Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.51.2.3
      1  1.51.2.3    skrll /*	$NetBSD: uvm_pdaemon.c,v 1.51.2.3 2004/09/21 13:39:29 skrll Exp $	*/
      2       1.1      mrg 
      3      1.34      chs /*
      4       1.1      mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5      1.34      chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6       1.1      mrg  *
      7       1.1      mrg  * All rights reserved.
      8       1.1      mrg  *
      9       1.1      mrg  * This code is derived from software contributed to Berkeley by
     10       1.1      mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11       1.1      mrg  *
     12       1.1      mrg  * Redistribution and use in source and binary forms, with or without
     13       1.1      mrg  * modification, are permitted provided that the following conditions
     14       1.1      mrg  * are met:
     15       1.1      mrg  * 1. Redistributions of source code must retain the above copyright
     16       1.1      mrg  *    notice, this list of conditions and the following disclaimer.
     17       1.1      mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.1      mrg  *    notice, this list of conditions and the following disclaimer in the
     19       1.1      mrg  *    documentation and/or other materials provided with the distribution.
     20       1.1      mrg  * 3. All advertising materials mentioning features or use of this software
     21       1.1      mrg  *    must display the following acknowledgement:
     22       1.1      mrg  *	This product includes software developed by Charles D. Cranor,
     23      1.34      chs  *      Washington University, the University of California, Berkeley and
     24       1.1      mrg  *      its contributors.
     25       1.1      mrg  * 4. Neither the name of the University nor the names of its contributors
     26       1.1      mrg  *    may be used to endorse or promote products derived from this software
     27       1.1      mrg  *    without specific prior written permission.
     28       1.1      mrg  *
     29       1.1      mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30       1.1      mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31       1.1      mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32       1.1      mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33       1.1      mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34       1.1      mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35       1.1      mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36       1.1      mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37       1.1      mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38       1.1      mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39       1.1      mrg  * SUCH DAMAGE.
     40       1.1      mrg  *
     41       1.1      mrg  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42       1.4      mrg  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43       1.1      mrg  *
     44       1.1      mrg  *
     45       1.1      mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46       1.1      mrg  * All rights reserved.
     47      1.34      chs  *
     48       1.1      mrg  * Permission to use, copy, modify and distribute this software and
     49       1.1      mrg  * its documentation is hereby granted, provided that both the copyright
     50       1.1      mrg  * notice and this permission notice appear in all copies of the
     51       1.1      mrg  * software, derivative works or modified versions, and any portions
     52       1.1      mrg  * thereof, and that both notices appear in supporting documentation.
     53      1.34      chs  *
     54      1.34      chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55      1.34      chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56       1.1      mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57      1.34      chs  *
     58       1.1      mrg  * Carnegie Mellon requests users of this software to return to
     59       1.1      mrg  *
     60       1.1      mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61       1.1      mrg  *  School of Computer Science
     62       1.1      mrg  *  Carnegie Mellon University
     63       1.1      mrg  *  Pittsburgh PA 15213-3890
     64       1.1      mrg  *
     65       1.1      mrg  * any improvements or extensions that they make and grant Carnegie the
     66       1.1      mrg  * rights to redistribute these changes.
     67       1.1      mrg  */
     68       1.1      mrg 
     69       1.1      mrg /*
     70       1.1      mrg  * uvm_pdaemon.c: the page daemon
     71       1.1      mrg  */
     72      1.42    lukem 
     73      1.42    lukem #include <sys/cdefs.h>
     74  1.51.2.3    skrll __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.51.2.3 2004/09/21 13:39:29 skrll Exp $");
     75      1.42    lukem 
     76      1.42    lukem #include "opt_uvmhist.h"
     77       1.1      mrg 
     78       1.1      mrg #include <sys/param.h>
     79       1.1      mrg #include <sys/proc.h>
     80       1.1      mrg #include <sys/systm.h>
     81       1.1      mrg #include <sys/kernel.h>
     82       1.9       pk #include <sys/pool.h>
     83      1.24      chs #include <sys/buf.h>
     84      1.30      chs #include <sys/vnode.h>
     85       1.1      mrg 
     86       1.1      mrg #include <uvm/uvm.h>
     87       1.1      mrg 
     88       1.1      mrg /*
     89      1.45      wiz  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     90      1.14      chs  * in a pass thru the inactive list when swap is full.  the value should be
     91      1.14      chs  * "small"... if it's too large we'll cycle the active pages thru the inactive
     92      1.14      chs  * queue too quickly to for them to be referenced and avoid being freed.
     93      1.14      chs  */
     94      1.14      chs 
     95      1.14      chs #define UVMPD_NUMDIRTYREACTS 16
     96      1.14      chs 
     97      1.14      chs 
     98      1.14      chs /*
     99       1.1      mrg  * local prototypes
    100       1.1      mrg  */
    101       1.1      mrg 
    102  1.51.2.1    skrll void		uvmpd_scan(void);
    103  1.51.2.1    skrll void		uvmpd_scan_inactive(struct pglist *);
    104  1.51.2.1    skrll void		uvmpd_tune(void);
    105       1.1      mrg 
    106       1.1      mrg /*
    107       1.1      mrg  * uvm_wait: wait (sleep) for the page daemon to free some pages
    108       1.1      mrg  *
    109       1.1      mrg  * => should be called with all locks released
    110       1.1      mrg  * => should _not_ be called by the page daemon (to avoid deadlock)
    111       1.1      mrg  */
    112       1.1      mrg 
    113      1.19  thorpej void
    114      1.19  thorpej uvm_wait(wmsg)
    115      1.19  thorpej 	const char *wmsg;
    116       1.8      mrg {
    117       1.8      mrg 	int timo = 0;
    118       1.8      mrg 	int s = splbio();
    119       1.1      mrg 
    120       1.8      mrg 	/*
    121       1.8      mrg 	 * check for page daemon going to sleep (waiting for itself)
    122       1.8      mrg 	 */
    123       1.1      mrg 
    124      1.37      chs 	if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
    125       1.8      mrg 		/*
    126       1.8      mrg 		 * now we have a problem: the pagedaemon wants to go to
    127       1.8      mrg 		 * sleep until it frees more memory.   but how can it
    128       1.8      mrg 		 * free more memory if it is asleep?  that is a deadlock.
    129       1.8      mrg 		 * we have two options:
    130       1.8      mrg 		 *  [1] panic now
    131       1.8      mrg 		 *  [2] put a timeout on the sleep, thus causing the
    132       1.8      mrg 		 *      pagedaemon to only pause (rather than sleep forever)
    133       1.8      mrg 		 *
    134       1.8      mrg 		 * note that option [2] will only help us if we get lucky
    135       1.8      mrg 		 * and some other process on the system breaks the deadlock
    136       1.8      mrg 		 * by exiting or freeing memory (thus allowing the pagedaemon
    137       1.8      mrg 		 * to continue).  for now we panic if DEBUG is defined,
    138       1.8      mrg 		 * otherwise we hope for the best with option [2] (better
    139       1.8      mrg 		 * yet, this should never happen in the first place!).
    140       1.8      mrg 		 */
    141       1.1      mrg 
    142       1.8      mrg 		printf("pagedaemon: deadlock detected!\n");
    143       1.8      mrg 		timo = hz >> 3;		/* set timeout */
    144       1.1      mrg #if defined(DEBUG)
    145       1.8      mrg 		/* DEBUG: panic so we can debug it */
    146       1.8      mrg 		panic("pagedaemon deadlock");
    147       1.1      mrg #endif
    148       1.8      mrg 	}
    149       1.1      mrg 
    150       1.8      mrg 	simple_lock(&uvm.pagedaemon_lock);
    151      1.17  thorpej 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    152       1.8      mrg 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    153       1.8      mrg 	    timo);
    154       1.1      mrg 
    155       1.8      mrg 	splx(s);
    156       1.1      mrg }
    157       1.1      mrg 
    158       1.1      mrg 
    159       1.1      mrg /*
    160       1.1      mrg  * uvmpd_tune: tune paging parameters
    161       1.1      mrg  *
    162       1.1      mrg  * => called when ever memory is added (or removed?) to the system
    163       1.1      mrg  * => caller must call with page queues locked
    164       1.1      mrg  */
    165       1.1      mrg 
    166      1.37      chs void
    167      1.37      chs uvmpd_tune(void)
    168       1.8      mrg {
    169       1.8      mrg 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    170       1.1      mrg 
    171       1.8      mrg 	uvmexp.freemin = uvmexp.npages / 20;
    172       1.1      mrg 
    173       1.8      mrg 	/* between 16k and 256k */
    174       1.8      mrg 	/* XXX:  what are these values good for? */
    175      1.37      chs 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    176      1.37      chs 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    177      1.23    bjh21 
    178      1.23    bjh21 	/* Make sure there's always a user page free. */
    179      1.23    bjh21 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    180      1.23    bjh21 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    181       1.1      mrg 
    182       1.8      mrg 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    183       1.8      mrg 	if (uvmexp.freetarg <= uvmexp.freemin)
    184       1.8      mrg 		uvmexp.freetarg = uvmexp.freemin + 1;
    185       1.1      mrg 
    186       1.8      mrg 	/* uvmexp.inactarg: computed in main daemon loop */
    187       1.1      mrg 
    188       1.8      mrg 	uvmexp.wiredmax = uvmexp.npages / 3;
    189       1.8      mrg 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    190       1.1      mrg 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    191       1.1      mrg }
    192       1.1      mrg 
    193       1.1      mrg /*
    194       1.1      mrg  * uvm_pageout: the main loop for the pagedaemon
    195       1.1      mrg  */
    196       1.1      mrg 
    197       1.8      mrg void
    198      1.22  thorpej uvm_pageout(void *arg)
    199       1.8      mrg {
    200       1.8      mrg 	int npages = 0;
    201       1.8      mrg 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    202      1.24      chs 
    203       1.8      mrg 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    204       1.8      mrg 
    205       1.8      mrg 	/*
    206       1.8      mrg 	 * ensure correct priority and set paging parameters...
    207       1.8      mrg 	 */
    208       1.8      mrg 
    209       1.8      mrg 	uvm.pagedaemon_proc = curproc;
    210       1.8      mrg 	uvm_lock_pageq();
    211       1.8      mrg 	npages = uvmexp.npages;
    212       1.8      mrg 	uvmpd_tune();
    213       1.8      mrg 	uvm_unlock_pageq();
    214       1.8      mrg 
    215       1.8      mrg 	/*
    216       1.8      mrg 	 * main loop
    217       1.8      mrg 	 */
    218      1.24      chs 
    219      1.24      chs 	for (;;) {
    220      1.24      chs 		simple_lock(&uvm.pagedaemon_lock);
    221      1.24      chs 
    222      1.24      chs 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    223      1.24      chs 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    224      1.24      chs 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    225      1.24      chs 		uvmexp.pdwoke++;
    226      1.24      chs 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    227      1.24      chs 
    228       1.8      mrg 		/*
    229  1.51.2.1    skrll 		 * The metadata cache drainer knows about uvmexp.free
    230  1.51.2.1    skrll 		 * and uvmexp.freetarg.  We call it _before_ scanning
    231  1.51.2.1    skrll 		 * so that it sees the amount we really want.
    232  1.51.2.1    skrll 		 */
    233  1.51.2.1    skrll 		buf_drain(0);
    234  1.51.2.1    skrll 
    235  1.51.2.1    skrll 		/*
    236      1.24      chs 		 * now lock page queues and recompute inactive count
    237       1.8      mrg 		 */
    238       1.8      mrg 
    239      1.24      chs 		uvm_lock_pageq();
    240      1.24      chs 		if (npages != uvmexp.npages) {	/* check for new pages? */
    241      1.24      chs 			npages = uvmexp.npages;
    242      1.24      chs 			uvmpd_tune();
    243      1.24      chs 		}
    244      1.24      chs 
    245      1.24      chs 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    246      1.24      chs 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    247      1.24      chs 			uvmexp.inactarg = uvmexp.freetarg + 1;
    248      1.24      chs 		}
    249      1.24      chs 
    250      1.24      chs 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    251      1.24      chs 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    252      1.24      chs 		    uvmexp.inactarg);
    253       1.8      mrg 
    254       1.8      mrg 		/*
    255      1.24      chs 		 * scan if needed
    256       1.8      mrg 		 */
    257       1.8      mrg 
    258      1.24      chs 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    259      1.30      chs 		    uvmexp.inactive < uvmexp.inactarg) {
    260      1.24      chs 			uvmpd_scan();
    261       1.8      mrg 		}
    262       1.8      mrg 
    263       1.8      mrg 		/*
    264      1.24      chs 		 * if there's any free memory to be had,
    265      1.24      chs 		 * wake up any waiters.
    266       1.8      mrg 		 */
    267       1.8      mrg 
    268      1.24      chs 		if (uvmexp.free > uvmexp.reserve_kernel ||
    269      1.24      chs 		    uvmexp.paging == 0) {
    270      1.24      chs 			wakeup(&uvmexp.free);
    271       1.8      mrg 		}
    272       1.1      mrg 
    273       1.8      mrg 		/*
    274      1.24      chs 		 * scan done.  unlock page queues (the only lock we are holding)
    275       1.8      mrg 		 */
    276       1.8      mrg 
    277      1.24      chs 		uvm_unlock_pageq();
    278      1.38      chs 
    279      1.38      chs 		/*
    280      1.38      chs 		 * drain pool resources now that we're not holding any locks
    281      1.38      chs 		 */
    282      1.38      chs 
    283      1.38      chs 		pool_drain(0);
    284  1.51.2.1    skrll 
    285  1.51.2.1    skrll 		/*
    286  1.51.2.1    skrll 		 * free any cached u-areas we don't need
    287  1.51.2.1    skrll 		 */
    288  1.51.2.1    skrll 		uvm_uarea_drain(TRUE);
    289  1.51.2.1    skrll 
    290      1.24      chs 	}
    291      1.24      chs 	/*NOTREACHED*/
    292      1.24      chs }
    293      1.24      chs 
    294       1.8      mrg 
    295      1.24      chs /*
    296      1.24      chs  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    297      1.24      chs  */
    298       1.8      mrg 
    299      1.24      chs void
    300      1.24      chs uvm_aiodone_daemon(void *arg)
    301      1.24      chs {
    302      1.24      chs 	int s, free;
    303      1.24      chs 	struct buf *bp, *nbp;
    304      1.24      chs 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    305       1.9       pk 
    306      1.24      chs 	for (;;) {
    307       1.8      mrg 
    308       1.8      mrg 		/*
    309      1.24      chs 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    310      1.24      chs 		 * we need splbio because we want to make sure the aio_done list
    311      1.24      chs 		 * is totally empty before we go to sleep.
    312       1.8      mrg 		 */
    313       1.8      mrg 
    314      1.24      chs 		s = splbio();
    315      1.24      chs 		simple_lock(&uvm.aiodoned_lock);
    316      1.24      chs 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    317      1.24      chs 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    318      1.24      chs 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    319      1.24      chs 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    320      1.24      chs 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    321      1.24      chs 
    322      1.24      chs 			/* relock aiodoned_lock, still at splbio */
    323      1.24      chs 			simple_lock(&uvm.aiodoned_lock);
    324       1.8      mrg 		}
    325       1.8      mrg 
    326      1.24      chs 		/*
    327      1.24      chs 		 * check for done aio structures
    328      1.24      chs 		 */
    329       1.8      mrg 
    330      1.24      chs 		bp = TAILQ_FIRST(&uvm.aio_done);
    331      1.24      chs 		if (bp) {
    332      1.24      chs 			TAILQ_INIT(&uvm.aio_done);
    333      1.24      chs 		}
    334       1.8      mrg 
    335      1.24      chs 		simple_unlock(&uvm.aiodoned_lock);
    336      1.24      chs 		splx(s);
    337       1.8      mrg 
    338       1.8      mrg 		/*
    339      1.24      chs 		 * process each i/o that's done.
    340       1.8      mrg 		 */
    341       1.8      mrg 
    342      1.24      chs 		free = uvmexp.free;
    343      1.24      chs 		while (bp != NULL) {
    344      1.24      chs 			nbp = TAILQ_NEXT(bp, b_freelist);
    345      1.24      chs 			(*bp->b_iodone)(bp);
    346      1.24      chs 			bp = nbp;
    347      1.24      chs 		}
    348      1.24      chs 		if (free <= uvmexp.reserve_kernel) {
    349      1.24      chs 			s = uvm_lock_fpageq();
    350      1.24      chs 			wakeup(&uvm.pagedaemon);
    351      1.24      chs 			uvm_unlock_fpageq(s);
    352      1.24      chs 		} else {
    353      1.24      chs 			simple_lock(&uvm.pagedaemon_lock);
    354      1.17  thorpej 			wakeup(&uvmexp.free);
    355      1.24      chs 			simple_unlock(&uvm.pagedaemon_lock);
    356      1.24      chs 		}
    357       1.8      mrg 	}
    358       1.1      mrg }
    359       1.1      mrg 
    360       1.1      mrg /*
    361      1.24      chs  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    362       1.1      mrg  *
    363       1.1      mrg  * => called with page queues locked
    364       1.1      mrg  * => we work on meeting our free target by converting inactive pages
    365       1.1      mrg  *    into free pages.
    366       1.1      mrg  * => we handle the building of swap-backed clusters
    367       1.1      mrg  * => we return TRUE if we are exiting because we met our target
    368       1.1      mrg  */
    369       1.1      mrg 
    370      1.46      chs void
    371       1.8      mrg uvmpd_scan_inactive(pglst)
    372       1.8      mrg 	struct pglist *pglst;
    373       1.8      mrg {
    374      1.37      chs 	int error;
    375      1.48      scw 	struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
    376       1.8      mrg 	struct uvm_object *uobj;
    377      1.37      chs 	struct vm_anon *anon;
    378      1.51      tls 	struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
    379      1.37      chs 	struct simplelock *slock;
    380      1.37      chs 	int swnpages, swcpages;
    381      1.14      chs 	int swslot;
    382      1.37      chs 	int dirtyreacts, t, result;
    383      1.43      chs 	boolean_t anonunder, fileunder, execunder;
    384      1.43      chs 	boolean_t anonover, fileover, execover;
    385      1.43      chs 	boolean_t anonreact, filereact, execreact;
    386       1.8      mrg 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    387       1.1      mrg 
    388       1.8      mrg 	/*
    389       1.8      mrg 	 * swslot is non-zero if we are building a swap cluster.  we want
    390      1.24      chs 	 * to stay in the loop while we have a page to scan or we have
    391       1.8      mrg 	 * a swap-cluster to build.
    392       1.8      mrg 	 */
    393      1.24      chs 
    394       1.8      mrg 	swslot = 0;
    395       1.8      mrg 	swnpages = swcpages = 0;
    396      1.14      chs 	dirtyreacts = 0;
    397      1.43      chs 
    398      1.43      chs 	/*
    399      1.43      chs 	 * decide which types of pages we want to reactivate instead of freeing
    400      1.43      chs 	 * to keep usage within the minimum and maximum usage limits.
    401      1.43      chs 	 */
    402      1.43      chs 
    403      1.43      chs 	t = uvmexp.active + uvmexp.inactive + uvmexp.free;
    404      1.43      chs 	anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
    405      1.43      chs 	fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
    406      1.43      chs 	execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
    407      1.43      chs 	anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
    408      1.43      chs 	fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
    409      1.43      chs 	execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
    410      1.43      chs 	anonreact = anonunder || (!anonover && (fileover || execover));
    411      1.43      chs 	filereact = fileunder || (!fileover && (anonover || execover));
    412      1.43      chs 	execreact = execunder || (!execover && (anonover || fileover));
    413      1.24      chs 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
    414      1.24      chs 		uobj = NULL;
    415      1.24      chs 		anon = NULL;
    416       1.8      mrg 		if (p) {
    417      1.24      chs 
    418       1.8      mrg 			/*
    419      1.37      chs 			 * see if we've met the free target.
    420       1.8      mrg 			 */
    421      1.24      chs 
    422      1.37      chs 			if (uvmexp.free + uvmexp.paging >=
    423      1.37      chs 			    uvmexp.freetarg << 2 ||
    424      1.30      chs 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    425      1.30      chs 				UVMHIST_LOG(pdhist,"  met free target: "
    426      1.30      chs 					    "exit loop", 0, 0, 0, 0);
    427      1.24      chs 
    428      1.30      chs 				if (swslot == 0) {
    429      1.30      chs 					/* exit now if no swap-i/o pending */
    430      1.30      chs 					break;
    431      1.24      chs 				}
    432      1.30      chs 
    433      1.30      chs 				/* set p to null to signal final swap i/o */
    434      1.30      chs 				p = NULL;
    435      1.37      chs 				nextpg = NULL;
    436       1.8      mrg 			}
    437       1.8      mrg 		}
    438      1.24      chs 		if (p) {	/* if (we have a new page to consider) */
    439      1.30      chs 
    440       1.8      mrg 			/*
    441       1.8      mrg 			 * we are below target and have a new page to consider.
    442       1.8      mrg 			 */
    443      1.37      chs 
    444       1.8      mrg 			uvmexp.pdscans++;
    445      1.24      chs 			nextpg = TAILQ_NEXT(p, pageq);
    446       1.8      mrg 
    447      1.27  mycroft 			/*
    448      1.27  mycroft 			 * move referenced pages back to active queue and
    449      1.30      chs 			 * skip to next page.
    450      1.27  mycroft 			 */
    451      1.30      chs 
    452      1.37      chs 			if (pmap_clear_reference(p)) {
    453      1.27  mycroft 				uvm_pageactivate(p);
    454      1.27  mycroft 				uvmexp.pdreact++;
    455      1.27  mycroft 				continue;
    456      1.27  mycroft 			}
    457      1.37      chs 			anon = p->uanon;
    458      1.37      chs 			uobj = p->uobject;
    459      1.30      chs 
    460      1.30      chs 			/*
    461      1.30      chs 			 * enforce the minimum thresholds on different
    462      1.30      chs 			 * types of memory usage.  if reusing the current
    463      1.30      chs 			 * page would reduce that type of usage below its
    464      1.30      chs 			 * minimum, reactivate the page instead and move
    465      1.30      chs 			 * on to the next page.
    466      1.30      chs 			 */
    467      1.30      chs 
    468      1.43      chs 			if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
    469      1.30      chs 				uvm_pageactivate(p);
    470      1.43      chs 				uvmexp.pdreexec++;
    471      1.30      chs 				continue;
    472      1.30      chs 			}
    473      1.37      chs 			if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
    474      1.43      chs 			    !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
    475      1.30      chs 				uvm_pageactivate(p);
    476      1.43      chs 				uvmexp.pdrefile++;
    477      1.30      chs 				continue;
    478      1.30      chs 			}
    479      1.47      chs 			if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
    480      1.44      chs 				uvm_pageactivate(p);
    481      1.44      chs 				uvmexp.pdreanon++;
    482      1.44      chs 				continue;
    483      1.44      chs 			}
    484      1.30      chs 
    485       1.8      mrg 			/*
    486       1.8      mrg 			 * first we attempt to lock the object that this page
    487       1.8      mrg 			 * belongs to.  if our attempt fails we skip on to
    488       1.8      mrg 			 * the next page (no harm done).  it is important to
    489       1.8      mrg 			 * "try" locking the object as we are locking in the
    490       1.8      mrg 			 * wrong order (pageq -> object) and we don't want to
    491      1.24      chs 			 * deadlock.
    492       1.8      mrg 			 *
    493      1.24      chs 			 * the only time we expect to see an ownerless page
    494       1.8      mrg 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    495       1.8      mrg 			 * anon has loaned a page from a uvm_object and the
    496       1.8      mrg 			 * uvm_object has dropped the ownership.  in that
    497       1.8      mrg 			 * case, the anon can "take over" the loaned page
    498       1.8      mrg 			 * and make it its own.
    499       1.8      mrg 			 */
    500      1.30      chs 
    501      1.44      chs 			/* does the page belong to an object? */
    502      1.44      chs 			if (uobj != NULL) {
    503      1.44      chs 				slock = &uobj->vmobjlock;
    504      1.44      chs 				if (!simple_lock_try(slock)) {
    505      1.44      chs 					continue;
    506      1.44      chs 				}
    507      1.44      chs 				if (p->flags & PG_BUSY) {
    508      1.44      chs 					simple_unlock(slock);
    509      1.44      chs 					uvmexp.pdbusy++;
    510      1.44      chs 					continue;
    511      1.44      chs 				}
    512      1.44      chs 				uvmexp.pdobscan++;
    513      1.44      chs 			} else {
    514      1.24      chs 				KASSERT(anon != NULL);
    515      1.37      chs 				slock = &anon->an_lock;
    516      1.37      chs 				if (!simple_lock_try(slock)) {
    517       1.8      mrg 					continue;
    518      1.30      chs 				}
    519       1.8      mrg 
    520       1.8      mrg 				/*
    521      1.44      chs 				 * set PQ_ANON if it isn't set already.
    522       1.8      mrg 				 */
    523      1.24      chs 
    524       1.8      mrg 				if ((p->pqflags & PQ_ANON) == 0) {
    525      1.24      chs 					KASSERT(p->loan_count > 0);
    526       1.8      mrg 					p->loan_count--;
    527      1.24      chs 					p->pqflags |= PQ_ANON;
    528      1.24      chs 					/* anon now owns it */
    529       1.8      mrg 				}
    530       1.8      mrg 				if (p->flags & PG_BUSY) {
    531      1.37      chs 					simple_unlock(slock);
    532       1.8      mrg 					uvmexp.pdbusy++;
    533       1.8      mrg 					continue;
    534       1.8      mrg 				}
    535       1.8      mrg 				uvmexp.pdanscan++;
    536       1.8      mrg 			}
    537       1.8      mrg 
    538      1.37      chs 
    539       1.8      mrg 			/*
    540       1.8      mrg 			 * we now have the object and the page queues locked.
    541      1.37      chs 			 * if the page is not swap-backed, call the object's
    542      1.37      chs 			 * pager to flush and free the page.
    543      1.37      chs 			 */
    544      1.37      chs 
    545      1.37      chs 			if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    546      1.37      chs 				uvm_unlock_pageq();
    547      1.50   simonb 				(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    548      1.37      chs 				    p->offset + PAGE_SIZE,
    549      1.37      chs 				    PGO_CLEANIT|PGO_FREE);
    550      1.37      chs 				uvm_lock_pageq();
    551      1.37      chs 				if (nextpg &&
    552      1.46      chs 				    (nextpg->pqflags & PQ_INACTIVE) == 0) {
    553      1.37      chs 					nextpg = TAILQ_FIRST(pglst);
    554      1.37      chs 				}
    555      1.37      chs 				continue;
    556      1.37      chs 			}
    557      1.37      chs 
    558      1.37      chs 			/*
    559      1.37      chs 			 * the page is swap-backed.  remove all the permissions
    560      1.29  thorpej 			 * from the page so we can sync the modified info
    561      1.29  thorpej 			 * without any race conditions.  if the page is clean
    562      1.29  thorpej 			 * we can free it now and continue.
    563       1.8      mrg 			 */
    564       1.8      mrg 
    565      1.29  thorpej 			pmap_page_protect(p, VM_PROT_NONE);
    566      1.37      chs 			if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    567      1.37      chs 				p->flags &= ~(PG_CLEAN);
    568      1.30      chs 			}
    569       1.8      mrg 			if (p->flags & PG_CLEAN) {
    570  1.51.2.1    skrll 				int slot;
    571  1.51.2.1    skrll 				int pageidx;
    572  1.51.2.1    skrll 
    573  1.51.2.1    skrll 				pageidx = p->offset >> PAGE_SHIFT;
    574       1.8      mrg 				uvm_pagefree(p);
    575       1.8      mrg 				uvmexp.pdfreed++;
    576      1.24      chs 
    577      1.37      chs 				/*
    578      1.37      chs 				 * for anons, we need to remove the page
    579      1.37      chs 				 * from the anon ourselves.  for aobjs,
    580      1.37      chs 				 * pagefree did that for us.
    581      1.37      chs 				 */
    582      1.37      chs 
    583       1.8      mrg 				if (anon) {
    584      1.24      chs 					KASSERT(anon->an_swslot != 0);
    585       1.8      mrg 					anon->u.an_page = NULL;
    586  1.51.2.1    skrll 					slot = anon->an_swslot;
    587  1.51.2.1    skrll 				} else {
    588  1.51.2.1    skrll 					slot = uao_find_swslot(uobj, pageidx);
    589       1.8      mrg 				}
    590      1.37      chs 				simple_unlock(slock);
    591      1.41      chs 
    592  1.51.2.1    skrll 				if (slot > 0) {
    593  1.51.2.1    skrll 					/* this page is now only in swap. */
    594  1.51.2.1    skrll 					simple_lock(&uvm.swap_data_lock);
    595  1.51.2.1    skrll 					KASSERT(uvmexp.swpgonly <
    596  1.51.2.1    skrll 						uvmexp.swpginuse);
    597  1.51.2.1    skrll 					uvmexp.swpgonly++;
    598  1.51.2.1    skrll 					simple_unlock(&uvm.swap_data_lock);
    599  1.51.2.1    skrll 				}
    600       1.8      mrg 				continue;
    601       1.8      mrg 			}
    602       1.8      mrg 
    603       1.8      mrg 			/*
    604       1.8      mrg 			 * this page is dirty, skip it if we'll have met our
    605       1.8      mrg 			 * free target when all the current pageouts complete.
    606       1.8      mrg 			 */
    607      1.24      chs 
    608      1.37      chs 			if (uvmexp.free + uvmexp.paging >
    609      1.37      chs 			    uvmexp.freetarg << 2) {
    610      1.37      chs 				simple_unlock(slock);
    611       1.8      mrg 				continue;
    612       1.8      mrg 			}
    613       1.8      mrg 
    614       1.8      mrg 			/*
    615      1.37      chs 			 * free any swap space allocated to the page since
    616      1.37      chs 			 * we'll have to write it again with its new data.
    617      1.37      chs 			 */
    618      1.37      chs 
    619      1.37      chs 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    620      1.37      chs 				uvm_swap_free(anon->an_swslot, 1);
    621      1.37      chs 				anon->an_swslot = 0;
    622      1.37      chs 			} else if (p->pqflags & PQ_AOBJ) {
    623      1.37      chs 				uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
    624      1.37      chs 			}
    625      1.37      chs 
    626      1.37      chs 			/*
    627      1.37      chs 			 * if all pages in swap are only in swap,
    628      1.37      chs 			 * the swap space is full and we can't page out
    629      1.37      chs 			 * any more swap-backed pages.  reactivate this page
    630      1.37      chs 			 * so that we eventually cycle all pages through
    631      1.37      chs 			 * the inactive queue.
    632      1.14      chs 			 */
    633      1.24      chs 
    634  1.51.2.1    skrll 			if (uvm_swapisfull()) {
    635      1.14      chs 				dirtyreacts++;
    636      1.14      chs 				uvm_pageactivate(p);
    637      1.37      chs 				simple_unlock(slock);
    638      1.14      chs 				continue;
    639      1.14      chs 			}
    640      1.14      chs 
    641      1.14      chs 			/*
    642      1.37      chs 			 * start new swap pageout cluster (if necessary).
    643      1.14      chs 			 */
    644      1.24      chs 
    645      1.37      chs 			if (swslot == 0) {
    646      1.51      tls 				/* Even with strange MAXPHYS, the shift
    647      1.51      tls 				   implicitly rounds down to a page. */
    648      1.51      tls 				swnpages = MAXPHYS >> PAGE_SHIFT;
    649      1.37      chs 				swslot = uvm_swap_alloc(&swnpages, TRUE);
    650      1.37      chs 				if (swslot == 0) {
    651      1.37      chs 					simple_unlock(slock);
    652      1.37      chs 					continue;
    653      1.14      chs 				}
    654      1.37      chs 				swcpages = 0;
    655      1.14      chs 			}
    656      1.14      chs 
    657      1.14      chs 			/*
    658      1.37      chs 			 * at this point, we're definitely going reuse this
    659      1.37      chs 			 * page.  mark the page busy and delayed-free.
    660      1.37      chs 			 * we should remove the page from the page queues
    661      1.37      chs 			 * so we don't ever look at it again.
    662      1.37      chs 			 * adjust counters and such.
    663       1.8      mrg 			 */
    664      1.30      chs 
    665      1.37      chs 			p->flags |= PG_BUSY;
    666       1.8      mrg 			UVM_PAGE_OWN(p, "scan_inactive");
    667      1.37      chs 
    668      1.37      chs 			p->flags |= PG_PAGEOUT;
    669      1.37      chs 			uvmexp.paging++;
    670      1.37      chs 			uvm_pagedequeue(p);
    671      1.37      chs 
    672       1.8      mrg 			uvmexp.pgswapout++;
    673       1.8      mrg 
    674       1.8      mrg 			/*
    675      1.37      chs 			 * add the new page to the cluster.
    676       1.8      mrg 			 */
    677      1.24      chs 
    678      1.37      chs 			if (anon) {
    679      1.37      chs 				anon->an_swslot = swslot + swcpages;
    680      1.37      chs 				simple_unlock(slock);
    681      1.37      chs 			} else {
    682      1.37      chs 				result = uao_set_swslot(uobj,
    683      1.37      chs 				    p->offset >> PAGE_SHIFT, swslot + swcpages);
    684      1.37      chs 				if (result == -1) {
    685      1.37      chs 					p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    686      1.37      chs 					UVM_PAGE_OWN(p, NULL);
    687      1.37      chs 					uvmexp.paging--;
    688      1.37      chs 					uvm_pageactivate(p);
    689      1.37      chs 					simple_unlock(slock);
    690      1.37      chs 					continue;
    691       1.8      mrg 				}
    692      1.37      chs 				simple_unlock(slock);
    693      1.37      chs 			}
    694      1.37      chs 			swpps[swcpages] = p;
    695      1.37      chs 			swcpages++;
    696       1.8      mrg 
    697      1.37      chs 			/*
    698      1.37      chs 			 * if the cluster isn't full, look for more pages
    699      1.37      chs 			 * before starting the i/o.
    700      1.37      chs 			 */
    701      1.24      chs 
    702      1.37      chs 			if (swcpages < swnpages) {
    703      1.37      chs 				continue;
    704       1.8      mrg 			}
    705       1.8      mrg 		}
    706       1.8      mrg 
    707       1.8      mrg 		/*
    708      1.37      chs 		 * if this is the final pageout we could have a few
    709      1.37      chs 		 * unused swap blocks.  if so, free them now.
    710       1.8      mrg 		 */
    711      1.24      chs 
    712      1.37      chs 		if (swcpages < swnpages) {
    713      1.37      chs 			uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
    714       1.8      mrg 		}
    715       1.8      mrg 
    716       1.8      mrg 		/*
    717      1.37      chs 		 * now start the pageout.
    718       1.8      mrg 		 */
    719       1.8      mrg 
    720      1.37      chs 		uvm_unlock_pageq();
    721       1.8      mrg 		uvmexp.pdpageouts++;
    722      1.37      chs 		error = uvm_swap_put(swslot, swpps, swcpages, 0);
    723      1.37      chs 		KASSERT(error == 0);
    724      1.37      chs 		uvm_lock_pageq();
    725       1.8      mrg 
    726       1.8      mrg 		/*
    727      1.37      chs 		 * zero swslot to indicate that we are
    728       1.8      mrg 		 * no longer building a swap-backed cluster.
    729       1.8      mrg 		 */
    730       1.8      mrg 
    731      1.37      chs 		swslot = 0;
    732      1.24      chs 
    733       1.8      mrg 		/*
    734      1.31      chs 		 * the pageout is in progress.  bump counters and set up
    735      1.31      chs 		 * for the next loop.
    736       1.8      mrg 		 */
    737       1.8      mrg 
    738      1.31      chs 		uvmexp.pdpending++;
    739      1.37      chs 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    740      1.37      chs 			nextpg = TAILQ_FIRST(pglst);
    741       1.8      mrg 		}
    742      1.24      chs 	}
    743       1.1      mrg }
    744       1.1      mrg 
    745       1.1      mrg /*
    746       1.1      mrg  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    747       1.1      mrg  *
    748       1.1      mrg  * => called with pageq's locked
    749       1.1      mrg  */
    750       1.1      mrg 
    751       1.8      mrg void
    752      1.37      chs uvmpd_scan(void)
    753       1.1      mrg {
    754      1.37      chs 	int inactive_shortage, swap_shortage, pages_freed;
    755       1.8      mrg 	struct vm_page *p, *nextpg;
    756       1.8      mrg 	struct uvm_object *uobj;
    757      1.37      chs 	struct vm_anon *anon;
    758      1.44      chs 	struct simplelock *slock;
    759       1.8      mrg 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    760       1.1      mrg 
    761      1.37      chs 	uvmexp.pdrevs++;
    762      1.24      chs 	uobj = NULL;
    763      1.37      chs 	anon = NULL;
    764       1.1      mrg 
    765       1.1      mrg #ifndef __SWAP_BROKEN
    766      1.39      chs 
    767       1.8      mrg 	/*
    768       1.8      mrg 	 * swap out some processes if we are below our free target.
    769       1.8      mrg 	 * we need to unlock the page queues for this.
    770       1.8      mrg 	 */
    771      1.39      chs 
    772      1.39      chs 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
    773       1.8      mrg 		uvmexp.pdswout++;
    774      1.37      chs 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    775      1.37      chs 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    776       1.8      mrg 		uvm_unlock_pageq();
    777       1.8      mrg 		uvm_swapout_threads();
    778       1.8      mrg 		uvm_lock_pageq();
    779       1.1      mrg 
    780       1.8      mrg 	}
    781       1.1      mrg #endif
    782       1.1      mrg 
    783       1.8      mrg 	/*
    784       1.8      mrg 	 * now we want to work on meeting our targets.   first we work on our
    785       1.8      mrg 	 * free target by converting inactive pages into free pages.  then
    786       1.8      mrg 	 * we work on meeting our inactive target by converting active pages
    787       1.8      mrg 	 * to inactive ones.
    788       1.8      mrg 	 */
    789       1.8      mrg 
    790       1.8      mrg 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    791       1.8      mrg 
    792      1.14      chs 	pages_freed = uvmexp.pdfreed;
    793      1.46      chs 	uvmpd_scan_inactive(&uvm.page_inactive);
    794      1.14      chs 	pages_freed = uvmexp.pdfreed - pages_freed;
    795       1.8      mrg 
    796       1.8      mrg 	/*
    797       1.8      mrg 	 * we have done the scan to get free pages.   now we work on meeting
    798       1.8      mrg 	 * our inactive target.
    799       1.8      mrg 	 */
    800       1.8      mrg 
    801      1.14      chs 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
    802      1.14      chs 
    803      1.14      chs 	/*
    804      1.14      chs 	 * detect if we're not going to be able to page anything out
    805      1.14      chs 	 * until we free some swap resources from active pages.
    806      1.14      chs 	 */
    807      1.24      chs 
    808      1.14      chs 	swap_shortage = 0;
    809      1.14      chs 	if (uvmexp.free < uvmexp.freetarg &&
    810  1.51.2.1    skrll 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    811  1.51.2.1    skrll 	    !uvm_swapisfull() &&
    812      1.14      chs 	    pages_freed == 0) {
    813      1.14      chs 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    814      1.14      chs 	}
    815      1.24      chs 
    816      1.14      chs 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
    817      1.14      chs 		    inactive_shortage, swap_shortage,0,0);
    818      1.24      chs 	for (p = TAILQ_FIRST(&uvm.page_active);
    819      1.14      chs 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
    820      1.14      chs 	     p = nextpg) {
    821      1.24      chs 		nextpg = TAILQ_NEXT(p, pageq);
    822      1.37      chs 		if (p->flags & PG_BUSY) {
    823      1.37      chs 			continue;
    824      1.37      chs 		}
    825       1.8      mrg 
    826       1.8      mrg 		/*
    827      1.14      chs 		 * lock the page's owner.
    828       1.8      mrg 		 */
    829      1.44      chs 
    830      1.44      chs 		if (p->uobject != NULL) {
    831      1.44      chs 			uobj = p->uobject;
    832      1.44      chs 			slock = &uobj->vmobjlock;
    833      1.44      chs 			if (!simple_lock_try(slock)) {
    834      1.44      chs 				continue;
    835      1.44      chs 			}
    836      1.44      chs 		} else {
    837      1.37      chs 			anon = p->uanon;
    838      1.37      chs 			KASSERT(anon != NULL);
    839      1.44      chs 			slock = &anon->an_lock;
    840      1.44      chs 			if (!simple_lock_try(slock)) {
    841       1.8      mrg 				continue;
    842      1.37      chs 			}
    843       1.1      mrg 
    844       1.8      mrg 			/* take over the page? */
    845       1.8      mrg 			if ((p->pqflags & PQ_ANON) == 0) {
    846      1.24      chs 				KASSERT(p->loan_count > 0);
    847       1.8      mrg 				p->loan_count--;
    848       1.8      mrg 				p->pqflags |= PQ_ANON;
    849       1.8      mrg 			}
    850       1.8      mrg 		}
    851      1.24      chs 
    852      1.14      chs 		/*
    853      1.14      chs 		 * skip this page if it's busy.
    854      1.14      chs 		 */
    855      1.24      chs 
    856      1.14      chs 		if ((p->flags & PG_BUSY) != 0) {
    857      1.44      chs 			simple_unlock(slock);
    858      1.14      chs 			continue;
    859      1.14      chs 		}
    860      1.24      chs 
    861      1.14      chs 		/*
    862      1.14      chs 		 * if there's a shortage of swap, free any swap allocated
    863      1.14      chs 		 * to this page so that other pages can be paged out.
    864      1.14      chs 		 */
    865      1.24      chs 
    866      1.14      chs 		if (swap_shortage > 0) {
    867      1.37      chs 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    868      1.37      chs 				uvm_swap_free(anon->an_swslot, 1);
    869      1.37      chs 				anon->an_swslot = 0;
    870      1.14      chs 				p->flags &= ~PG_CLEAN;
    871      1.14      chs 				swap_shortage--;
    872      1.37      chs 			} else if (p->pqflags & PQ_AOBJ) {
    873      1.37      chs 				int slot = uao_set_swslot(uobj,
    874      1.14      chs 					p->offset >> PAGE_SHIFT, 0);
    875      1.14      chs 				if (slot) {
    876      1.14      chs 					uvm_swap_free(slot, 1);
    877      1.14      chs 					p->flags &= ~PG_CLEAN;
    878      1.14      chs 					swap_shortage--;
    879      1.14      chs 				}
    880      1.14      chs 			}
    881      1.14      chs 		}
    882      1.24      chs 
    883      1.14      chs 		/*
    884      1.37      chs 		 * if there's a shortage of inactive pages, deactivate.
    885      1.14      chs 		 */
    886      1.24      chs 
    887      1.32  thorpej 		if (inactive_shortage > 0) {
    888       1.8      mrg 			/* no need to check wire_count as pg is "active" */
    889       1.8      mrg 			uvm_pagedeactivate(p);
    890       1.8      mrg 			uvmexp.pddeact++;
    891      1.14      chs 			inactive_shortage--;
    892       1.8      mrg 		}
    893      1.37      chs 
    894      1.37      chs 		/*
    895      1.37      chs 		 * we're done with this page.
    896      1.37      chs 		 */
    897      1.37      chs 
    898      1.44      chs 		simple_unlock(slock);
    899       1.8      mrg 	}
    900       1.1      mrg }
    901