Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.57
      1  1.57  jdolecek /*	$NetBSD: uvm_pdaemon.c,v 1.57 2004/01/04 11:33:32 jdolecek Exp $	*/
      2   1.1       mrg 
      3  1.34       chs /*
      4   1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  1.34       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1       mrg  *
      7   1.1       mrg  * All rights reserved.
      8   1.1       mrg  *
      9   1.1       mrg  * This code is derived from software contributed to Berkeley by
     10   1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1       mrg  *
     12   1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1       mrg  * modification, are permitted provided that the following conditions
     14   1.1       mrg  * are met:
     15   1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1       mrg  *    must display the following acknowledgement:
     22   1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23  1.34       chs  *      Washington University, the University of California, Berkeley and
     24   1.1       mrg  *      its contributors.
     25   1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1       mrg  *    may be used to endorse or promote products derived from this software
     27   1.1       mrg  *    without specific prior written permission.
     28   1.1       mrg  *
     29   1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1       mrg  * SUCH DAMAGE.
     40   1.1       mrg  *
     41   1.1       mrg  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42   1.4       mrg  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43   1.1       mrg  *
     44   1.1       mrg  *
     45   1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1       mrg  * All rights reserved.
     47  1.34       chs  *
     48   1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1       mrg  * notice and this permission notice appear in all copies of the
     51   1.1       mrg  * software, derivative works or modified versions, and any portions
     52   1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53  1.34       chs  *
     54  1.34       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  1.34       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  1.34       chs  *
     58   1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1       mrg  *
     60   1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1       mrg  *  School of Computer Science
     62   1.1       mrg  *  Carnegie Mellon University
     63   1.1       mrg  *  Pittsburgh PA 15213-3890
     64   1.1       mrg  *
     65   1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1       mrg  * rights to redistribute these changes.
     67   1.1       mrg  */
     68   1.1       mrg 
     69   1.1       mrg /*
     70   1.1       mrg  * uvm_pdaemon.c: the page daemon
     71   1.1       mrg  */
     72  1.42     lukem 
     73  1.42     lukem #include <sys/cdefs.h>
     74  1.57  jdolecek __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.57 2004/01/04 11:33:32 jdolecek Exp $");
     75  1.42     lukem 
     76  1.42     lukem #include "opt_uvmhist.h"
     77   1.1       mrg 
     78   1.1       mrg #include <sys/param.h>
     79   1.1       mrg #include <sys/proc.h>
     80   1.1       mrg #include <sys/systm.h>
     81   1.1       mrg #include <sys/kernel.h>
     82   1.9        pk #include <sys/pool.h>
     83  1.24       chs #include <sys/buf.h>
     84  1.30       chs #include <sys/vnode.h>
     85   1.1       mrg 
     86   1.1       mrg #include <uvm/uvm.h>
     87   1.1       mrg 
     88   1.1       mrg /*
     89  1.45       wiz  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     90  1.14       chs  * in a pass thru the inactive list when swap is full.  the value should be
     91  1.14       chs  * "small"... if it's too large we'll cycle the active pages thru the inactive
     92  1.14       chs  * queue too quickly to for them to be referenced and avoid being freed.
     93  1.14       chs  */
     94  1.14       chs 
     95  1.14       chs #define UVMPD_NUMDIRTYREACTS 16
     96  1.14       chs 
     97  1.14       chs 
     98  1.14       chs /*
     99   1.1       mrg  * local prototypes
    100   1.1       mrg  */
    101   1.1       mrg 
    102  1.37       chs void		uvmpd_scan __P((void));
    103  1.46       chs void		uvmpd_scan_inactive __P((struct pglist *));
    104  1.37       chs void		uvmpd_tune __P((void));
    105   1.1       mrg 
    106   1.1       mrg /*
    107   1.1       mrg  * uvm_wait: wait (sleep) for the page daemon to free some pages
    108   1.1       mrg  *
    109   1.1       mrg  * => should be called with all locks released
    110   1.1       mrg  * => should _not_ be called by the page daemon (to avoid deadlock)
    111   1.1       mrg  */
    112   1.1       mrg 
    113  1.19   thorpej void
    114  1.19   thorpej uvm_wait(wmsg)
    115  1.19   thorpej 	const char *wmsg;
    116   1.8       mrg {
    117   1.8       mrg 	int timo = 0;
    118   1.8       mrg 	int s = splbio();
    119   1.1       mrg 
    120   1.8       mrg 	/*
    121   1.8       mrg 	 * check for page daemon going to sleep (waiting for itself)
    122   1.8       mrg 	 */
    123   1.1       mrg 
    124  1.37       chs 	if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
    125   1.8       mrg 		/*
    126   1.8       mrg 		 * now we have a problem: the pagedaemon wants to go to
    127   1.8       mrg 		 * sleep until it frees more memory.   but how can it
    128   1.8       mrg 		 * free more memory if it is asleep?  that is a deadlock.
    129   1.8       mrg 		 * we have two options:
    130   1.8       mrg 		 *  [1] panic now
    131   1.8       mrg 		 *  [2] put a timeout on the sleep, thus causing the
    132   1.8       mrg 		 *      pagedaemon to only pause (rather than sleep forever)
    133   1.8       mrg 		 *
    134   1.8       mrg 		 * note that option [2] will only help us if we get lucky
    135   1.8       mrg 		 * and some other process on the system breaks the deadlock
    136   1.8       mrg 		 * by exiting or freeing memory (thus allowing the pagedaemon
    137   1.8       mrg 		 * to continue).  for now we panic if DEBUG is defined,
    138   1.8       mrg 		 * otherwise we hope for the best with option [2] (better
    139   1.8       mrg 		 * yet, this should never happen in the first place!).
    140   1.8       mrg 		 */
    141   1.1       mrg 
    142   1.8       mrg 		printf("pagedaemon: deadlock detected!\n");
    143   1.8       mrg 		timo = hz >> 3;		/* set timeout */
    144   1.1       mrg #if defined(DEBUG)
    145   1.8       mrg 		/* DEBUG: panic so we can debug it */
    146   1.8       mrg 		panic("pagedaemon deadlock");
    147   1.1       mrg #endif
    148   1.8       mrg 	}
    149   1.1       mrg 
    150   1.8       mrg 	simple_lock(&uvm.pagedaemon_lock);
    151  1.17   thorpej 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    152   1.8       mrg 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    153   1.8       mrg 	    timo);
    154   1.1       mrg 
    155   1.8       mrg 	splx(s);
    156   1.1       mrg }
    157   1.1       mrg 
    158   1.1       mrg 
    159   1.1       mrg /*
    160   1.1       mrg  * uvmpd_tune: tune paging parameters
    161   1.1       mrg  *
    162   1.1       mrg  * => called when ever memory is added (or removed?) to the system
    163   1.1       mrg  * => caller must call with page queues locked
    164   1.1       mrg  */
    165   1.1       mrg 
    166  1.37       chs void
    167  1.37       chs uvmpd_tune(void)
    168   1.8       mrg {
    169   1.8       mrg 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    170   1.1       mrg 
    171   1.8       mrg 	uvmexp.freemin = uvmexp.npages / 20;
    172   1.1       mrg 
    173   1.8       mrg 	/* between 16k and 256k */
    174   1.8       mrg 	/* XXX:  what are these values good for? */
    175  1.37       chs 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    176  1.37       chs 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    177  1.23     bjh21 
    178  1.23     bjh21 	/* Make sure there's always a user page free. */
    179  1.23     bjh21 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    180  1.23     bjh21 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    181   1.1       mrg 
    182   1.8       mrg 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    183   1.8       mrg 	if (uvmexp.freetarg <= uvmexp.freemin)
    184   1.8       mrg 		uvmexp.freetarg = uvmexp.freemin + 1;
    185   1.1       mrg 
    186   1.8       mrg 	/* uvmexp.inactarg: computed in main daemon loop */
    187   1.1       mrg 
    188   1.8       mrg 	uvmexp.wiredmax = uvmexp.npages / 3;
    189   1.8       mrg 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    190   1.1       mrg 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    191   1.1       mrg }
    192   1.1       mrg 
    193   1.1       mrg /*
    194   1.1       mrg  * uvm_pageout: the main loop for the pagedaemon
    195   1.1       mrg  */
    196   1.1       mrg 
    197   1.8       mrg void
    198  1.22   thorpej uvm_pageout(void *arg)
    199   1.8       mrg {
    200   1.8       mrg 	int npages = 0;
    201   1.8       mrg 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    202  1.24       chs 
    203   1.8       mrg 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    204   1.8       mrg 
    205   1.8       mrg 	/*
    206   1.8       mrg 	 * ensure correct priority and set paging parameters...
    207   1.8       mrg 	 */
    208   1.8       mrg 
    209   1.8       mrg 	uvm.pagedaemon_proc = curproc;
    210   1.8       mrg 	uvm_lock_pageq();
    211   1.8       mrg 	npages = uvmexp.npages;
    212   1.8       mrg 	uvmpd_tune();
    213   1.8       mrg 	uvm_unlock_pageq();
    214   1.8       mrg 
    215   1.8       mrg 	/*
    216   1.8       mrg 	 * main loop
    217   1.8       mrg 	 */
    218  1.24       chs 
    219  1.24       chs 	for (;;) {
    220  1.24       chs 		simple_lock(&uvm.pagedaemon_lock);
    221  1.24       chs 
    222  1.24       chs 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    223  1.24       chs 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    224  1.24       chs 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    225  1.24       chs 		uvmexp.pdwoke++;
    226  1.24       chs 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    227  1.24       chs 
    228   1.8       mrg 		/*
    229  1.24       chs 		 * now lock page queues and recompute inactive count
    230   1.8       mrg 		 */
    231   1.8       mrg 
    232  1.24       chs 		uvm_lock_pageq();
    233  1.24       chs 		if (npages != uvmexp.npages) {	/* check for new pages? */
    234  1.24       chs 			npages = uvmexp.npages;
    235  1.24       chs 			uvmpd_tune();
    236  1.24       chs 		}
    237  1.24       chs 
    238  1.24       chs 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    239  1.24       chs 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    240  1.24       chs 			uvmexp.inactarg = uvmexp.freetarg + 1;
    241  1.24       chs 		}
    242  1.24       chs 
    243  1.24       chs 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    244  1.24       chs 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    245  1.24       chs 		    uvmexp.inactarg);
    246   1.8       mrg 
    247   1.8       mrg 		/*
    248  1.24       chs 		 * scan if needed
    249   1.8       mrg 		 */
    250   1.8       mrg 
    251  1.24       chs 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    252  1.30       chs 		    uvmexp.inactive < uvmexp.inactarg) {
    253  1.24       chs 			uvmpd_scan();
    254   1.8       mrg 		}
    255   1.8       mrg 
    256   1.8       mrg 		/*
    257  1.24       chs 		 * if there's any free memory to be had,
    258  1.24       chs 		 * wake up any waiters.
    259   1.8       mrg 		 */
    260   1.8       mrg 
    261  1.24       chs 		if (uvmexp.free > uvmexp.reserve_kernel ||
    262  1.24       chs 		    uvmexp.paging == 0) {
    263  1.24       chs 			wakeup(&uvmexp.free);
    264   1.8       mrg 		}
    265   1.1       mrg 
    266   1.8       mrg 		/*
    267  1.24       chs 		 * scan done.  unlock page queues (the only lock we are holding)
    268   1.8       mrg 		 */
    269   1.8       mrg 
    270  1.24       chs 		uvm_unlock_pageq();
    271  1.38       chs 
    272  1.38       chs 		/*
    273  1.38       chs 		 * drain pool resources now that we're not holding any locks
    274  1.38       chs 		 */
    275  1.38       chs 
    276  1.56        pk 		buf_drain(0);
    277  1.38       chs 		pool_drain(0);
    278  1.57  jdolecek 
    279  1.57  jdolecek 		/*
    280  1.57  jdolecek 		 * free any cached u-areas we don't need
    281  1.57  jdolecek 		 */
    282  1.57  jdolecek 		uvm_uarea_drain(TRUE);
    283  1.57  jdolecek 
    284  1.24       chs 	}
    285  1.24       chs 	/*NOTREACHED*/
    286  1.24       chs }
    287  1.24       chs 
    288   1.8       mrg 
    289  1.24       chs /*
    290  1.24       chs  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    291  1.24       chs  */
    292   1.8       mrg 
    293  1.24       chs void
    294  1.24       chs uvm_aiodone_daemon(void *arg)
    295  1.24       chs {
    296  1.24       chs 	int s, free;
    297  1.24       chs 	struct buf *bp, *nbp;
    298  1.24       chs 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    299   1.9        pk 
    300  1.24       chs 	for (;;) {
    301   1.8       mrg 
    302   1.8       mrg 		/*
    303  1.24       chs 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    304  1.24       chs 		 * we need splbio because we want to make sure the aio_done list
    305  1.24       chs 		 * is totally empty before we go to sleep.
    306   1.8       mrg 		 */
    307   1.8       mrg 
    308  1.24       chs 		s = splbio();
    309  1.24       chs 		simple_lock(&uvm.aiodoned_lock);
    310  1.24       chs 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    311  1.24       chs 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    312  1.24       chs 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    313  1.24       chs 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    314  1.24       chs 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    315  1.24       chs 
    316  1.24       chs 			/* relock aiodoned_lock, still at splbio */
    317  1.24       chs 			simple_lock(&uvm.aiodoned_lock);
    318   1.8       mrg 		}
    319   1.8       mrg 
    320  1.24       chs 		/*
    321  1.24       chs 		 * check for done aio structures
    322  1.24       chs 		 */
    323   1.8       mrg 
    324  1.24       chs 		bp = TAILQ_FIRST(&uvm.aio_done);
    325  1.24       chs 		if (bp) {
    326  1.24       chs 			TAILQ_INIT(&uvm.aio_done);
    327  1.24       chs 		}
    328   1.8       mrg 
    329  1.24       chs 		simple_unlock(&uvm.aiodoned_lock);
    330  1.24       chs 		splx(s);
    331   1.8       mrg 
    332   1.8       mrg 		/*
    333  1.24       chs 		 * process each i/o that's done.
    334   1.8       mrg 		 */
    335   1.8       mrg 
    336  1.24       chs 		free = uvmexp.free;
    337  1.24       chs 		while (bp != NULL) {
    338  1.24       chs 			nbp = TAILQ_NEXT(bp, b_freelist);
    339  1.24       chs 			(*bp->b_iodone)(bp);
    340  1.24       chs 			bp = nbp;
    341  1.24       chs 		}
    342  1.24       chs 		if (free <= uvmexp.reserve_kernel) {
    343  1.24       chs 			s = uvm_lock_fpageq();
    344  1.24       chs 			wakeup(&uvm.pagedaemon);
    345  1.24       chs 			uvm_unlock_fpageq(s);
    346  1.24       chs 		} else {
    347  1.24       chs 			simple_lock(&uvm.pagedaemon_lock);
    348  1.17   thorpej 			wakeup(&uvmexp.free);
    349  1.24       chs 			simple_unlock(&uvm.pagedaemon_lock);
    350  1.24       chs 		}
    351   1.8       mrg 	}
    352   1.1       mrg }
    353   1.1       mrg 
    354   1.1       mrg /*
    355  1.24       chs  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    356   1.1       mrg  *
    357   1.1       mrg  * => called with page queues locked
    358   1.1       mrg  * => we work on meeting our free target by converting inactive pages
    359   1.1       mrg  *    into free pages.
    360   1.1       mrg  * => we handle the building of swap-backed clusters
    361   1.1       mrg  * => we return TRUE if we are exiting because we met our target
    362   1.1       mrg  */
    363   1.1       mrg 
    364  1.46       chs void
    365   1.8       mrg uvmpd_scan_inactive(pglst)
    366   1.8       mrg 	struct pglist *pglst;
    367   1.8       mrg {
    368  1.37       chs 	int error;
    369  1.48       scw 	struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
    370   1.8       mrg 	struct uvm_object *uobj;
    371  1.37       chs 	struct vm_anon *anon;
    372  1.51       tls 	struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
    373  1.37       chs 	struct simplelock *slock;
    374  1.37       chs 	int swnpages, swcpages;
    375  1.14       chs 	int swslot;
    376  1.37       chs 	int dirtyreacts, t, result;
    377  1.43       chs 	boolean_t anonunder, fileunder, execunder;
    378  1.43       chs 	boolean_t anonover, fileover, execover;
    379  1.43       chs 	boolean_t anonreact, filereact, execreact;
    380   1.8       mrg 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    381   1.1       mrg 
    382   1.8       mrg 	/*
    383   1.8       mrg 	 * swslot is non-zero if we are building a swap cluster.  we want
    384  1.24       chs 	 * to stay in the loop while we have a page to scan or we have
    385   1.8       mrg 	 * a swap-cluster to build.
    386   1.8       mrg 	 */
    387  1.24       chs 
    388   1.8       mrg 	swslot = 0;
    389   1.8       mrg 	swnpages = swcpages = 0;
    390  1.14       chs 	dirtyreacts = 0;
    391  1.43       chs 
    392  1.43       chs 	/*
    393  1.43       chs 	 * decide which types of pages we want to reactivate instead of freeing
    394  1.43       chs 	 * to keep usage within the minimum and maximum usage limits.
    395  1.43       chs 	 */
    396  1.43       chs 
    397  1.43       chs 	t = uvmexp.active + uvmexp.inactive + uvmexp.free;
    398  1.43       chs 	anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
    399  1.43       chs 	fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
    400  1.43       chs 	execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
    401  1.43       chs 	anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
    402  1.43       chs 	fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
    403  1.43       chs 	execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
    404  1.43       chs 	anonreact = anonunder || (!anonover && (fileover || execover));
    405  1.43       chs 	filereact = fileunder || (!fileover && (anonover || execover));
    406  1.43       chs 	execreact = execunder || (!execover && (anonover || fileover));
    407  1.24       chs 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
    408  1.24       chs 		uobj = NULL;
    409  1.24       chs 		anon = NULL;
    410   1.8       mrg 		if (p) {
    411  1.24       chs 
    412   1.8       mrg 			/*
    413  1.37       chs 			 * see if we've met the free target.
    414   1.8       mrg 			 */
    415  1.24       chs 
    416  1.37       chs 			if (uvmexp.free + uvmexp.paging >=
    417  1.37       chs 			    uvmexp.freetarg << 2 ||
    418  1.30       chs 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    419  1.30       chs 				UVMHIST_LOG(pdhist,"  met free target: "
    420  1.30       chs 					    "exit loop", 0, 0, 0, 0);
    421  1.24       chs 
    422  1.30       chs 				if (swslot == 0) {
    423  1.30       chs 					/* exit now if no swap-i/o pending */
    424  1.30       chs 					break;
    425  1.24       chs 				}
    426  1.30       chs 
    427  1.30       chs 				/* set p to null to signal final swap i/o */
    428  1.30       chs 				p = NULL;
    429  1.37       chs 				nextpg = NULL;
    430   1.8       mrg 			}
    431   1.8       mrg 		}
    432  1.24       chs 		if (p) {	/* if (we have a new page to consider) */
    433  1.30       chs 
    434   1.8       mrg 			/*
    435   1.8       mrg 			 * we are below target and have a new page to consider.
    436   1.8       mrg 			 */
    437  1.37       chs 
    438   1.8       mrg 			uvmexp.pdscans++;
    439  1.24       chs 			nextpg = TAILQ_NEXT(p, pageq);
    440   1.8       mrg 
    441  1.27   mycroft 			/*
    442  1.27   mycroft 			 * move referenced pages back to active queue and
    443  1.30       chs 			 * skip to next page.
    444  1.27   mycroft 			 */
    445  1.30       chs 
    446  1.37       chs 			if (pmap_clear_reference(p)) {
    447  1.27   mycroft 				uvm_pageactivate(p);
    448  1.27   mycroft 				uvmexp.pdreact++;
    449  1.27   mycroft 				continue;
    450  1.27   mycroft 			}
    451  1.37       chs 			anon = p->uanon;
    452  1.37       chs 			uobj = p->uobject;
    453  1.30       chs 
    454  1.30       chs 			/*
    455  1.30       chs 			 * enforce the minimum thresholds on different
    456  1.30       chs 			 * types of memory usage.  if reusing the current
    457  1.30       chs 			 * page would reduce that type of usage below its
    458  1.30       chs 			 * minimum, reactivate the page instead and move
    459  1.30       chs 			 * on to the next page.
    460  1.30       chs 			 */
    461  1.30       chs 
    462  1.43       chs 			if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
    463  1.30       chs 				uvm_pageactivate(p);
    464  1.43       chs 				uvmexp.pdreexec++;
    465  1.30       chs 				continue;
    466  1.30       chs 			}
    467  1.37       chs 			if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
    468  1.43       chs 			    !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
    469  1.30       chs 				uvm_pageactivate(p);
    470  1.43       chs 				uvmexp.pdrefile++;
    471  1.30       chs 				continue;
    472  1.30       chs 			}
    473  1.47       chs 			if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
    474  1.44       chs 				uvm_pageactivate(p);
    475  1.44       chs 				uvmexp.pdreanon++;
    476  1.44       chs 				continue;
    477  1.44       chs 			}
    478  1.30       chs 
    479   1.8       mrg 			/*
    480   1.8       mrg 			 * first we attempt to lock the object that this page
    481   1.8       mrg 			 * belongs to.  if our attempt fails we skip on to
    482   1.8       mrg 			 * the next page (no harm done).  it is important to
    483   1.8       mrg 			 * "try" locking the object as we are locking in the
    484   1.8       mrg 			 * wrong order (pageq -> object) and we don't want to
    485  1.24       chs 			 * deadlock.
    486   1.8       mrg 			 *
    487  1.24       chs 			 * the only time we expect to see an ownerless page
    488   1.8       mrg 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    489   1.8       mrg 			 * anon has loaned a page from a uvm_object and the
    490   1.8       mrg 			 * uvm_object has dropped the ownership.  in that
    491   1.8       mrg 			 * case, the anon can "take over" the loaned page
    492   1.8       mrg 			 * and make it its own.
    493   1.8       mrg 			 */
    494  1.30       chs 
    495  1.44       chs 			/* does the page belong to an object? */
    496  1.44       chs 			if (uobj != NULL) {
    497  1.44       chs 				slock = &uobj->vmobjlock;
    498  1.44       chs 				if (!simple_lock_try(slock)) {
    499  1.44       chs 					continue;
    500  1.44       chs 				}
    501  1.44       chs 				if (p->flags & PG_BUSY) {
    502  1.44       chs 					simple_unlock(slock);
    503  1.44       chs 					uvmexp.pdbusy++;
    504  1.44       chs 					continue;
    505  1.44       chs 				}
    506  1.44       chs 				uvmexp.pdobscan++;
    507  1.44       chs 			} else {
    508  1.24       chs 				KASSERT(anon != NULL);
    509  1.37       chs 				slock = &anon->an_lock;
    510  1.37       chs 				if (!simple_lock_try(slock)) {
    511   1.8       mrg 					continue;
    512  1.30       chs 				}
    513   1.8       mrg 
    514   1.8       mrg 				/*
    515  1.44       chs 				 * set PQ_ANON if it isn't set already.
    516   1.8       mrg 				 */
    517  1.24       chs 
    518   1.8       mrg 				if ((p->pqflags & PQ_ANON) == 0) {
    519  1.24       chs 					KASSERT(p->loan_count > 0);
    520   1.8       mrg 					p->loan_count--;
    521  1.24       chs 					p->pqflags |= PQ_ANON;
    522  1.24       chs 					/* anon now owns it */
    523   1.8       mrg 				}
    524   1.8       mrg 				if (p->flags & PG_BUSY) {
    525  1.37       chs 					simple_unlock(slock);
    526   1.8       mrg 					uvmexp.pdbusy++;
    527   1.8       mrg 					continue;
    528   1.8       mrg 				}
    529   1.8       mrg 				uvmexp.pdanscan++;
    530   1.8       mrg 			}
    531   1.8       mrg 
    532  1.37       chs 
    533   1.8       mrg 			/*
    534   1.8       mrg 			 * we now have the object and the page queues locked.
    535  1.37       chs 			 * if the page is not swap-backed, call the object's
    536  1.37       chs 			 * pager to flush and free the page.
    537  1.37       chs 			 */
    538  1.37       chs 
    539  1.37       chs 			if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    540  1.37       chs 				uvm_unlock_pageq();
    541  1.50    simonb 				(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    542  1.37       chs 				    p->offset + PAGE_SIZE,
    543  1.37       chs 				    PGO_CLEANIT|PGO_FREE);
    544  1.37       chs 				uvm_lock_pageq();
    545  1.37       chs 				if (nextpg &&
    546  1.46       chs 				    (nextpg->pqflags & PQ_INACTIVE) == 0) {
    547  1.37       chs 					nextpg = TAILQ_FIRST(pglst);
    548  1.37       chs 				}
    549  1.37       chs 				continue;
    550  1.37       chs 			}
    551  1.37       chs 
    552  1.37       chs 			/*
    553  1.37       chs 			 * the page is swap-backed.  remove all the permissions
    554  1.29   thorpej 			 * from the page so we can sync the modified info
    555  1.29   thorpej 			 * without any race conditions.  if the page is clean
    556  1.29   thorpej 			 * we can free it now and continue.
    557   1.8       mrg 			 */
    558   1.8       mrg 
    559  1.29   thorpej 			pmap_page_protect(p, VM_PROT_NONE);
    560  1.37       chs 			if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    561  1.37       chs 				p->flags &= ~(PG_CLEAN);
    562  1.30       chs 			}
    563   1.8       mrg 			if (p->flags & PG_CLEAN) {
    564  1.53        pk 				int slot;
    565  1.55       chs 				int pageidx;
    566  1.55       chs 
    567  1.55       chs 				pageidx = p->offset >> PAGE_SHIFT;
    568   1.8       mrg 				uvm_pagefree(p);
    569   1.8       mrg 				uvmexp.pdfreed++;
    570  1.24       chs 
    571  1.37       chs 				/*
    572  1.37       chs 				 * for anons, we need to remove the page
    573  1.37       chs 				 * from the anon ourselves.  for aobjs,
    574  1.37       chs 				 * pagefree did that for us.
    575  1.37       chs 				 */
    576  1.37       chs 
    577   1.8       mrg 				if (anon) {
    578  1.24       chs 					KASSERT(anon->an_swslot != 0);
    579   1.8       mrg 					anon->u.an_page = NULL;
    580  1.53        pk 					slot = anon->an_swslot;
    581  1.53        pk 				} else {
    582  1.55       chs 					slot = uao_find_swslot(uobj, pageidx);
    583   1.8       mrg 				}
    584  1.37       chs 				simple_unlock(slock);
    585  1.41       chs 
    586  1.53        pk 				if (slot > 0) {
    587  1.53        pk 					/* this page is now only in swap. */
    588  1.53        pk 					simple_lock(&uvm.swap_data_lock);
    589  1.53        pk 					KASSERT(uvmexp.swpgonly <
    590  1.53        pk 						uvmexp.swpginuse);
    591  1.53        pk 					uvmexp.swpgonly++;
    592  1.53        pk 					simple_unlock(&uvm.swap_data_lock);
    593  1.53        pk 				}
    594   1.8       mrg 				continue;
    595   1.8       mrg 			}
    596   1.8       mrg 
    597   1.8       mrg 			/*
    598   1.8       mrg 			 * this page is dirty, skip it if we'll have met our
    599   1.8       mrg 			 * free target when all the current pageouts complete.
    600   1.8       mrg 			 */
    601  1.24       chs 
    602  1.37       chs 			if (uvmexp.free + uvmexp.paging >
    603  1.37       chs 			    uvmexp.freetarg << 2) {
    604  1.37       chs 				simple_unlock(slock);
    605   1.8       mrg 				continue;
    606   1.8       mrg 			}
    607   1.8       mrg 
    608   1.8       mrg 			/*
    609  1.37       chs 			 * free any swap space allocated to the page since
    610  1.37       chs 			 * we'll have to write it again with its new data.
    611  1.37       chs 			 */
    612  1.37       chs 
    613  1.37       chs 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    614  1.37       chs 				uvm_swap_free(anon->an_swslot, 1);
    615  1.37       chs 				anon->an_swslot = 0;
    616  1.37       chs 			} else if (p->pqflags & PQ_AOBJ) {
    617  1.37       chs 				uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
    618  1.37       chs 			}
    619  1.37       chs 
    620  1.37       chs 			/*
    621  1.37       chs 			 * if all pages in swap are only in swap,
    622  1.37       chs 			 * the swap space is full and we can't page out
    623  1.37       chs 			 * any more swap-backed pages.  reactivate this page
    624  1.37       chs 			 * so that we eventually cycle all pages through
    625  1.37       chs 			 * the inactive queue.
    626  1.14       chs 			 */
    627  1.24       chs 
    628  1.52        pk 			if (uvm_swapisfull()) {
    629  1.14       chs 				dirtyreacts++;
    630  1.14       chs 				uvm_pageactivate(p);
    631  1.37       chs 				simple_unlock(slock);
    632  1.14       chs 				continue;
    633  1.14       chs 			}
    634  1.14       chs 
    635  1.14       chs 			/*
    636  1.37       chs 			 * start new swap pageout cluster (if necessary).
    637  1.14       chs 			 */
    638  1.24       chs 
    639  1.37       chs 			if (swslot == 0) {
    640  1.51       tls 				/* Even with strange MAXPHYS, the shift
    641  1.51       tls 				   implicitly rounds down to a page. */
    642  1.51       tls 				swnpages = MAXPHYS >> PAGE_SHIFT;
    643  1.37       chs 				swslot = uvm_swap_alloc(&swnpages, TRUE);
    644  1.37       chs 				if (swslot == 0) {
    645  1.37       chs 					simple_unlock(slock);
    646  1.37       chs 					continue;
    647  1.14       chs 				}
    648  1.37       chs 				swcpages = 0;
    649  1.14       chs 			}
    650  1.14       chs 
    651  1.14       chs 			/*
    652  1.37       chs 			 * at this point, we're definitely going reuse this
    653  1.37       chs 			 * page.  mark the page busy and delayed-free.
    654  1.37       chs 			 * we should remove the page from the page queues
    655  1.37       chs 			 * so we don't ever look at it again.
    656  1.37       chs 			 * adjust counters and such.
    657   1.8       mrg 			 */
    658  1.30       chs 
    659  1.37       chs 			p->flags |= PG_BUSY;
    660   1.8       mrg 			UVM_PAGE_OWN(p, "scan_inactive");
    661  1.37       chs 
    662  1.37       chs 			p->flags |= PG_PAGEOUT;
    663  1.37       chs 			uvmexp.paging++;
    664  1.37       chs 			uvm_pagedequeue(p);
    665  1.37       chs 
    666   1.8       mrg 			uvmexp.pgswapout++;
    667   1.8       mrg 
    668   1.8       mrg 			/*
    669  1.37       chs 			 * add the new page to the cluster.
    670   1.8       mrg 			 */
    671  1.24       chs 
    672  1.37       chs 			if (anon) {
    673  1.37       chs 				anon->an_swslot = swslot + swcpages;
    674  1.37       chs 				simple_unlock(slock);
    675  1.37       chs 			} else {
    676  1.37       chs 				result = uao_set_swslot(uobj,
    677  1.37       chs 				    p->offset >> PAGE_SHIFT, swslot + swcpages);
    678  1.37       chs 				if (result == -1) {
    679  1.37       chs 					p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    680  1.37       chs 					UVM_PAGE_OWN(p, NULL);
    681  1.37       chs 					uvmexp.paging--;
    682  1.37       chs 					uvm_pageactivate(p);
    683  1.37       chs 					simple_unlock(slock);
    684  1.37       chs 					continue;
    685   1.8       mrg 				}
    686  1.37       chs 				simple_unlock(slock);
    687  1.37       chs 			}
    688  1.37       chs 			swpps[swcpages] = p;
    689  1.37       chs 			swcpages++;
    690   1.8       mrg 
    691  1.37       chs 			/*
    692  1.37       chs 			 * if the cluster isn't full, look for more pages
    693  1.37       chs 			 * before starting the i/o.
    694  1.37       chs 			 */
    695  1.24       chs 
    696  1.37       chs 			if (swcpages < swnpages) {
    697  1.37       chs 				continue;
    698   1.8       mrg 			}
    699   1.8       mrg 		}
    700   1.8       mrg 
    701   1.8       mrg 		/*
    702  1.37       chs 		 * if this is the final pageout we could have a few
    703  1.37       chs 		 * unused swap blocks.  if so, free them now.
    704   1.8       mrg 		 */
    705  1.24       chs 
    706  1.37       chs 		if (swcpages < swnpages) {
    707  1.37       chs 			uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
    708   1.8       mrg 		}
    709   1.8       mrg 
    710   1.8       mrg 		/*
    711  1.37       chs 		 * now start the pageout.
    712   1.8       mrg 		 */
    713   1.8       mrg 
    714  1.37       chs 		uvm_unlock_pageq();
    715   1.8       mrg 		uvmexp.pdpageouts++;
    716  1.37       chs 		error = uvm_swap_put(swslot, swpps, swcpages, 0);
    717  1.37       chs 		KASSERT(error == 0);
    718  1.37       chs 		uvm_lock_pageq();
    719   1.8       mrg 
    720   1.8       mrg 		/*
    721  1.37       chs 		 * zero swslot to indicate that we are
    722   1.8       mrg 		 * no longer building a swap-backed cluster.
    723   1.8       mrg 		 */
    724   1.8       mrg 
    725  1.37       chs 		swslot = 0;
    726  1.24       chs 
    727   1.8       mrg 		/*
    728  1.31       chs 		 * the pageout is in progress.  bump counters and set up
    729  1.31       chs 		 * for the next loop.
    730   1.8       mrg 		 */
    731   1.8       mrg 
    732  1.31       chs 		uvmexp.pdpending++;
    733  1.37       chs 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    734  1.37       chs 			nextpg = TAILQ_FIRST(pglst);
    735   1.8       mrg 		}
    736  1.24       chs 	}
    737   1.1       mrg }
    738   1.1       mrg 
    739   1.1       mrg /*
    740   1.1       mrg  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    741   1.1       mrg  *
    742   1.1       mrg  * => called with pageq's locked
    743   1.1       mrg  */
    744   1.1       mrg 
    745   1.8       mrg void
    746  1.37       chs uvmpd_scan(void)
    747   1.1       mrg {
    748  1.37       chs 	int inactive_shortage, swap_shortage, pages_freed;
    749   1.8       mrg 	struct vm_page *p, *nextpg;
    750   1.8       mrg 	struct uvm_object *uobj;
    751  1.37       chs 	struct vm_anon *anon;
    752  1.44       chs 	struct simplelock *slock;
    753   1.8       mrg 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    754   1.1       mrg 
    755  1.37       chs 	uvmexp.pdrevs++;
    756  1.24       chs 	uobj = NULL;
    757  1.37       chs 	anon = NULL;
    758   1.1       mrg 
    759   1.1       mrg #ifndef __SWAP_BROKEN
    760  1.39       chs 
    761   1.8       mrg 	/*
    762   1.8       mrg 	 * swap out some processes if we are below our free target.
    763   1.8       mrg 	 * we need to unlock the page queues for this.
    764   1.8       mrg 	 */
    765  1.39       chs 
    766  1.39       chs 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
    767   1.8       mrg 		uvmexp.pdswout++;
    768  1.37       chs 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    769  1.37       chs 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    770   1.8       mrg 		uvm_unlock_pageq();
    771   1.8       mrg 		uvm_swapout_threads();
    772   1.8       mrg 		uvm_lock_pageq();
    773   1.1       mrg 
    774   1.8       mrg 	}
    775   1.1       mrg #endif
    776   1.1       mrg 
    777   1.8       mrg 	/*
    778   1.8       mrg 	 * now we want to work on meeting our targets.   first we work on our
    779   1.8       mrg 	 * free target by converting inactive pages into free pages.  then
    780   1.8       mrg 	 * we work on meeting our inactive target by converting active pages
    781   1.8       mrg 	 * to inactive ones.
    782   1.8       mrg 	 */
    783   1.8       mrg 
    784   1.8       mrg 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    785   1.8       mrg 
    786  1.14       chs 	pages_freed = uvmexp.pdfreed;
    787  1.46       chs 	uvmpd_scan_inactive(&uvm.page_inactive);
    788  1.14       chs 	pages_freed = uvmexp.pdfreed - pages_freed;
    789   1.8       mrg 
    790   1.8       mrg 	/*
    791   1.8       mrg 	 * we have done the scan to get free pages.   now we work on meeting
    792   1.8       mrg 	 * our inactive target.
    793   1.8       mrg 	 */
    794   1.8       mrg 
    795  1.14       chs 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
    796  1.14       chs 
    797  1.14       chs 	/*
    798  1.14       chs 	 * detect if we're not going to be able to page anything out
    799  1.14       chs 	 * until we free some swap resources from active pages.
    800  1.14       chs 	 */
    801  1.24       chs 
    802  1.14       chs 	swap_shortage = 0;
    803  1.14       chs 	if (uvmexp.free < uvmexp.freetarg &&
    804  1.52        pk 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    805  1.52        pk 	    !uvm_swapisfull() &&
    806  1.14       chs 	    pages_freed == 0) {
    807  1.14       chs 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    808  1.14       chs 	}
    809  1.24       chs 
    810  1.14       chs 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
    811  1.14       chs 		    inactive_shortage, swap_shortage,0,0);
    812  1.24       chs 	for (p = TAILQ_FIRST(&uvm.page_active);
    813  1.14       chs 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
    814  1.14       chs 	     p = nextpg) {
    815  1.24       chs 		nextpg = TAILQ_NEXT(p, pageq);
    816  1.37       chs 		if (p->flags & PG_BUSY) {
    817  1.37       chs 			continue;
    818  1.37       chs 		}
    819   1.8       mrg 
    820   1.8       mrg 		/*
    821  1.14       chs 		 * lock the page's owner.
    822   1.8       mrg 		 */
    823  1.44       chs 
    824  1.44       chs 		if (p->uobject != NULL) {
    825  1.44       chs 			uobj = p->uobject;
    826  1.44       chs 			slock = &uobj->vmobjlock;
    827  1.44       chs 			if (!simple_lock_try(slock)) {
    828  1.44       chs 				continue;
    829  1.44       chs 			}
    830  1.44       chs 		} else {
    831  1.37       chs 			anon = p->uanon;
    832  1.37       chs 			KASSERT(anon != NULL);
    833  1.44       chs 			slock = &anon->an_lock;
    834  1.44       chs 			if (!simple_lock_try(slock)) {
    835   1.8       mrg 				continue;
    836  1.37       chs 			}
    837   1.1       mrg 
    838   1.8       mrg 			/* take over the page? */
    839   1.8       mrg 			if ((p->pqflags & PQ_ANON) == 0) {
    840  1.24       chs 				KASSERT(p->loan_count > 0);
    841   1.8       mrg 				p->loan_count--;
    842   1.8       mrg 				p->pqflags |= PQ_ANON;
    843   1.8       mrg 			}
    844   1.8       mrg 		}
    845  1.24       chs 
    846  1.14       chs 		/*
    847  1.14       chs 		 * skip this page if it's busy.
    848  1.14       chs 		 */
    849  1.24       chs 
    850  1.14       chs 		if ((p->flags & PG_BUSY) != 0) {
    851  1.44       chs 			simple_unlock(slock);
    852  1.14       chs 			continue;
    853  1.14       chs 		}
    854  1.24       chs 
    855  1.14       chs 		/*
    856  1.14       chs 		 * if there's a shortage of swap, free any swap allocated
    857  1.14       chs 		 * to this page so that other pages can be paged out.
    858  1.14       chs 		 */
    859  1.24       chs 
    860  1.14       chs 		if (swap_shortage > 0) {
    861  1.37       chs 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    862  1.37       chs 				uvm_swap_free(anon->an_swslot, 1);
    863  1.37       chs 				anon->an_swslot = 0;
    864  1.14       chs 				p->flags &= ~PG_CLEAN;
    865  1.14       chs 				swap_shortage--;
    866  1.37       chs 			} else if (p->pqflags & PQ_AOBJ) {
    867  1.37       chs 				int slot = uao_set_swslot(uobj,
    868  1.14       chs 					p->offset >> PAGE_SHIFT, 0);
    869  1.14       chs 				if (slot) {
    870  1.14       chs 					uvm_swap_free(slot, 1);
    871  1.14       chs 					p->flags &= ~PG_CLEAN;
    872  1.14       chs 					swap_shortage--;
    873  1.14       chs 				}
    874  1.14       chs 			}
    875  1.14       chs 		}
    876  1.24       chs 
    877  1.14       chs 		/*
    878  1.37       chs 		 * if there's a shortage of inactive pages, deactivate.
    879  1.14       chs 		 */
    880  1.24       chs 
    881  1.32   thorpej 		if (inactive_shortage > 0) {
    882   1.8       mrg 			/* no need to check wire_count as pg is "active" */
    883   1.8       mrg 			uvm_pagedeactivate(p);
    884   1.8       mrg 			uvmexp.pddeact++;
    885  1.14       chs 			inactive_shortage--;
    886   1.8       mrg 		}
    887  1.37       chs 
    888  1.37       chs 		/*
    889  1.37       chs 		 * we're done with this page.
    890  1.37       chs 		 */
    891  1.37       chs 
    892  1.44       chs 		simple_unlock(slock);
    893   1.8       mrg 	}
    894   1.1       mrg }
    895