Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.46.4.2
      1  1.46.4.1    lukem /*	$NetBSD: uvm_pdaemon.c,v 1.46.4.2 2003/08/26 06:46:59 tron Exp $	*/
      2       1.1      mrg 
      3      1.34      chs /*
      4       1.1      mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5      1.34      chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6       1.1      mrg  *
      7       1.1      mrg  * All rights reserved.
      8       1.1      mrg  *
      9       1.1      mrg  * This code is derived from software contributed to Berkeley by
     10       1.1      mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11       1.1      mrg  *
     12       1.1      mrg  * Redistribution and use in source and binary forms, with or without
     13       1.1      mrg  * modification, are permitted provided that the following conditions
     14       1.1      mrg  * are met:
     15       1.1      mrg  * 1. Redistributions of source code must retain the above copyright
     16       1.1      mrg  *    notice, this list of conditions and the following disclaimer.
     17       1.1      mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.1      mrg  *    notice, this list of conditions and the following disclaimer in the
     19       1.1      mrg  *    documentation and/or other materials provided with the distribution.
     20       1.1      mrg  * 3. All advertising materials mentioning features or use of this software
     21       1.1      mrg  *    must display the following acknowledgement:
     22       1.1      mrg  *	This product includes software developed by Charles D. Cranor,
     23      1.34      chs  *      Washington University, the University of California, Berkeley and
     24       1.1      mrg  *      its contributors.
     25       1.1      mrg  * 4. Neither the name of the University nor the names of its contributors
     26       1.1      mrg  *    may be used to endorse or promote products derived from this software
     27       1.1      mrg  *    without specific prior written permission.
     28       1.1      mrg  *
     29       1.1      mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30       1.1      mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31       1.1      mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32       1.1      mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33       1.1      mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34       1.1      mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35       1.1      mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36       1.1      mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37       1.1      mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38       1.1      mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39       1.1      mrg  * SUCH DAMAGE.
     40       1.1      mrg  *
     41       1.1      mrg  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42       1.4      mrg  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43       1.1      mrg  *
     44       1.1      mrg  *
     45       1.1      mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46       1.1      mrg  * All rights reserved.
     47      1.34      chs  *
     48       1.1      mrg  * Permission to use, copy, modify and distribute this software and
     49       1.1      mrg  * its documentation is hereby granted, provided that both the copyright
     50       1.1      mrg  * notice and this permission notice appear in all copies of the
     51       1.1      mrg  * software, derivative works or modified versions, and any portions
     52       1.1      mrg  * thereof, and that both notices appear in supporting documentation.
     53      1.34      chs  *
     54      1.34      chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55      1.34      chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56       1.1      mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57      1.34      chs  *
     58       1.1      mrg  * Carnegie Mellon requests users of this software to return to
     59       1.1      mrg  *
     60       1.1      mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61       1.1      mrg  *  School of Computer Science
     62       1.1      mrg  *  Carnegie Mellon University
     63       1.1      mrg  *  Pittsburgh PA 15213-3890
     64       1.1      mrg  *
     65       1.1      mrg  * any improvements or extensions that they make and grant Carnegie the
     66       1.1      mrg  * rights to redistribute these changes.
     67       1.1      mrg  */
     68       1.1      mrg 
     69       1.1      mrg /*
     70       1.1      mrg  * uvm_pdaemon.c: the page daemon
     71       1.1      mrg  */
     72      1.42    lukem 
     73      1.42    lukem #include <sys/cdefs.h>
     74  1.46.4.1    lukem __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.46.4.2 2003/08/26 06:46:59 tron Exp $");
     75      1.42    lukem 
     76      1.42    lukem #include "opt_uvmhist.h"
     77       1.1      mrg 
     78       1.1      mrg #include <sys/param.h>
     79       1.1      mrg #include <sys/proc.h>
     80       1.1      mrg #include <sys/systm.h>
     81       1.1      mrg #include <sys/kernel.h>
     82       1.9       pk #include <sys/pool.h>
     83      1.24      chs #include <sys/buf.h>
     84      1.30      chs #include <sys/vnode.h>
     85       1.1      mrg 
     86       1.1      mrg #include <uvm/uvm.h>
     87       1.1      mrg 
     88       1.1      mrg /*
     89      1.45      wiz  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     90      1.14      chs  * in a pass thru the inactive list when swap is full.  the value should be
     91      1.14      chs  * "small"... if it's too large we'll cycle the active pages thru the inactive
     92      1.14      chs  * queue too quickly to for them to be referenced and avoid being freed.
     93      1.14      chs  */
     94      1.14      chs 
     95      1.14      chs #define UVMPD_NUMDIRTYREACTS 16
     96      1.14      chs 
     97      1.14      chs 
     98      1.14      chs /*
     99       1.1      mrg  * local prototypes
    100       1.1      mrg  */
    101       1.1      mrg 
    102      1.37      chs void		uvmpd_scan __P((void));
    103      1.46      chs void		uvmpd_scan_inactive __P((struct pglist *));
    104      1.37      chs void		uvmpd_tune __P((void));
    105       1.1      mrg 
    106       1.1      mrg /*
    107       1.1      mrg  * uvm_wait: wait (sleep) for the page daemon to free some pages
    108       1.1      mrg  *
    109       1.1      mrg  * => should be called with all locks released
    110       1.1      mrg  * => should _not_ be called by the page daemon (to avoid deadlock)
    111       1.1      mrg  */
    112       1.1      mrg 
    113      1.19  thorpej void
    114      1.19  thorpej uvm_wait(wmsg)
    115      1.19  thorpej 	const char *wmsg;
    116       1.8      mrg {
    117       1.8      mrg 	int timo = 0;
    118       1.8      mrg 	int s = splbio();
    119       1.1      mrg 
    120       1.8      mrg 	/*
    121       1.8      mrg 	 * check for page daemon going to sleep (waiting for itself)
    122       1.8      mrg 	 */
    123       1.1      mrg 
    124      1.37      chs 	if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
    125       1.8      mrg 		/*
    126       1.8      mrg 		 * now we have a problem: the pagedaemon wants to go to
    127       1.8      mrg 		 * sleep until it frees more memory.   but how can it
    128       1.8      mrg 		 * free more memory if it is asleep?  that is a deadlock.
    129       1.8      mrg 		 * we have two options:
    130       1.8      mrg 		 *  [1] panic now
    131       1.8      mrg 		 *  [2] put a timeout on the sleep, thus causing the
    132       1.8      mrg 		 *      pagedaemon to only pause (rather than sleep forever)
    133       1.8      mrg 		 *
    134       1.8      mrg 		 * note that option [2] will only help us if we get lucky
    135       1.8      mrg 		 * and some other process on the system breaks the deadlock
    136       1.8      mrg 		 * by exiting or freeing memory (thus allowing the pagedaemon
    137       1.8      mrg 		 * to continue).  for now we panic if DEBUG is defined,
    138       1.8      mrg 		 * otherwise we hope for the best with option [2] (better
    139       1.8      mrg 		 * yet, this should never happen in the first place!).
    140       1.8      mrg 		 */
    141       1.1      mrg 
    142       1.8      mrg 		printf("pagedaemon: deadlock detected!\n");
    143       1.8      mrg 		timo = hz >> 3;		/* set timeout */
    144       1.1      mrg #if defined(DEBUG)
    145       1.8      mrg 		/* DEBUG: panic so we can debug it */
    146       1.8      mrg 		panic("pagedaemon deadlock");
    147       1.1      mrg #endif
    148       1.8      mrg 	}
    149       1.1      mrg 
    150       1.8      mrg 	simple_lock(&uvm.pagedaemon_lock);
    151      1.17  thorpej 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    152       1.8      mrg 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    153       1.8      mrg 	    timo);
    154       1.1      mrg 
    155       1.8      mrg 	splx(s);
    156       1.1      mrg }
    157       1.1      mrg 
    158       1.1      mrg 
    159       1.1      mrg /*
    160       1.1      mrg  * uvmpd_tune: tune paging parameters
    161       1.1      mrg  *
    162       1.1      mrg  * => called when ever memory is added (or removed?) to the system
    163       1.1      mrg  * => caller must call with page queues locked
    164       1.1      mrg  */
    165       1.1      mrg 
    166      1.37      chs void
    167      1.37      chs uvmpd_tune(void)
    168       1.8      mrg {
    169       1.8      mrg 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    170       1.1      mrg 
    171       1.8      mrg 	uvmexp.freemin = uvmexp.npages / 20;
    172       1.1      mrg 
    173       1.8      mrg 	/* between 16k and 256k */
    174       1.8      mrg 	/* XXX:  what are these values good for? */
    175      1.37      chs 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    176      1.37      chs 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    177      1.23    bjh21 
    178      1.23    bjh21 	/* Make sure there's always a user page free. */
    179      1.23    bjh21 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    180      1.23    bjh21 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    181       1.1      mrg 
    182       1.8      mrg 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    183       1.8      mrg 	if (uvmexp.freetarg <= uvmexp.freemin)
    184       1.8      mrg 		uvmexp.freetarg = uvmexp.freemin + 1;
    185       1.1      mrg 
    186       1.8      mrg 	/* uvmexp.inactarg: computed in main daemon loop */
    187       1.1      mrg 
    188       1.8      mrg 	uvmexp.wiredmax = uvmexp.npages / 3;
    189       1.8      mrg 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    190       1.1      mrg 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    191       1.1      mrg }
    192       1.1      mrg 
    193       1.1      mrg /*
    194       1.1      mrg  * uvm_pageout: the main loop for the pagedaemon
    195       1.1      mrg  */
    196       1.1      mrg 
    197       1.8      mrg void
    198      1.22  thorpej uvm_pageout(void *arg)
    199       1.8      mrg {
    200       1.8      mrg 	int npages = 0;
    201       1.8      mrg 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    202      1.24      chs 
    203       1.8      mrg 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    204       1.8      mrg 
    205       1.8      mrg 	/*
    206       1.8      mrg 	 * ensure correct priority and set paging parameters...
    207       1.8      mrg 	 */
    208       1.8      mrg 
    209       1.8      mrg 	uvm.pagedaemon_proc = curproc;
    210       1.8      mrg 	uvm_lock_pageq();
    211       1.8      mrg 	npages = uvmexp.npages;
    212       1.8      mrg 	uvmpd_tune();
    213       1.8      mrg 	uvm_unlock_pageq();
    214       1.8      mrg 
    215       1.8      mrg 	/*
    216       1.8      mrg 	 * main loop
    217       1.8      mrg 	 */
    218      1.24      chs 
    219      1.24      chs 	for (;;) {
    220      1.24      chs 		simple_lock(&uvm.pagedaemon_lock);
    221      1.24      chs 
    222      1.24      chs 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    223      1.24      chs 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    224      1.24      chs 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    225      1.24      chs 		uvmexp.pdwoke++;
    226      1.24      chs 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    227      1.24      chs 
    228       1.8      mrg 		/*
    229      1.24      chs 		 * now lock page queues and recompute inactive count
    230       1.8      mrg 		 */
    231       1.8      mrg 
    232      1.24      chs 		uvm_lock_pageq();
    233      1.24      chs 		if (npages != uvmexp.npages) {	/* check for new pages? */
    234      1.24      chs 			npages = uvmexp.npages;
    235      1.24      chs 			uvmpd_tune();
    236      1.24      chs 		}
    237      1.24      chs 
    238      1.24      chs 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    239      1.24      chs 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    240      1.24      chs 			uvmexp.inactarg = uvmexp.freetarg + 1;
    241      1.24      chs 		}
    242      1.24      chs 
    243      1.24      chs 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    244      1.24      chs 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    245      1.24      chs 		    uvmexp.inactarg);
    246       1.8      mrg 
    247       1.8      mrg 		/*
    248      1.24      chs 		 * scan if needed
    249       1.8      mrg 		 */
    250       1.8      mrg 
    251      1.24      chs 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    252      1.30      chs 		    uvmexp.inactive < uvmexp.inactarg) {
    253      1.24      chs 			uvmpd_scan();
    254       1.8      mrg 		}
    255       1.8      mrg 
    256       1.8      mrg 		/*
    257      1.24      chs 		 * if there's any free memory to be had,
    258      1.24      chs 		 * wake up any waiters.
    259       1.8      mrg 		 */
    260       1.8      mrg 
    261      1.24      chs 		if (uvmexp.free > uvmexp.reserve_kernel ||
    262      1.24      chs 		    uvmexp.paging == 0) {
    263      1.24      chs 			wakeup(&uvmexp.free);
    264       1.8      mrg 		}
    265       1.1      mrg 
    266       1.8      mrg 		/*
    267      1.24      chs 		 * scan done.  unlock page queues (the only lock we are holding)
    268       1.8      mrg 		 */
    269       1.8      mrg 
    270      1.24      chs 		uvm_unlock_pageq();
    271      1.38      chs 
    272      1.38      chs 		/*
    273      1.38      chs 		 * drain pool resources now that we're not holding any locks
    274      1.38      chs 		 */
    275      1.38      chs 
    276      1.38      chs 		pool_drain(0);
    277      1.24      chs 	}
    278      1.24      chs 	/*NOTREACHED*/
    279      1.24      chs }
    280      1.24      chs 
    281       1.8      mrg 
    282      1.24      chs /*
    283      1.24      chs  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    284      1.24      chs  */
    285       1.8      mrg 
    286      1.24      chs void
    287      1.24      chs uvm_aiodone_daemon(void *arg)
    288      1.24      chs {
    289      1.24      chs 	int s, free;
    290      1.24      chs 	struct buf *bp, *nbp;
    291      1.24      chs 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    292       1.9       pk 
    293      1.24      chs 	for (;;) {
    294       1.8      mrg 
    295       1.8      mrg 		/*
    296      1.24      chs 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    297      1.24      chs 		 * we need splbio because we want to make sure the aio_done list
    298      1.24      chs 		 * is totally empty before we go to sleep.
    299       1.8      mrg 		 */
    300       1.8      mrg 
    301      1.24      chs 		s = splbio();
    302      1.24      chs 		simple_lock(&uvm.aiodoned_lock);
    303      1.24      chs 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    304      1.24      chs 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    305      1.24      chs 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    306      1.24      chs 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    307      1.24      chs 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    308      1.24      chs 
    309      1.24      chs 			/* relock aiodoned_lock, still at splbio */
    310      1.24      chs 			simple_lock(&uvm.aiodoned_lock);
    311       1.8      mrg 		}
    312       1.8      mrg 
    313      1.24      chs 		/*
    314      1.24      chs 		 * check for done aio structures
    315      1.24      chs 		 */
    316       1.8      mrg 
    317      1.24      chs 		bp = TAILQ_FIRST(&uvm.aio_done);
    318      1.24      chs 		if (bp) {
    319      1.24      chs 			TAILQ_INIT(&uvm.aio_done);
    320      1.24      chs 		}
    321       1.8      mrg 
    322      1.24      chs 		simple_unlock(&uvm.aiodoned_lock);
    323      1.24      chs 		splx(s);
    324       1.8      mrg 
    325       1.8      mrg 		/*
    326      1.24      chs 		 * process each i/o that's done.
    327       1.8      mrg 		 */
    328       1.8      mrg 
    329      1.24      chs 		free = uvmexp.free;
    330      1.24      chs 		while (bp != NULL) {
    331      1.24      chs 			nbp = TAILQ_NEXT(bp, b_freelist);
    332      1.24      chs 			(*bp->b_iodone)(bp);
    333      1.24      chs 			bp = nbp;
    334      1.24      chs 		}
    335      1.24      chs 		if (free <= uvmexp.reserve_kernel) {
    336      1.24      chs 			s = uvm_lock_fpageq();
    337      1.24      chs 			wakeup(&uvm.pagedaemon);
    338      1.24      chs 			uvm_unlock_fpageq(s);
    339      1.24      chs 		} else {
    340      1.24      chs 			simple_lock(&uvm.pagedaemon_lock);
    341      1.17  thorpej 			wakeup(&uvmexp.free);
    342      1.24      chs 			simple_unlock(&uvm.pagedaemon_lock);
    343      1.24      chs 		}
    344       1.8      mrg 	}
    345       1.1      mrg }
    346       1.1      mrg 
    347       1.1      mrg /*
    348      1.24      chs  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    349       1.1      mrg  *
    350       1.1      mrg  * => called with page queues locked
    351       1.1      mrg  * => we work on meeting our free target by converting inactive pages
    352       1.1      mrg  *    into free pages.
    353       1.1      mrg  * => we handle the building of swap-backed clusters
    354       1.1      mrg  * => we return TRUE if we are exiting because we met our target
    355       1.1      mrg  */
    356       1.1      mrg 
    357      1.46      chs void
    358       1.8      mrg uvmpd_scan_inactive(pglst)
    359       1.8      mrg 	struct pglist *pglst;
    360       1.8      mrg {
    361      1.37      chs 	int error;
    362       1.8      mrg 	struct vm_page *p, *nextpg;
    363       1.8      mrg 	struct uvm_object *uobj;
    364      1.37      chs 	struct vm_anon *anon;
    365  1.46.4.2     tron 	struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
    366      1.37      chs 	struct simplelock *slock;
    367      1.37      chs 	int swnpages, swcpages;
    368      1.14      chs 	int swslot;
    369      1.37      chs 	int dirtyreacts, t, result;
    370      1.43      chs 	boolean_t anonunder, fileunder, execunder;
    371      1.43      chs 	boolean_t anonover, fileover, execover;
    372      1.43      chs 	boolean_t anonreact, filereact, execreact;
    373       1.8      mrg 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    374       1.1      mrg 
    375       1.8      mrg 	/*
    376       1.8      mrg 	 * swslot is non-zero if we are building a swap cluster.  we want
    377      1.24      chs 	 * to stay in the loop while we have a page to scan or we have
    378       1.8      mrg 	 * a swap-cluster to build.
    379       1.8      mrg 	 */
    380      1.24      chs 
    381       1.8      mrg 	swslot = 0;
    382       1.8      mrg 	swnpages = swcpages = 0;
    383      1.14      chs 	dirtyreacts = 0;
    384      1.43      chs 
    385      1.43      chs 	/*
    386      1.43      chs 	 * decide which types of pages we want to reactivate instead of freeing
    387      1.43      chs 	 * to keep usage within the minimum and maximum usage limits.
    388      1.43      chs 	 */
    389      1.43      chs 
    390      1.43      chs 	t = uvmexp.active + uvmexp.inactive + uvmexp.free;
    391      1.43      chs 	anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
    392      1.43      chs 	fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
    393      1.43      chs 	execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
    394      1.43      chs 	anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
    395      1.43      chs 	fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
    396      1.43      chs 	execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
    397      1.43      chs 	anonreact = anonunder || (!anonover && (fileover || execover));
    398      1.43      chs 	filereact = fileunder || (!fileover && (anonover || execover));
    399      1.43      chs 	execreact = execunder || (!execover && (anonover || fileover));
    400      1.24      chs 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
    401      1.24      chs 		uobj = NULL;
    402      1.24      chs 		anon = NULL;
    403       1.8      mrg 		if (p) {
    404      1.24      chs 
    405       1.8      mrg 			/*
    406      1.37      chs 			 * see if we've met the free target.
    407       1.8      mrg 			 */
    408      1.24      chs 
    409      1.37      chs 			if (uvmexp.free + uvmexp.paging >=
    410      1.37      chs 			    uvmexp.freetarg << 2 ||
    411      1.30      chs 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    412      1.30      chs 				UVMHIST_LOG(pdhist,"  met free target: "
    413      1.30      chs 					    "exit loop", 0, 0, 0, 0);
    414      1.24      chs 
    415      1.30      chs 				if (swslot == 0) {
    416      1.30      chs 					/* exit now if no swap-i/o pending */
    417      1.30      chs 					break;
    418      1.24      chs 				}
    419      1.30      chs 
    420      1.30      chs 				/* set p to null to signal final swap i/o */
    421      1.30      chs 				p = NULL;
    422      1.37      chs 				nextpg = NULL;
    423       1.8      mrg 			}
    424       1.8      mrg 		}
    425      1.24      chs 		if (p) {	/* if (we have a new page to consider) */
    426      1.30      chs 
    427       1.8      mrg 			/*
    428       1.8      mrg 			 * we are below target and have a new page to consider.
    429       1.8      mrg 			 */
    430      1.37      chs 
    431       1.8      mrg 			uvmexp.pdscans++;
    432      1.24      chs 			nextpg = TAILQ_NEXT(p, pageq);
    433       1.8      mrg 
    434      1.27  mycroft 			/*
    435      1.27  mycroft 			 * move referenced pages back to active queue and
    436      1.30      chs 			 * skip to next page.
    437      1.27  mycroft 			 */
    438      1.30      chs 
    439      1.37      chs 			if (pmap_clear_reference(p)) {
    440      1.27  mycroft 				uvm_pageactivate(p);
    441      1.27  mycroft 				uvmexp.pdreact++;
    442      1.27  mycroft 				continue;
    443      1.27  mycroft 			}
    444      1.37      chs 			anon = p->uanon;
    445      1.37      chs 			uobj = p->uobject;
    446      1.30      chs 
    447      1.30      chs 			/*
    448      1.30      chs 			 * enforce the minimum thresholds on different
    449      1.30      chs 			 * types of memory usage.  if reusing the current
    450      1.30      chs 			 * page would reduce that type of usage below its
    451      1.30      chs 			 * minimum, reactivate the page instead and move
    452      1.30      chs 			 * on to the next page.
    453      1.30      chs 			 */
    454      1.30      chs 
    455      1.43      chs 			if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
    456      1.30      chs 				uvm_pageactivate(p);
    457      1.43      chs 				uvmexp.pdreexec++;
    458      1.30      chs 				continue;
    459      1.30      chs 			}
    460      1.37      chs 			if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
    461      1.43      chs 			    !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
    462      1.30      chs 				uvm_pageactivate(p);
    463      1.43      chs 				uvmexp.pdrefile++;
    464      1.30      chs 				continue;
    465      1.30      chs 			}
    466  1.46.4.1    lukem 			if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
    467      1.44      chs 				uvm_pageactivate(p);
    468      1.44      chs 				uvmexp.pdreanon++;
    469      1.44      chs 				continue;
    470      1.44      chs 			}
    471      1.30      chs 
    472       1.8      mrg 			/*
    473       1.8      mrg 			 * first we attempt to lock the object that this page
    474       1.8      mrg 			 * belongs to.  if our attempt fails we skip on to
    475       1.8      mrg 			 * the next page (no harm done).  it is important to
    476       1.8      mrg 			 * "try" locking the object as we are locking in the
    477       1.8      mrg 			 * wrong order (pageq -> object) and we don't want to
    478      1.24      chs 			 * deadlock.
    479       1.8      mrg 			 *
    480      1.24      chs 			 * the only time we expect to see an ownerless page
    481       1.8      mrg 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    482       1.8      mrg 			 * anon has loaned a page from a uvm_object and the
    483       1.8      mrg 			 * uvm_object has dropped the ownership.  in that
    484       1.8      mrg 			 * case, the anon can "take over" the loaned page
    485       1.8      mrg 			 * and make it its own.
    486       1.8      mrg 			 */
    487      1.30      chs 
    488      1.44      chs 			/* does the page belong to an object? */
    489      1.44      chs 			if (uobj != NULL) {
    490      1.44      chs 				slock = &uobj->vmobjlock;
    491      1.44      chs 				if (!simple_lock_try(slock)) {
    492      1.44      chs 					continue;
    493      1.44      chs 				}
    494      1.44      chs 				if (p->flags & PG_BUSY) {
    495      1.44      chs 					simple_unlock(slock);
    496      1.44      chs 					uvmexp.pdbusy++;
    497      1.44      chs 					continue;
    498      1.44      chs 				}
    499      1.44      chs 				uvmexp.pdobscan++;
    500      1.44      chs 			} else {
    501      1.24      chs 				KASSERT(anon != NULL);
    502      1.37      chs 				slock = &anon->an_lock;
    503      1.37      chs 				if (!simple_lock_try(slock)) {
    504       1.8      mrg 					continue;
    505      1.30      chs 				}
    506       1.8      mrg 
    507       1.8      mrg 				/*
    508      1.44      chs 				 * set PQ_ANON if it isn't set already.
    509       1.8      mrg 				 */
    510      1.24      chs 
    511       1.8      mrg 				if ((p->pqflags & PQ_ANON) == 0) {
    512      1.24      chs 					KASSERT(p->loan_count > 0);
    513       1.8      mrg 					p->loan_count--;
    514      1.24      chs 					p->pqflags |= PQ_ANON;
    515      1.24      chs 					/* anon now owns it */
    516       1.8      mrg 				}
    517       1.8      mrg 				if (p->flags & PG_BUSY) {
    518      1.37      chs 					simple_unlock(slock);
    519       1.8      mrg 					uvmexp.pdbusy++;
    520       1.8      mrg 					continue;
    521       1.8      mrg 				}
    522       1.8      mrg 				uvmexp.pdanscan++;
    523       1.8      mrg 			}
    524       1.8      mrg 
    525      1.37      chs 
    526       1.8      mrg 			/*
    527       1.8      mrg 			 * we now have the object and the page queues locked.
    528      1.37      chs 			 * if the page is not swap-backed, call the object's
    529      1.37      chs 			 * pager to flush and free the page.
    530      1.37      chs 			 */
    531      1.37      chs 
    532      1.37      chs 			if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    533      1.37      chs 				uvm_unlock_pageq();
    534      1.37      chs 				error = (uobj->pgops->pgo_put)(uobj, p->offset,
    535      1.37      chs 				    p->offset + PAGE_SIZE,
    536      1.37      chs 				    PGO_CLEANIT|PGO_FREE);
    537      1.37      chs 				uvm_lock_pageq();
    538      1.37      chs 				if (nextpg &&
    539      1.46      chs 				    (nextpg->pqflags & PQ_INACTIVE) == 0) {
    540      1.37      chs 					nextpg = TAILQ_FIRST(pglst);
    541      1.37      chs 				}
    542      1.37      chs 				continue;
    543      1.37      chs 			}
    544      1.37      chs 
    545      1.37      chs 			/*
    546      1.37      chs 			 * the page is swap-backed.  remove all the permissions
    547      1.29  thorpej 			 * from the page so we can sync the modified info
    548      1.29  thorpej 			 * without any race conditions.  if the page is clean
    549      1.29  thorpej 			 * we can free it now and continue.
    550       1.8      mrg 			 */
    551       1.8      mrg 
    552      1.29  thorpej 			pmap_page_protect(p, VM_PROT_NONE);
    553      1.37      chs 			if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    554      1.37      chs 				p->flags &= ~(PG_CLEAN);
    555      1.30      chs 			}
    556       1.8      mrg 			if (p->flags & PG_CLEAN) {
    557       1.8      mrg 				uvm_pagefree(p);
    558       1.8      mrg 				uvmexp.pdfreed++;
    559      1.24      chs 
    560      1.37      chs 				/*
    561      1.37      chs 				 * for anons, we need to remove the page
    562      1.37      chs 				 * from the anon ourselves.  for aobjs,
    563      1.37      chs 				 * pagefree did that for us.
    564      1.37      chs 				 */
    565      1.37      chs 
    566       1.8      mrg 				if (anon) {
    567      1.24      chs 					KASSERT(anon->an_swslot != 0);
    568       1.8      mrg 					anon->u.an_page = NULL;
    569       1.8      mrg 				}
    570      1.37      chs 				simple_unlock(slock);
    571      1.41      chs 
    572      1.41      chs 				/* this page is now only in swap. */
    573      1.41      chs 				simple_lock(&uvm.swap_data_lock);
    574      1.41      chs 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    575      1.41      chs 				uvmexp.swpgonly++;
    576      1.41      chs 				simple_unlock(&uvm.swap_data_lock);
    577       1.8      mrg 				continue;
    578       1.8      mrg 			}
    579       1.8      mrg 
    580       1.8      mrg 			/*
    581       1.8      mrg 			 * this page is dirty, skip it if we'll have met our
    582       1.8      mrg 			 * free target when all the current pageouts complete.
    583       1.8      mrg 			 */
    584      1.24      chs 
    585      1.37      chs 			if (uvmexp.free + uvmexp.paging >
    586      1.37      chs 			    uvmexp.freetarg << 2) {
    587      1.37      chs 				simple_unlock(slock);
    588       1.8      mrg 				continue;
    589       1.8      mrg 			}
    590       1.8      mrg 
    591       1.8      mrg 			/*
    592      1.37      chs 			 * free any swap space allocated to the page since
    593      1.37      chs 			 * we'll have to write it again with its new data.
    594      1.37      chs 			 */
    595      1.37      chs 
    596      1.37      chs 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    597      1.37      chs 				uvm_swap_free(anon->an_swslot, 1);
    598      1.37      chs 				anon->an_swslot = 0;
    599      1.37      chs 			} else if (p->pqflags & PQ_AOBJ) {
    600      1.37      chs 				uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
    601      1.37      chs 			}
    602      1.37      chs 
    603      1.37      chs 			/*
    604      1.37      chs 			 * if all pages in swap are only in swap,
    605      1.37      chs 			 * the swap space is full and we can't page out
    606      1.37      chs 			 * any more swap-backed pages.  reactivate this page
    607      1.37      chs 			 * so that we eventually cycle all pages through
    608      1.37      chs 			 * the inactive queue.
    609      1.14      chs 			 */
    610      1.24      chs 
    611      1.24      chs 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
    612      1.37      chs 			if (uvmexp.swpgonly == uvmexp.swpages) {
    613      1.14      chs 				dirtyreacts++;
    614      1.14      chs 				uvm_pageactivate(p);
    615      1.37      chs 				simple_unlock(slock);
    616      1.14      chs 				continue;
    617      1.14      chs 			}
    618      1.14      chs 
    619      1.14      chs 			/*
    620      1.37      chs 			 * start new swap pageout cluster (if necessary).
    621      1.14      chs 			 */
    622      1.24      chs 
    623      1.37      chs 			if (swslot == 0) {
    624  1.46.4.2     tron 				/* Even with strange MAXPHYS, the shift
    625  1.46.4.2     tron 				   implicitly rounds down to a page. */
    626  1.46.4.2     tron 				swnpages = MAXPHYS >> PAGE_SHIFT;
    627      1.37      chs 				swslot = uvm_swap_alloc(&swnpages, TRUE);
    628      1.37      chs 				if (swslot == 0) {
    629      1.37      chs 					simple_unlock(slock);
    630      1.37      chs 					continue;
    631      1.14      chs 				}
    632      1.37      chs 				swcpages = 0;
    633      1.14      chs 			}
    634      1.14      chs 
    635      1.14      chs 			/*
    636      1.37      chs 			 * at this point, we're definitely going reuse this
    637      1.37      chs 			 * page.  mark the page busy and delayed-free.
    638      1.37      chs 			 * we should remove the page from the page queues
    639      1.37      chs 			 * so we don't ever look at it again.
    640      1.37      chs 			 * adjust counters and such.
    641       1.8      mrg 			 */
    642      1.30      chs 
    643      1.37      chs 			p->flags |= PG_BUSY;
    644       1.8      mrg 			UVM_PAGE_OWN(p, "scan_inactive");
    645      1.37      chs 
    646      1.37      chs 			p->flags |= PG_PAGEOUT;
    647      1.37      chs 			uvmexp.paging++;
    648      1.37      chs 			uvm_pagedequeue(p);
    649      1.37      chs 
    650       1.8      mrg 			uvmexp.pgswapout++;
    651       1.8      mrg 
    652       1.8      mrg 			/*
    653      1.37      chs 			 * add the new page to the cluster.
    654       1.8      mrg 			 */
    655      1.24      chs 
    656      1.37      chs 			if (anon) {
    657      1.37      chs 				anon->an_swslot = swslot + swcpages;
    658      1.37      chs 				simple_unlock(slock);
    659      1.37      chs 			} else {
    660      1.37      chs 				result = uao_set_swslot(uobj,
    661      1.37      chs 				    p->offset >> PAGE_SHIFT, swslot + swcpages);
    662      1.37      chs 				if (result == -1) {
    663      1.37      chs 					p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    664      1.37      chs 					UVM_PAGE_OWN(p, NULL);
    665      1.37      chs 					uvmexp.paging--;
    666      1.37      chs 					uvm_pageactivate(p);
    667      1.37      chs 					simple_unlock(slock);
    668      1.37      chs 					continue;
    669       1.8      mrg 				}
    670      1.37      chs 				simple_unlock(slock);
    671      1.37      chs 			}
    672      1.37      chs 			swpps[swcpages] = p;
    673      1.37      chs 			swcpages++;
    674       1.8      mrg 
    675      1.37      chs 			/*
    676      1.37      chs 			 * if the cluster isn't full, look for more pages
    677      1.37      chs 			 * before starting the i/o.
    678      1.37      chs 			 */
    679      1.24      chs 
    680      1.37      chs 			if (swcpages < swnpages) {
    681      1.37      chs 				continue;
    682       1.8      mrg 			}
    683       1.8      mrg 		}
    684       1.8      mrg 
    685       1.8      mrg 		/*
    686      1.37      chs 		 * if this is the final pageout we could have a few
    687      1.37      chs 		 * unused swap blocks.  if so, free them now.
    688       1.8      mrg 		 */
    689      1.24      chs 
    690      1.37      chs 		if (swcpages < swnpages) {
    691      1.37      chs 			uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
    692       1.8      mrg 		}
    693       1.8      mrg 
    694       1.8      mrg 		/*
    695      1.37      chs 		 * now start the pageout.
    696       1.8      mrg 		 */
    697       1.8      mrg 
    698      1.37      chs 		uvm_unlock_pageq();
    699       1.8      mrg 		uvmexp.pdpageouts++;
    700      1.37      chs 		error = uvm_swap_put(swslot, swpps, swcpages, 0);
    701      1.37      chs 		KASSERT(error == 0);
    702      1.37      chs 		uvm_lock_pageq();
    703       1.8      mrg 
    704       1.8      mrg 		/*
    705      1.37      chs 		 * zero swslot to indicate that we are
    706       1.8      mrg 		 * no longer building a swap-backed cluster.
    707       1.8      mrg 		 */
    708       1.8      mrg 
    709      1.37      chs 		swslot = 0;
    710      1.24      chs 
    711       1.8      mrg 		/*
    712      1.31      chs 		 * the pageout is in progress.  bump counters and set up
    713      1.31      chs 		 * for the next loop.
    714       1.8      mrg 		 */
    715       1.8      mrg 
    716      1.31      chs 		uvmexp.pdpending++;
    717      1.37      chs 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    718      1.37      chs 			nextpg = TAILQ_FIRST(pglst);
    719       1.8      mrg 		}
    720      1.24      chs 	}
    721       1.1      mrg }
    722       1.1      mrg 
    723       1.1      mrg /*
    724       1.1      mrg  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    725       1.1      mrg  *
    726       1.1      mrg  * => called with pageq's locked
    727       1.1      mrg  */
    728       1.1      mrg 
    729       1.8      mrg void
    730      1.37      chs uvmpd_scan(void)
    731       1.1      mrg {
    732      1.37      chs 	int inactive_shortage, swap_shortage, pages_freed;
    733       1.8      mrg 	struct vm_page *p, *nextpg;
    734       1.8      mrg 	struct uvm_object *uobj;
    735      1.37      chs 	struct vm_anon *anon;
    736      1.44      chs 	struct simplelock *slock;
    737       1.8      mrg 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    738       1.1      mrg 
    739      1.37      chs 	uvmexp.pdrevs++;
    740      1.24      chs 	uobj = NULL;
    741      1.37      chs 	anon = NULL;
    742       1.1      mrg 
    743       1.1      mrg #ifndef __SWAP_BROKEN
    744      1.39      chs 
    745       1.8      mrg 	/*
    746       1.8      mrg 	 * swap out some processes if we are below our free target.
    747       1.8      mrg 	 * we need to unlock the page queues for this.
    748       1.8      mrg 	 */
    749      1.39      chs 
    750      1.39      chs 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
    751       1.8      mrg 		uvmexp.pdswout++;
    752      1.37      chs 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    753      1.37      chs 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    754       1.8      mrg 		uvm_unlock_pageq();
    755       1.8      mrg 		uvm_swapout_threads();
    756       1.8      mrg 		uvm_lock_pageq();
    757       1.1      mrg 
    758       1.8      mrg 	}
    759       1.1      mrg #endif
    760       1.1      mrg 
    761       1.8      mrg 	/*
    762       1.8      mrg 	 * now we want to work on meeting our targets.   first we work on our
    763       1.8      mrg 	 * free target by converting inactive pages into free pages.  then
    764       1.8      mrg 	 * we work on meeting our inactive target by converting active pages
    765       1.8      mrg 	 * to inactive ones.
    766       1.8      mrg 	 */
    767       1.8      mrg 
    768       1.8      mrg 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    769       1.8      mrg 
    770       1.8      mrg 	/*
    771      1.24      chs 	 * alternate starting queue between swap and object based on the
    772      1.24      chs 	 * low bit of uvmexp.pdrevs (which we bump by one each call).
    773       1.8      mrg 	 */
    774       1.8      mrg 
    775      1.14      chs 	pages_freed = uvmexp.pdfreed;
    776      1.46      chs 	uvmpd_scan_inactive(&uvm.page_inactive);
    777      1.14      chs 	pages_freed = uvmexp.pdfreed - pages_freed;
    778       1.8      mrg 
    779       1.8      mrg 	/*
    780       1.8      mrg 	 * we have done the scan to get free pages.   now we work on meeting
    781       1.8      mrg 	 * our inactive target.
    782       1.8      mrg 	 */
    783       1.8      mrg 
    784      1.14      chs 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
    785      1.14      chs 
    786      1.14      chs 	/*
    787      1.14      chs 	 * detect if we're not going to be able to page anything out
    788      1.14      chs 	 * until we free some swap resources from active pages.
    789      1.14      chs 	 */
    790      1.24      chs 
    791      1.14      chs 	swap_shortage = 0;
    792      1.14      chs 	if (uvmexp.free < uvmexp.freetarg &&
    793      1.14      chs 	    uvmexp.swpginuse == uvmexp.swpages &&
    794      1.14      chs 	    uvmexp.swpgonly < uvmexp.swpages &&
    795      1.14      chs 	    pages_freed == 0) {
    796      1.14      chs 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    797      1.14      chs 	}
    798      1.24      chs 
    799      1.14      chs 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
    800      1.14      chs 		    inactive_shortage, swap_shortage,0,0);
    801      1.24      chs 	for (p = TAILQ_FIRST(&uvm.page_active);
    802      1.14      chs 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
    803      1.14      chs 	     p = nextpg) {
    804      1.24      chs 		nextpg = TAILQ_NEXT(p, pageq);
    805      1.37      chs 		if (p->flags & PG_BUSY) {
    806      1.37      chs 			continue;
    807      1.37      chs 		}
    808       1.8      mrg 
    809       1.8      mrg 		/*
    810      1.14      chs 		 * lock the page's owner.
    811       1.8      mrg 		 */
    812      1.44      chs 
    813      1.44      chs 		if (p->uobject != NULL) {
    814      1.44      chs 			uobj = p->uobject;
    815      1.44      chs 			slock = &uobj->vmobjlock;
    816      1.44      chs 			if (!simple_lock_try(slock)) {
    817      1.44      chs 				continue;
    818      1.44      chs 			}
    819      1.44      chs 		} else {
    820      1.37      chs 			anon = p->uanon;
    821      1.37      chs 			KASSERT(anon != NULL);
    822      1.44      chs 			slock = &anon->an_lock;
    823      1.44      chs 			if (!simple_lock_try(slock)) {
    824       1.8      mrg 				continue;
    825      1.37      chs 			}
    826       1.1      mrg 
    827       1.8      mrg 			/* take over the page? */
    828       1.8      mrg 			if ((p->pqflags & PQ_ANON) == 0) {
    829      1.24      chs 				KASSERT(p->loan_count > 0);
    830       1.8      mrg 				p->loan_count--;
    831       1.8      mrg 				p->pqflags |= PQ_ANON;
    832       1.8      mrg 			}
    833       1.8      mrg 		}
    834      1.24      chs 
    835      1.14      chs 		/*
    836      1.14      chs 		 * skip this page if it's busy.
    837      1.14      chs 		 */
    838      1.24      chs 
    839      1.14      chs 		if ((p->flags & PG_BUSY) != 0) {
    840      1.44      chs 			simple_unlock(slock);
    841      1.14      chs 			continue;
    842      1.14      chs 		}
    843      1.24      chs 
    844      1.14      chs 		/*
    845      1.14      chs 		 * if there's a shortage of swap, free any swap allocated
    846      1.14      chs 		 * to this page so that other pages can be paged out.
    847      1.14      chs 		 */
    848      1.24      chs 
    849      1.14      chs 		if (swap_shortage > 0) {
    850      1.37      chs 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    851      1.37      chs 				uvm_swap_free(anon->an_swslot, 1);
    852      1.37      chs 				anon->an_swslot = 0;
    853      1.14      chs 				p->flags &= ~PG_CLEAN;
    854      1.14      chs 				swap_shortage--;
    855      1.37      chs 			} else if (p->pqflags & PQ_AOBJ) {
    856      1.37      chs 				int slot = uao_set_swslot(uobj,
    857      1.14      chs 					p->offset >> PAGE_SHIFT, 0);
    858      1.14      chs 				if (slot) {
    859      1.14      chs 					uvm_swap_free(slot, 1);
    860      1.14      chs 					p->flags &= ~PG_CLEAN;
    861      1.14      chs 					swap_shortage--;
    862      1.14      chs 				}
    863      1.14      chs 			}
    864      1.14      chs 		}
    865      1.24      chs 
    866      1.14      chs 		/*
    867      1.37      chs 		 * if there's a shortage of inactive pages, deactivate.
    868      1.14      chs 		 */
    869      1.24      chs 
    870      1.32  thorpej 		if (inactive_shortage > 0) {
    871       1.8      mrg 			/* no need to check wire_count as pg is "active" */
    872       1.8      mrg 			uvm_pagedeactivate(p);
    873       1.8      mrg 			uvmexp.pddeact++;
    874      1.14      chs 			inactive_shortage--;
    875       1.8      mrg 		}
    876      1.37      chs 
    877      1.37      chs 		/*
    878      1.37      chs 		 * we're done with this page.
    879      1.37      chs 		 */
    880      1.37      chs 
    881      1.44      chs 		simple_unlock(slock);
    882       1.8      mrg 	}
    883       1.1      mrg }
    884