq();
    211   1.8      mrg 	npages = uvmexp.npages;
    212   1.8      mrg 	uvmpd_tune();
    213   1.8      mrg 	uvm_unlock_pageq();
    214   1.8      mrg 
    215   1.8      mrg 	/*
    216   1.8      mrg 	 * main loop
    217   1.8      mrg 	 */
    218  1.24      chs 
    219  1.24      chs 	for (;;) {
    220  1.24      chs 		simple_lock(&uvm.pagedaemon_lock);
    221  1.24      chs 
    222  1.24      chs 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    223  1.24      chs 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    224  1.24      chs 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    225  1.24      chs 		uvmexp.pdwoke++;
    226  1.24      chs 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    227  1.24      chs 
    228   1.8      mrg 		/*
    229  1.24      chs 		 * now lock page queues and recompute inactive count
    230   1.8      mrg 		 */
    231   1.8      mrg 
    232  1.24      chs 		uvm_lock_pageq();
    233  1.24      chs 		if (npages != uvmexp.npages) {	/* check for new pages? */
    234  1.24      chs 			npages = uvmexp.npages;
    235  1.24      chs 			uvmpd_tune();
    236  1.24      chs 		}
    237  1.24      chs 
    238  1.24      chs 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    239  1.24      chs 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    240  1.24      chs 			uvmexp.inactarg = uvmexp.freetarg + 1;
    241  1.24      chs 		}
    242  1.24      chs 
    243  1.24      chs 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    244  1.24      chs 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    245  1.24      chs 		    uvmexp.inactarg);
    246   1.8      mrg 
    247   1.8      mrg 		/*
    248  1.24      chs 		 * scan if needed
    249   1.8      mrg 		 */
    250   1.8      mrg 
    251  1.24      chs 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    252  1.30      chs 		    uvmexp.inactive < uvmexp.inactarg) {
    253  1.24      chs 			uvmpd_scan();
    254   1.8      mrg 		}
    255   1.8      mrg 
    256   1.8      mrg 		/*
    257  1.24      chs 		 * if there's any free memory to be had,
    258  1.24      chs 		 * wake up any waiters.
    259   1.8      mrg 		 */
    260   1.8      mrg 
    261  1.24      chs 		if (uvmexp.free > uvmexp.reserve_kernel ||
    262  1.24      chs 		    uvmexp.paging == 0) {
    263  1.24      chs 			wakeup(&uvmexp.free);
    264   1.8      mrg 		}
    265   1.1      mrg 
    266   1.8      mrg 		/*
    267  1.24      chs 		 * scan done.  unlock page queues (the only lock we are holding)
    268   1.8      mrg 		 */
    269   1.8      mrg 
    270  1.24      chs 		uvm_unlock_pageq();
    271  1.38      chs 
    272  1.38      chs 		/*
    273  1.38      chs 		 * drain pool resources now that we're not holding any locks
    274  1.38      chs 		 */
    275  1.38      chs 
    276  1.38      chs 		pool_drain(0);
    277  1.24      chs 	}
    278  1.24      chs 	/*NOTREACHED*/
    279  1.24      chs }
    280  1.24      chs 
    281   1.8      mrg 
    282  1.24      chs /*
    283  1.24      chs  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    284  1.24      chs  */
    285   1.8      mrg 
    286  1.24      chs void
    287  1.24      chs uvm_aiodone_daemon(void *arg)
    288  1.24      chs {
    289  1.24      chs 	int s, free;
    290  1.24      chs 	struct buf *bp, *nbp;
    291  1.24      chs 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    292   1.9       pk 
    293  1.24      chs 	for (;;) {
    294   1.8      mrg 
    295   1.8      mrg 		/*
    296  1.24      chs 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    297  1.24      chs 		 * we need splbio because we want to make sure the aio_done list
    298  1.24      chs 		 * is totally empty before we go to sleep.
    299   1.8      mrg 		 */
    300   1.8      mrg 
    301  1.24      chs 		s = splbio();
    302  1.24      chs 		simple_lock(&uvm.aiodoned_lock);
    303  1.24      chs 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    304  1.24      chs 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    305  1.24      chs 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    306  1.24      chs 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    307  1.24      chs 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    308  1.24      chs 
    309  1.24      chs 			/* relock aiodoned_lock, still at splbio */
    310  1.24      chs 			simple_lock(&uvm.aiodoned_lock);
    311   1.8      mrg 		}
    312   1.8      mrg 
    313  1.24      chs 		/*
    314  1.24      chs 		 * check for done aio structures
    315  1.24      chs 		 */
    316   1.8      mrg 
    317  1.24      chs 		bp = TAILQ_FIRST(&uvm.aio_done);
    318  1.24      chs 		if (bp) {
    319  1.24      chs 			TAILQ_INIT(&uvm.aio_done);
    320  1.24      chs 		}
    321   1.8      mrg 
    322  1.24      chs 		simple_unlock(&uvm.aiodoned_lock);
    323  1.24      chs 		splx(s);
    324   1.8      mrg 
    325   1.8      mrg 		/*
    326  1.24      chs 		 * process each i/o that's done.
    327   1.8      mrg 		 */
    328   1.8      mrg 
    329  1.24      chs 		free = uvmexp.free;
    330  1.24      chs 		while (bp != NULL) {
    331  1.24      chs 			nbp = TAILQ_NEXT(bp, b_freelist);
    332  1.24      chs 			(*bp->b_iodone)(bp);
    333  1.24      chs 			bp = nbp;
    334  1.24      chs 		}
    335  1.24      chs 		if (free <= uvmexp.reserve_kernel) {
    336  1.24      chs 			s = uvm_lock_fpageq();
    337  1.24      chs 			wakeup(&uvm.pagedaemon);
    338  1.24      chs 			uvm_unlock_fpageq(s);
    339  1.24      chs 		} else {
    340  1.24      chs 			simple_lock(&uvm.pagedaemon_lock);
    341  1.17  thorpej 			wakeup(&uvmexp.free);
    342  1.24      chs 			simple_unlock(&uvm.pagedaemon_lock);
    343  1.24      chs 		}
    344   1.8      mrg 	}
    345   1.1      mrg }
    346   1.1      mrg 
    347   1.1      mrg /*
    348  1.24      chs  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    349   1.1      mrg  *
    350   1.1      mrg  * => called with page queues locked
    351   1.1      mrg  * => we work on meeting our free target by converting inactive pages
    352   1.1      mrg  *    into free pages.
    353   1.1      mrg  * => we handle the building of swap-backed clusters
    354   1.1      mrg  * => we return TRUE if we are exiting because we met our target
    355   1.1      mrg  */
    356   1.1      mrg 
    357  1.37      chs boolean_t
    358   1.8      mrg uvmpd_scan_inactive(pglst)
    359   1.8      mrg 	struct pglist *pglst;
    360   1.8      mrg {
    361  1.37      chs 	int error;
    362   1.8      mrg 	struct vm_page *p, *nextpg;
    363   1.8      mrg 	struct uvm_object *uobj;
    364  1.37      chs 	struct vm_anon *anon;
    365  1.37      chs 	struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT];
    366  1.37      chs 	struct simplelock *slock;
    367  1.37      chs 	int swnpages, swcpages;
    368  1.14      chs 	int swslot;
    369  1.37      chs 	int dirtyreacts, t, result;
    370  1.43      chs 	boolean_t anonunder, fileunder, execunder;
    371  1.43      chs 	boolean_t anonover, fileover, execover;
    372  1.43      chs 	boolean_t anonreact, filereact, execreact;
    373   1.8      mrg 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    374   1.1      mrg 
    375   1.8      mrg 	/*
    376   1.8      mrg 	 * swslot is non-zero if we are building a swap cluster.  we want
    377  1.24      chs 	 * to stay in the loop while we have a page to scan or we have
    378   1.8      mrg 	 * a swap-cluster to build.
    379   1.8      mrg 	 */
    380  1.24      chs 
    381   1.8      mrg 	swslot = 0;
    382   1.8      mrg 	swnpages = swcpages = 0;
    383  1.14      chs 	dirtyreacts = 0;
    384  1.43      chs 
    385  1.43      chs 	/*
    386  1.43      chs 	 * decide which types of pages we want to reactivate instead of freeing
    387  1.43      chs 	 * to keep usage within the minimum and maximum usage limits.
    388  1.43      chs 	 */
    389  1.43      chs 
    390  1.43      chs 	t = uvmexp.active + uvmexp.inactive + uvmexp.free;
    391  1.43      chs 	anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
    392  1.43      chs 	fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
    393  1.43      chs 	execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
    394  1.43      chs 	anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
    395  1.43      chs 	fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
    396  1.43      chs 	execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
    397  1.43      chs 	anonreact = anonunder || (!anonover && (fileover || execover));
    398  1.43      chs 	filereact = fileunder || (!fileover && (anonover || execover));
    399  1.43      chs 	execreact = execunder || (!execover && (anonover || fileover));
    400  1.24      chs 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
    401  1.24      chs 		uobj = NULL;
    402  1.24      chs 		anon = NULL;
    403   1.8      mrg 		if (p) {
    404  1.24      chs 
    405   1.8      mrg 			/*
    406  1.37      chs 			 * see if we've met the free target.
    407   1.8      mrg 			 */
    408  1.24      chs 
    409  1.37      chs 			if (uvmexp.free + uvmexp.paging >=
    410  1.37      chs 			    uvmexp.freetarg << 2 ||
    411  1.30      chs 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    412  1.30      chs 				UVMHIST_LOG(pdhist,"  met free target: "
    413  1.30      chs 					    "exit loop", 0, 0, 0, 0);
    414  1.24      chs 
    415  1.30      chs 				if (swslot == 0) {
    416  1.30      chs 					/* exit now if no swap-i/o pending */
    417  1.30      chs 					break;
    418  1.24      chs 				}
    419  1.30      chs 
    420  1.30      chs 				/* set p to null to signal final swap i/o */
    421  1.30      chs 				p = NULL;
    422  1.37      chs 				nextpg = NULL;
    423   1.8      mrg 			}
    424   1.8      mrg 		}
    425  1.24      chs 		if (p) {	/* if (we have a new page to consider) */
    426  1.30      chs 
    427   1.8      mrg 			/*
    428   1.8      mrg 			 * we are below target and have a new page to consider.
    429   1.8      mrg 			 */
    430  1.37      chs 
    431   1.8      mrg 			uvmexp.pdscans++;
    432  1.24      chs 			nextpg = TAILQ_NEXT(p, pageq);
    433   1.8      mrg 
    434  1.27  mycroft 			/*
    435  1.27  mycroft 			 * move referenced pages back to active queue and
    436  1.30      chs 			 * skip to next page.
    437  1.27  mycroft 			 */
    438  1.30      chs 
    439  1.37      chs 			if (pmap_clear_reference(p)) {
    440  1.27  mycroft 				uvm_pageactivate(p);
    441  1.27  mycroft 				uvmexp.pdreact++;
    442  1.27  mycroft 				continue;
    443  1.27  mycroft 			}
    444  1.37      chs 			anon = p->uanon;
    445  1.37      chs 			uobj = p->uobject;
    446  1.30      chs 
    447  1.30      chs 			/*
    448  1.30      chs 			 * enforce the minimum thresholds on different
    449  1.30      chs 			 * types of memory usage.  if reusing the current
    450  1.30      chs 			 * page would reduce that type of usage below its
    451  1.30      chs 			 * minimum, reactivate the page instead and move
    452  1.30      chs 			 * on to the next page.
    453  1.30      chs 			 */
    454  1.30      chs 
    455  1.43      chs 			if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
    456  1.30      chs 				uvm_pageactivate(p);
    457  1.43      chs 				uvmexp.pdreexec++;
    458  1.30      chs 				continue;
    459  1.30      chs 			}
    460  1.37      chs 			if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
    461  1.43      chs 			    !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
    462  1.30      chs 				uvm_pageactivate(p);
    463  1.43      chs 				uvmexp.pdrefile++;
    464  1.30      chs 				continue;
    465  1.30      chs 			}
    466  1.44      chs 			if (anon && anonreact) {
    467  1.44      chs 				uvm_pageactivate(p);
    468  1.44      chs 				uvmexp.pdreanon++;
    469  1.44      chs 				continue;
    470  1.44      chs 			}
    471  1.30      chs 
    472   1.8      mrg 			/*
    473   1.8      mrg 			 * first we attempt to lock the object that this page
    474   1.8      mrg 			 * belongs to.  if our attempt fails we skip on to
    475   1.8      mrg 			 * the next page (no harm done).  it is important to
    476   1.8      mrg 			 * "try" locking the object as we are locking in the
    477   1.8      mrg 			 * wrong order (pageq -> object) and we don't want to
    478  1.24      chs 			 * deadlock.
    479   1.8      mrg 			 *
    480  1.24      chs 			 * the only time we expect to see an ownerless page
    481   1.8      mrg 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    482   1.8      mrg 			 * anon has loaned a page from a uvm_object and the
    483   1.8      mrg 			 * uvm_object has dropped the ownership.  in that
    484   1.8      mrg 			 * case, the anon can "take over" the loaned page
    485   1.8      mrg 			 * and make it its own.
    486   1.8      mrg 			 */
    487  1.30      chs 
    488  1.44      chs 			/* does the page belong to an object? */
    489  1.44      chs 			if (uobj != NULL) {
    490  1.44      chs 				slock = &uobj->vmobjlock;
    491  1.44      chs 				if (!simple_lock_try(slock)) {
    492  1.44      chs 					continue;
    493  1.44      chs 				}
    494  1.44      chs 				if (p->flags & PG_BUSY) {
    495  1.44      chs 					simple_unlock(slock);
    496  1.44      chs 					uvmexp.pdbusy++;
    497  1.44      chs 					continue;
    498  1.44      chs 				}
    499  1.44      chs 				uvmexp.pdobscan++;
    500  1.44      chs 			} else {
    501  1.24      chs 				KASSERT(anon != NULL);
    502  1.37      chs 				slock = &anon->an_lock;
    503  1.37      chs 				if (!simple_lock_try(slock)) {
    504   1.8      mrg 					continue;
    505  1.30      chs 				}
    506   1.8      mrg 
    507   1.8      mrg 				/*
    508  1.44      chs 				 * set PQ_ANON if it isn't set already.
    509   1.8      mrg 				 */
    510  1.24      chs 
    511   1.8      mrg 				if ((p->pqflags & PQ_ANON) == 0) {
    512  1.24      chs 					KASSERT(p->loan_count > 0);
    513   1.8      mrg 					p->loan_count--;
    514  1.24      chs 					p->pqflags |= PQ_ANON;
    515  1.24      chs 					/* anon now owns it */
    516   1.8      mrg 				}
    517   1.8      mrg 				if (p->flags & PG_BUSY) {
    518  1.37      chs 					simple_unlock(slock);
    519   1.8      mrg 					uvmexp.pdbusy++;
    520   1.8      mrg 					continue;
    521   1.8      mrg 				}
    522   1.8      mrg 				uvmexp.pdanscan++;
    523   1.8      mrg 			}
    524   1.8      mrg 
    525  1.37      chs 
    526   1.8      mrg 			/*
    527   1.8      mrg 			 * we now have the object and the page queues locked.
    528  1.37      chs 			 * if the page is not swap-backed, call the object's
    529  1.37      chs 			 * pager to flush and free the page.
    530  1.37      chs 			 */
    531  1.37      chs 
    532  1.37      chs 			if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    533  1.37      chs 				uvm_unlock_pageq();
    534  1.37      chs 				error = (uobj->pgops->pgo_put)(uobj, p->offset,
    535  1.37      chs 				    p->offset + PAGE_SIZE,
    536  1.37      chs 				    PGO_CLEANIT|PGO_FREE);
    537  1.37      chs 				uvm_lock_pageq();
    538  1.37      chs 				if (nextpg &&
    539  1.37      chs 				    (nextpg->flags & PQ_INACTIVE) == 0) {
    540  1.37      chs 					nextpg = TAILQ_FIRST(pglst);
    541  1.37      chs 				}
    542  1.37      chs 				continue;
    543  1.37      chs 			}
    544  1.37      chs 
    545  1.37      chs 			/*
    546  1.37      chs 			 * the page is swap-backed.  remove all the permissions
    547  1.29  thorpej 			 * from the page so we can sync the modified info
    548  1.29  thorpej 			 * without any race conditions.  if the page is clean
    549  1.29  thorpej 			 * we can free it now and continue.
    550   1.8      mrg 			 */
    551   1.8      mrg 
    552  1.29  thorpej 			pmap_page_protect(p, VM_PROT_NONE);
    553  1.37      chs 			if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    554  1.37      chs 				p->flags &= ~(PG_CLEAN);
    555  1.30      chs 			}
    556   1.8      mrg 			if (p->flags & PG_CLEAN) {
    557   1.8      mrg 				uvm_pagefree(p);
    558   1.8      mrg 				uvmexp.pdfreed++;
    559  1.24      chs 
    560  1.37      chs 				/*
    561  1.37      chs 				 * for anons, we need to remove the page
    562  1.37      chs 				 * from the anon ourselves.  for aobjs,
    563  1.37      chs 				 * pagefree did that for us.
    564  1.37      chs 				 */
    565  1.37      chs 
    566   1.8      mrg 				if (anon) {
    567  1.24      chs 					KASSERT(anon->an_swslot != 0);
    568   1.8      mrg 					anon->u.an_page = NULL;
    569   1.8      mrg 				}
    570  1.37      chs 				simple_unlock(slock);
    571  1.41      chs 
    572  1.41      chs 				/* this page is now only in swap. */
    573  1.41      chs 				simple_lock(&uvm.swap_data_lock);
    574  1.41      chs 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    575  1.41      chs 				uvmexp.swpgonly++;
    576  1.41      chs 				simple_unlock(&uvm.swap_data_lock);
    577   1.8      mrg 				continue;
    578   1.8      mrg 			}
    579   1.8      mrg 
    580   1.8      mrg 			/*
    581   1.8      mrg 			 * this page is dirty, skip it if we'll have met our
    582   1.8      mrg 			 * free target when all the current pageouts complete.
    583   1.8      mrg 			 */
    584  1.24      chs 
    585  1.37      chs 			if (uvmexp.free + uvmexp.paging >
    586  1.37      chs 			    uvmexp.freetarg << 2) {
    587  1.37      chs 				simple_unlock(slock);
    588   1.8      mrg 				continue;
    589   1.8      mrg 			}
    590   1.8      mrg 
    591   1.8      mrg 			/*
    592  1.37      chs 			 * free any swap space allocated to the page since
    593  1.37      chs 			 * we'll have to write it again with its new data.
    594  1.37      chs 			 */
    595  1.37      chs 
    596  1.37      chs 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    597  1.37      chs 				uvm_swap_free(anon->an_swslot, 1);
    598  1.37      chs 				anon->an_swslot = 0;
    599  1.37      chs 			} else if (p->pqflags & PQ_AOBJ) {
    600  1.37      chs 				uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
    601  1.37      chs 			}
    602  1.37      chs 
    603  1.37      chs 			/*
    604  1.37      chs 			 * if all pages in swap are only in swap,
    605  1.37      chs 			 * the swap space is full and we can't page out
    606  1.37      chs 			 * any more swap-backed pages.  reactivate this page
    607  1.37      chs 			 * so that we eventually cycle all pages through
    608  1.37      chs 			 * the inactive queue.
    609  1.14      chs 			 */
    610  1.24      chs 
    611  1.24      chs 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
    612  1.37      chs 			if (uvmexp.swpgonly == uvmexp.swpages) {
    613  1.14      chs 				dirtyreacts++;
    614  1.14      chs 				uvm_pageactivate(p);
    615  1.37      chs 				simple_unlock(slock);
    616  1.14      chs 				continue;
    617  1.14      chs 			}
    618  1.14      chs 
    619  1.14      chs 			/*
    620  1.37      chs 			 * start new swap pageout cluster (if necessary).
    621  1.14      chs 			 */
    622  1.24      chs 
    623  1.37      chs 			if (swslot == 0) {
    624  1.37      chs 				swnpages = MAXBSIZE >> PAGE_SHIFT;
    625  1.37      chs 				swslot = uvm_swap_alloc(&swnpages, TRUE);
    626  1.37      chs 				if (swslot == 0) {
    627  1.37      chs 					simple_unlock(slock);
    628  1.37      chs 					continue;
    629  1.14      chs 				}
    630  1.37      chs 				swcpages = 0;
    631  1.14      chs 			}
    632  1.14      chs 
    633  1.14      chs 			/*
    634  1.37      chs 			 * at this point, we're definitely going reuse this
    635  1.37      chs 			 * page.  mark the page busy and delayed-free.
    636  1.37      chs 			 * we should remove the page from the page queues
    637  1.37      chs 			 * so we don't ever look at it again.
    638  1.37      chs 			 * adjust counters and such.
    639   1.8      mrg 			 */
    640  1.30      chs 
    641  1.37      chs 			p->flags |= PG_BUSY;
    642   1.8      mrg 			UVM_PAGE_OWN(p, "scan_inactive");
    643  1.37      chs 
    644  1.37      chs 			p->flags |= PG_PAGEOUT;
    645  1.37      chs 			uvmexp.paging++;
    646  1.37      chs 			uvm_pagedequeue(p);
    647  1.37      chs 
    648   1.8      mrg 			uvmexp.pgswapout++;
    649   1.8      mrg 
    650   1.8      mrg 			/*
    651  1.37      chs 			 * add the new page to the cluster.
    652   1.8      mrg 			 */
    653  1.24      chs 
    654  1.37      chs 			if (anon) {
    655  1.37      chs 				anon->an_swslot = swslot + swcpages;
    656  1.37      chs 				simple_unlock(slock);
    657  1.37      chs 			} else {
    658  1.37      chs 				result = uao_set_swslot(uobj,
    659  1.37      chs 				    p->offset >> PAGE_SHIFT, swslot + swcpages);
    660  1.37      chs 				if (result == -1) {
    661  1.37      chs 					p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    662  1.37      chs 					UVM_PAGE_OWN(p, NULL);
    663  1.37      chs 					uvmexp.paging--;
    664  1.37      chs 					uvm_pageactivate(p);
    665  1.37      chs 					simple_unlock(slock);
    666  1.37      chs 					continue;
    667   1.8      mrg 				}
    668  1.37      chs 				simple_unlock(slock);
    669  1.37      chs 			}
    670  1.37      chs 			swpps[swcpages] = p;
    671  1.37      chs 			swcpages++;
    672   1.8      mrg 
    673  1.37      chs 			/*
    674  1.37      chs 			 * if the cluster isn't full, look for more pages
    675  1.37      chs 			 * before starting the i/o.
    676  1.37      chs 			 */
    677  1.24      chs 
    678  1.37      chs 			if (swcpages < swnpages) {
    679  1.37      chs 				continue;
    680   1.8      mrg 			}
    681   1.8      mrg 		}
    682   1.8      mrg 
    683   1.8      mrg 		/*
    684  1.37      chs 		 * if this is the final pageout we could have a few
    685  1.37      chs 		 * unused swap blocks.  if so, free them now.
    686   1.8      mrg 		 */
    687  1.24      chs 
    688  1.37      chs 		if (swcpages < swnpages) {
    689  1.37      chs 			uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
    690   1.8      mrg 		}
    691   1.8      mrg 
    692   1.8      mrg 		/*
    693  1.37      chs 		 * now start the pageout.
    694   1.8      mrg 		 */
    695   1.8      mrg 
    696  1.37      chs 		uvm_unlock_pageq();
    697   1.8      mrg 		uvmexp.pdpageouts++;
    698  1.37      chs 		error = uvm_swap_put(swslot, swpps, swcpages, 0);
    699  1.37      chs 		KASSERT(error == 0);
    700  1.37      chs 		uvm_lock_pageq();
    701   1.8      mrg 
    702   1.8      mrg 		/*
    703  1.37      chs 		 * zero swslot to indicate that we are
    704   1.8      mrg 		 * no longer building a swap-backed cluster.
    705   1.8      mrg 		 */
    706   1.8      mrg 
    707  1.37      chs 		swslot = 0;
    708  1.24      chs 
    709   1.8      mrg 		/*
    710  1.31      chs 		 * the pageout is in progress.  bump counters and set up
    711  1.31      chs 		 * for the next loop.
    712   1.8      mrg 		 */
    713   1.8      mrg 
    714  1.31      chs 		uvmexp.pdpending++;
    715  1.37      chs 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    716  1.37      chs 			nextpg = TAILQ_FIRST(pglst);
    717   1.8      mrg 		}
    718  1.24      chs 	}
    719  1.37      chs 	return (error);
    720   1.1      mrg }
    721   1.1      mrg 
    722   1.1      mrg /*
    723   1.1      mrg  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    724   1.1      mrg  *
    725   1.1      mrg  * => called with pageq's locked
    726   1.1      mrg  */
    727   1.1      mrg 
    728   1.8      mrg void
    729  1.37      chs uvmpd_scan(void)
    730   1.1      mrg {
    731  1.37      chs 	int inactive_shortage, swap_shortage, pages_freed;
    732   1.8      mrg 	struct vm_page *p, *nextpg;
    733   1.8      mrg 	struct uvm_object *uobj;
    734  1.37      chs 	struct vm_anon *anon;
    735  1.44      chs 	struct simplelock *slock;
    736   1.8      mrg 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    737   1.1      mrg 
    738  1.37      chs 	uvmexp.pdrevs++;
    739  1.24      chs 	uobj = NULL;
    740  1.37      chs 	anon = NULL;
    741   1.1      mrg 
    742   1.1      mrg #ifndef __SWAP_BROKEN
    743  1.39      chs 
    744   1.8      mrg 	/*
    745   1.8      mrg 	 * swap out some processes if we are below our free target.
    746   1.8      mrg 	 * we need to unlock the page queues for this.
    747   1.8      mrg 	 */
    748  1.39      chs 
    749  1.39      chs 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
    750   1.8      mrg 		uvmexp.pdswout++;
    751  1.37      chs 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    752  1.37      chs 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    753   1.8      mrg 		uvm_unlock_pageq();
    754   1.8      mrg 		uvm_swapout_threads();
    755   1.8      mrg 		uvm_lock_pageq();
    756   1.1      mrg 
    757   1.8      mrg 	}
    758   1.1      mrg #endif
    759   1.1      mrg 
    760   1.8      mrg 	/*
    761   1.8      mrg 	 * now we want to work on meeting our targets.   first we work on our
    762   1.8      mrg 	 * free target by converting inactive pages into free pages.  then
    763   1.8      mrg 	 * we work on meeting our inactive target by converting active pages
    764   1.8      mrg 	 * to inactive ones.
    765   1.8      mrg 	 */
    766   1.8      mrg 
    767   1.8      mrg 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    768   1.8      mrg 
    769   1.8      mrg 	/*
    770  1.24      chs 	 * alternate starting queue between swap and object based on the
    771  1.24      chs 	 * low bit of uvmexp.pdrevs (which we bump by one each call).
    772   1.8      mrg 	 */
    773   1.8      mrg 
    774  1.14      chs 	pages_freed = uvmexp.pdfreed;
    775  1.33     ross 	(void) uvmpd_scan_inactive(&uvm.page_inactive);
    776  1.14      chs 	pages_freed = uvmexp.pdfreed - pages_freed;
    777   1.8      mrg 
    778   1.8      mrg 	/*
    779   1.8      mrg 	 * we have done the scan to get free pages.   now we work on meeting
    780   1.8      mrg 	 * our inactive target.
    781   1.8      mrg 	 */
    782   1.8      mrg 
    783  1.14      chs 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
    784  1.14      chs 
    785  1.14      chs 	/*
    786  1.14      chs 	 * detect if we're not going to be able to page anything out
    787  1.14      chs 	 * until we free some swap resources from active pages.
    788  1.14      chs 	 */
    789  1.24      chs 
    790  1.14      chs 	swap_shortage = 0;
    791  1.14      chs 	if (uvmexp.free < uvmexp.freetarg &&
    792  1.14      chs 	    uvmexp.swpginuse == uvmexp.swpages &&
    793  1.14      chs 	    uvmexp.swpgonly < uvmexp.swpages &&
    794  1.14      chs 	    pages_freed == 0) {
    795  1.14      chs 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    796  1.14      chs 	}
    797  1.24      chs 
    798  1.14      chs 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
    799  1.14      chs 		    inactive_shortage, swap_shortage,0,0);
    800  1.24      chs 	for (p = TAILQ_FIRST(&uvm.page_active);
    801  1.14      chs 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
    802  1.14      chs 	     p = nextpg) {
    803  1.24      chs 		nextpg = TAILQ_NEXT(p, pageq);
    804  1.37      chs 		if (p->flags & PG_BUSY) {
    805  1.37      chs 			continue;
    806  1.37      chs 		}
    807   1.8      mrg 
    808   1.8      mrg 		/*
    809  1.14      chs 		 * lock the page's owner.
    810   1.8      mrg 		 */
    811  1.44      chs 
    812  1.44      chs 		if (p->uobject != NULL) {
    813  1.44      chs 			uobj = p->uobject;
    814  1.44      chs 			slock = &uobj->vmobjlock;
    815  1.44      chs 			if (!simple_lock_try(slock)) {
    816  1.44      chs 				continue;
    817  1.44      chs 			}
    818  1.44      chs 		} else {
    819  1.37      chs 			anon = p->uanon;
    820  1.37      chs 			KASSERT(anon != NULL);
    821  1.44      chs 			slock = &anon->an_lock;
    822  1.44      chs 			if (!simple_lock_try(slock)) {
    823   1.8      mrg 				continue;
    824  1.37      chs 			}
    825   1.1      mrg 
    826   1.8      mrg 			/* take over the page? */
    827   1.8      mrg 			if ((p->pqflags & PQ_ANON) == 0) {
    828  1.24      chs 				KASSERT(p->loan_count > 0);
    829   1.8      mrg 				p->loan_count--;
    830   1.8      mrg 				p->pqflags |= PQ_ANON;
    831   1.8      mrg 			}
    832   1.8      mrg 		}
    833  1.24      chs 
    834  1.14      chs 		/*
    835  1.14      chs 		 * skip this page if it's busy.
    836  1.14      chs 		 */
    837  1.24      chs 
    838  1.14      chs 		if ((p->flags & PG_BUSY) != 0) {
    839  1.44      chs 			simple_unlock(slock);
    840  1.14      chs 			continue;
    841  1.14      chs 		}
    842  1.24      chs 
    843  1.14      chs 		/*
    844  1.14      chs 		 * if there's a shortage of swap, free any swap allocated
    845  1.14      chs 		 * to this page so that other pages can be paged out.
    846  1.14      chs 		 */
    847  1.24      chs 
    848  1.14      chs 		if (swap_shortage > 0) {
    849  1.37      chs 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    850  1.37      chs 				uvm_swap_free(anon->an_swslot, 1);
    851  1.37      chs 				anon->an_swslot = 0;
    852  1.14      chs 				p->flags &= ~PG_CLEAN;
    853  1.14      chs 				swap_shortage--;
    854  1.37      chs 			} else if (p->pqflags & PQ_AOBJ) {
    855  1.37      chs 				int slot = uao_set_swslot(uobj,
    856  1.14      chs 					p->offset >> PAGE_SHIFT, 0);
    857  1.14      chs 				if (slot) {
    858  1.14      chs 					uvm_swap_free(slot, 1);
    859  1.14      chs 					p->flags &= ~PG_CLEAN;
    860  1.14      chs 					swap_shortage--;
    861  1.14      chs 				}
    862  1.14      chs 			}
    863  1.14      chs 		}
    864  1.24      chs 
    865  1.14      chs 		/*
    866  1.37      chs 		 * if there's a shortage of inactive pages, deactivate.
    867  1.14      chs 		 */
    868  1.24      chs 
    869  1.32  thorpej 		if (inactive_shortage > 0) {
    870   1.8      mrg 			/* no need to check wire_count as pg is "active" */
    871   1.8      mrg 			uvm_pagedeactivate(p);
    872   1.8      mrg 			uvmexp.pddeact++;
    873  1.14      chs 			inactive_shortage--;
    874   1.8      mrg 		}
    875  1.37      chs 
    876  1.37      chs 		/*
    877  1.37      chs 		 * we're done with this page.
    878  1.37      chs 		 */
    879  1.37      chs 
    880  1.44      chs 		simple_unlock(slock);
    881   1.8      mrg 	}
    882   1.1      mrg }
    883