Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.60
      1  1.60     enami /*	$NetBSD: uvm_pdaemon.c,v 1.60 2004/10/03 08:47:48 enami Exp $	*/
      2   1.1       mrg 
      3  1.34       chs /*
      4   1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  1.34       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1       mrg  *
      7   1.1       mrg  * All rights reserved.
      8   1.1       mrg  *
      9   1.1       mrg  * This code is derived from software contributed to Berkeley by
     10   1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1       mrg  *
     12   1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1       mrg  * modification, are permitted provided that the following conditions
     14   1.1       mrg  * are met:
     15   1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1       mrg  *    must display the following acknowledgement:
     22   1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23  1.34       chs  *      Washington University, the University of California, Berkeley and
     24   1.1       mrg  *      its contributors.
     25   1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1       mrg  *    may be used to endorse or promote products derived from this software
     27   1.1       mrg  *    without specific prior written permission.
     28   1.1       mrg  *
     29   1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1       mrg  * SUCH DAMAGE.
     40   1.1       mrg  *
     41   1.1       mrg  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42   1.4       mrg  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43   1.1       mrg  *
     44   1.1       mrg  *
     45   1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1       mrg  * All rights reserved.
     47  1.34       chs  *
     48   1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1       mrg  * notice and this permission notice appear in all copies of the
     51   1.1       mrg  * software, derivative works or modified versions, and any portions
     52   1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53  1.34       chs  *
     54  1.34       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  1.34       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  1.34       chs  *
     58   1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1       mrg  *
     60   1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1       mrg  *  School of Computer Science
     62   1.1       mrg  *  Carnegie Mellon University
     63   1.1       mrg  *  Pittsburgh PA 15213-3890
     64   1.1       mrg  *
     65   1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1       mrg  * rights to redistribute these changes.
     67   1.1       mrg  */
     68   1.1       mrg 
     69   1.1       mrg /*
     70   1.1       mrg  * uvm_pdaemon.c: the page daemon
     71   1.1       mrg  */
     72  1.42     lukem 
     73  1.42     lukem #include <sys/cdefs.h>
     74  1.60     enami __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.60 2004/10/03 08:47:48 enami Exp $");
     75  1.42     lukem 
     76  1.42     lukem #include "opt_uvmhist.h"
     77   1.1       mrg 
     78   1.1       mrg #include <sys/param.h>
     79   1.1       mrg #include <sys/proc.h>
     80   1.1       mrg #include <sys/systm.h>
     81   1.1       mrg #include <sys/kernel.h>
     82   1.9        pk #include <sys/pool.h>
     83  1.24       chs #include <sys/buf.h>
     84  1.30       chs #include <sys/vnode.h>
     85   1.1       mrg 
     86   1.1       mrg #include <uvm/uvm.h>
     87   1.1       mrg 
     88   1.1       mrg /*
     89  1.45       wiz  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     90  1.14       chs  * in a pass thru the inactive list when swap is full.  the value should be
     91  1.14       chs  * "small"... if it's too large we'll cycle the active pages thru the inactive
     92  1.14       chs  * queue too quickly to for them to be referenced and avoid being freed.
     93  1.14       chs  */
     94  1.14       chs 
     95  1.14       chs #define UVMPD_NUMDIRTYREACTS 16
     96  1.14       chs 
     97  1.14       chs 
     98  1.14       chs /*
     99   1.1       mrg  * local prototypes
    100   1.1       mrg  */
    101   1.1       mrg 
    102  1.59  junyoung void		uvmpd_scan(void);
    103  1.59  junyoung void		uvmpd_scan_inactive(struct pglist *);
    104  1.59  junyoung void		uvmpd_tune(void);
    105   1.1       mrg 
    106   1.1       mrg /*
    107   1.1       mrg  * uvm_wait: wait (sleep) for the page daemon to free some pages
    108   1.1       mrg  *
    109   1.1       mrg  * => should be called with all locks released
    110   1.1       mrg  * => should _not_ be called by the page daemon (to avoid deadlock)
    111   1.1       mrg  */
    112   1.1       mrg 
    113  1.19   thorpej void
    114  1.19   thorpej uvm_wait(wmsg)
    115  1.19   thorpej 	const char *wmsg;
    116   1.8       mrg {
    117   1.8       mrg 	int timo = 0;
    118   1.8       mrg 	int s = splbio();
    119   1.1       mrg 
    120   1.8       mrg 	/*
    121   1.8       mrg 	 * check for page daemon going to sleep (waiting for itself)
    122   1.8       mrg 	 */
    123   1.1       mrg 
    124  1.37       chs 	if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
    125   1.8       mrg 		/*
    126   1.8       mrg 		 * now we have a problem: the pagedaemon wants to go to
    127   1.8       mrg 		 * sleep until it frees more memory.   but how can it
    128   1.8       mrg 		 * free more memory if it is asleep?  that is a deadlock.
    129   1.8       mrg 		 * we have two options:
    130   1.8       mrg 		 *  [1] panic now
    131   1.8       mrg 		 *  [2] put a timeout on the sleep, thus causing the
    132   1.8       mrg 		 *      pagedaemon to only pause (rather than sleep forever)
    133   1.8       mrg 		 *
    134   1.8       mrg 		 * note that option [2] will only help us if we get lucky
    135   1.8       mrg 		 * and some other process on the system breaks the deadlock
    136   1.8       mrg 		 * by exiting or freeing memory (thus allowing the pagedaemon
    137   1.8       mrg 		 * to continue).  for now we panic if DEBUG is defined,
    138   1.8       mrg 		 * otherwise we hope for the best with option [2] (better
    139   1.8       mrg 		 * yet, this should never happen in the first place!).
    140   1.8       mrg 		 */
    141   1.1       mrg 
    142   1.8       mrg 		printf("pagedaemon: deadlock detected!\n");
    143   1.8       mrg 		timo = hz >> 3;		/* set timeout */
    144   1.1       mrg #if defined(DEBUG)
    145   1.8       mrg 		/* DEBUG: panic so we can debug it */
    146   1.8       mrg 		panic("pagedaemon deadlock");
    147   1.1       mrg #endif
    148   1.8       mrg 	}
    149   1.1       mrg 
    150   1.8       mrg 	simple_lock(&uvm.pagedaemon_lock);
    151  1.17   thorpej 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    152   1.8       mrg 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    153   1.8       mrg 	    timo);
    154   1.1       mrg 
    155   1.8       mrg 	splx(s);
    156   1.1       mrg }
    157   1.1       mrg 
    158   1.1       mrg 
    159   1.1       mrg /*
    160   1.1       mrg  * uvmpd_tune: tune paging parameters
    161   1.1       mrg  *
    162   1.1       mrg  * => called when ever memory is added (or removed?) to the system
    163   1.1       mrg  * => caller must call with page queues locked
    164   1.1       mrg  */
    165   1.1       mrg 
    166  1.37       chs void
    167  1.37       chs uvmpd_tune(void)
    168   1.8       mrg {
    169   1.8       mrg 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    170   1.1       mrg 
    171   1.8       mrg 	uvmexp.freemin = uvmexp.npages / 20;
    172   1.1       mrg 
    173   1.8       mrg 	/* between 16k and 256k */
    174   1.8       mrg 	/* XXX:  what are these values good for? */
    175  1.37       chs 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    176  1.37       chs 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    177  1.23     bjh21 
    178  1.23     bjh21 	/* Make sure there's always a user page free. */
    179  1.23     bjh21 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    180  1.23     bjh21 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    181   1.1       mrg 
    182   1.8       mrg 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    183   1.8       mrg 	if (uvmexp.freetarg <= uvmexp.freemin)
    184   1.8       mrg 		uvmexp.freetarg = uvmexp.freemin + 1;
    185   1.1       mrg 
    186   1.8       mrg 	/* uvmexp.inactarg: computed in main daemon loop */
    187   1.1       mrg 
    188   1.8       mrg 	uvmexp.wiredmax = uvmexp.npages / 3;
    189   1.8       mrg 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    190   1.1       mrg 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    191   1.1       mrg }
    192   1.1       mrg 
    193   1.1       mrg /*
    194   1.1       mrg  * uvm_pageout: the main loop for the pagedaemon
    195   1.1       mrg  */
    196   1.1       mrg 
    197   1.8       mrg void
    198  1.22   thorpej uvm_pageout(void *arg)
    199   1.8       mrg {
    200  1.60     enami 	int bufcnt, npages = 0;
    201   1.8       mrg 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    202  1.24       chs 
    203   1.8       mrg 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    204   1.8       mrg 
    205   1.8       mrg 	/*
    206   1.8       mrg 	 * ensure correct priority and set paging parameters...
    207   1.8       mrg 	 */
    208   1.8       mrg 
    209   1.8       mrg 	uvm.pagedaemon_proc = curproc;
    210   1.8       mrg 	uvm_lock_pageq();
    211   1.8       mrg 	npages = uvmexp.npages;
    212   1.8       mrg 	uvmpd_tune();
    213   1.8       mrg 	uvm_unlock_pageq();
    214   1.8       mrg 
    215   1.8       mrg 	/*
    216   1.8       mrg 	 * main loop
    217   1.8       mrg 	 */
    218  1.24       chs 
    219  1.24       chs 	for (;;) {
    220  1.24       chs 		simple_lock(&uvm.pagedaemon_lock);
    221  1.24       chs 
    222  1.24       chs 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    223  1.24       chs 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    224  1.24       chs 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    225  1.24       chs 		uvmexp.pdwoke++;
    226  1.24       chs 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    227  1.24       chs 
    228   1.8       mrg 		/*
    229  1.24       chs 		 * now lock page queues and recompute inactive count
    230   1.8       mrg 		 */
    231   1.8       mrg 
    232  1.24       chs 		uvm_lock_pageq();
    233  1.24       chs 		if (npages != uvmexp.npages) {	/* check for new pages? */
    234  1.24       chs 			npages = uvmexp.npages;
    235  1.24       chs 			uvmpd_tune();
    236  1.24       chs 		}
    237  1.24       chs 
    238  1.24       chs 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    239  1.24       chs 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    240  1.24       chs 			uvmexp.inactarg = uvmexp.freetarg + 1;
    241  1.24       chs 		}
    242  1.24       chs 
    243  1.60     enami 		/*
    244  1.60     enami 		 * Estimate a hint.  Note that bufmem are returned to
    245  1.60     enami 		 * system only when entire pool page is empty.
    246  1.60     enami 		 */
    247  1.60     enami 		bufcnt = uvmexp.freetarg - uvmexp.free;
    248  1.60     enami 		if (bufcnt < 0)
    249  1.60     enami 			bufcnt = 0;
    250  1.60     enami 
    251  1.24       chs 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    252  1.24       chs 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    253  1.24       chs 		    uvmexp.inactarg);
    254   1.8       mrg 
    255   1.8       mrg 		/*
    256  1.24       chs 		 * scan if needed
    257   1.8       mrg 		 */
    258   1.8       mrg 
    259  1.24       chs 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    260  1.30       chs 		    uvmexp.inactive < uvmexp.inactarg) {
    261  1.24       chs 			uvmpd_scan();
    262   1.8       mrg 		}
    263   1.8       mrg 
    264   1.8       mrg 		/*
    265  1.24       chs 		 * if there's any free memory to be had,
    266  1.24       chs 		 * wake up any waiters.
    267   1.8       mrg 		 */
    268   1.8       mrg 
    269  1.24       chs 		if (uvmexp.free > uvmexp.reserve_kernel ||
    270  1.24       chs 		    uvmexp.paging == 0) {
    271  1.24       chs 			wakeup(&uvmexp.free);
    272   1.8       mrg 		}
    273   1.1       mrg 
    274   1.8       mrg 		/*
    275  1.24       chs 		 * scan done.  unlock page queues (the only lock we are holding)
    276   1.8       mrg 		 */
    277   1.8       mrg 
    278  1.24       chs 		uvm_unlock_pageq();
    279  1.38       chs 
    280  1.60     enami 		buf_drain(bufcnt << PAGE_SHIFT);
    281  1.60     enami 
    282  1.38       chs 		/*
    283  1.38       chs 		 * drain pool resources now that we're not holding any locks
    284  1.38       chs 		 */
    285  1.38       chs 
    286  1.38       chs 		pool_drain(0);
    287  1.57  jdolecek 
    288  1.57  jdolecek 		/*
    289  1.57  jdolecek 		 * free any cached u-areas we don't need
    290  1.57  jdolecek 		 */
    291  1.57  jdolecek 		uvm_uarea_drain(TRUE);
    292  1.57  jdolecek 
    293  1.24       chs 	}
    294  1.24       chs 	/*NOTREACHED*/
    295  1.24       chs }
    296  1.24       chs 
    297   1.8       mrg 
    298  1.24       chs /*
    299  1.24       chs  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    300  1.24       chs  */
    301   1.8       mrg 
    302  1.24       chs void
    303  1.24       chs uvm_aiodone_daemon(void *arg)
    304  1.24       chs {
    305  1.24       chs 	int s, free;
    306  1.24       chs 	struct buf *bp, *nbp;
    307  1.24       chs 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    308   1.9        pk 
    309  1.24       chs 	for (;;) {
    310   1.8       mrg 
    311   1.8       mrg 		/*
    312  1.24       chs 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    313  1.24       chs 		 * we need splbio because we want to make sure the aio_done list
    314  1.24       chs 		 * is totally empty before we go to sleep.
    315   1.8       mrg 		 */
    316   1.8       mrg 
    317  1.24       chs 		s = splbio();
    318  1.24       chs 		simple_lock(&uvm.aiodoned_lock);
    319  1.24       chs 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    320  1.24       chs 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    321  1.24       chs 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    322  1.24       chs 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    323  1.24       chs 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    324  1.24       chs 
    325  1.24       chs 			/* relock aiodoned_lock, still at splbio */
    326  1.24       chs 			simple_lock(&uvm.aiodoned_lock);
    327   1.8       mrg 		}
    328   1.8       mrg 
    329  1.24       chs 		/*
    330  1.24       chs 		 * check for done aio structures
    331  1.24       chs 		 */
    332   1.8       mrg 
    333  1.24       chs 		bp = TAILQ_FIRST(&uvm.aio_done);
    334  1.24       chs 		if (bp) {
    335  1.24       chs 			TAILQ_INIT(&uvm.aio_done);
    336  1.24       chs 		}
    337   1.8       mrg 
    338  1.24       chs 		simple_unlock(&uvm.aiodoned_lock);
    339  1.24       chs 		splx(s);
    340   1.8       mrg 
    341   1.8       mrg 		/*
    342  1.24       chs 		 * process each i/o that's done.
    343   1.8       mrg 		 */
    344   1.8       mrg 
    345  1.24       chs 		free = uvmexp.free;
    346  1.24       chs 		while (bp != NULL) {
    347  1.24       chs 			nbp = TAILQ_NEXT(bp, b_freelist);
    348  1.24       chs 			(*bp->b_iodone)(bp);
    349  1.24       chs 			bp = nbp;
    350  1.24       chs 		}
    351  1.24       chs 		if (free <= uvmexp.reserve_kernel) {
    352  1.24       chs 			s = uvm_lock_fpageq();
    353  1.24       chs 			wakeup(&uvm.pagedaemon);
    354  1.24       chs 			uvm_unlock_fpageq(s);
    355  1.24       chs 		} else {
    356  1.24       chs 			simple_lock(&uvm.pagedaemon_lock);
    357  1.17   thorpej 			wakeup(&uvmexp.free);
    358  1.24       chs 			simple_unlock(&uvm.pagedaemon_lock);
    359  1.24       chs 		}
    360   1.8       mrg 	}
    361   1.1       mrg }
    362   1.1       mrg 
    363   1.1       mrg /*
    364  1.24       chs  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    365   1.1       mrg  *
    366   1.1       mrg  * => called with page queues locked
    367   1.1       mrg  * => we work on meeting our free target by converting inactive pages
    368   1.1       mrg  *    into free pages.
    369   1.1       mrg  * => we handle the building of swap-backed clusters
    370   1.1       mrg  * => we return TRUE if we are exiting because we met our target
    371   1.1       mrg  */
    372   1.1       mrg 
    373  1.46       chs void
    374   1.8       mrg uvmpd_scan_inactive(pglst)
    375   1.8       mrg 	struct pglist *pglst;
    376   1.8       mrg {
    377  1.37       chs 	int error;
    378  1.48       scw 	struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
    379   1.8       mrg 	struct uvm_object *uobj;
    380  1.37       chs 	struct vm_anon *anon;
    381  1.51       tls 	struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
    382  1.37       chs 	struct simplelock *slock;
    383  1.37       chs 	int swnpages, swcpages;
    384  1.14       chs 	int swslot;
    385  1.37       chs 	int dirtyreacts, t, result;
    386  1.43       chs 	boolean_t anonunder, fileunder, execunder;
    387  1.43       chs 	boolean_t anonover, fileover, execover;
    388  1.43       chs 	boolean_t anonreact, filereact, execreact;
    389   1.8       mrg 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    390   1.1       mrg 
    391   1.8       mrg 	/*
    392   1.8       mrg 	 * swslot is non-zero if we are building a swap cluster.  we want
    393  1.24       chs 	 * to stay in the loop while we have a page to scan or we have
    394   1.8       mrg 	 * a swap-cluster to build.
    395   1.8       mrg 	 */
    396  1.24       chs 
    397   1.8       mrg 	swslot = 0;
    398   1.8       mrg 	swnpages = swcpages = 0;
    399  1.14       chs 	dirtyreacts = 0;
    400  1.43       chs 
    401  1.43       chs 	/*
    402  1.43       chs 	 * decide which types of pages we want to reactivate instead of freeing
    403  1.43       chs 	 * to keep usage within the minimum and maximum usage limits.
    404  1.43       chs 	 */
    405  1.43       chs 
    406  1.43       chs 	t = uvmexp.active + uvmexp.inactive + uvmexp.free;
    407  1.43       chs 	anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
    408  1.43       chs 	fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
    409  1.43       chs 	execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
    410  1.43       chs 	anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
    411  1.43       chs 	fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
    412  1.43       chs 	execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
    413  1.43       chs 	anonreact = anonunder || (!anonover && (fileover || execover));
    414  1.43       chs 	filereact = fileunder || (!fileover && (anonover || execover));
    415  1.43       chs 	execreact = execunder || (!execover && (anonover || fileover));
    416  1.24       chs 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
    417  1.24       chs 		uobj = NULL;
    418  1.24       chs 		anon = NULL;
    419   1.8       mrg 		if (p) {
    420  1.24       chs 
    421   1.8       mrg 			/*
    422  1.37       chs 			 * see if we've met the free target.
    423   1.8       mrg 			 */
    424  1.24       chs 
    425  1.37       chs 			if (uvmexp.free + uvmexp.paging >=
    426  1.37       chs 			    uvmexp.freetarg << 2 ||
    427  1.30       chs 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    428  1.30       chs 				UVMHIST_LOG(pdhist,"  met free target: "
    429  1.30       chs 					    "exit loop", 0, 0, 0, 0);
    430  1.24       chs 
    431  1.30       chs 				if (swslot == 0) {
    432  1.30       chs 					/* exit now if no swap-i/o pending */
    433  1.30       chs 					break;
    434  1.24       chs 				}
    435  1.30       chs 
    436  1.30       chs 				/* set p to null to signal final swap i/o */
    437  1.30       chs 				p = NULL;
    438  1.37       chs 				nextpg = NULL;
    439   1.8       mrg 			}
    440   1.8       mrg 		}
    441  1.24       chs 		if (p) {	/* if (we have a new page to consider) */
    442  1.30       chs 
    443   1.8       mrg 			/*
    444   1.8       mrg 			 * we are below target and have a new page to consider.
    445   1.8       mrg 			 */
    446  1.37       chs 
    447   1.8       mrg 			uvmexp.pdscans++;
    448  1.24       chs 			nextpg = TAILQ_NEXT(p, pageq);
    449   1.8       mrg 
    450  1.27   mycroft 			/*
    451  1.27   mycroft 			 * move referenced pages back to active queue and
    452  1.30       chs 			 * skip to next page.
    453  1.27   mycroft 			 */
    454  1.30       chs 
    455  1.37       chs 			if (pmap_clear_reference(p)) {
    456  1.27   mycroft 				uvm_pageactivate(p);
    457  1.27   mycroft 				uvmexp.pdreact++;
    458  1.27   mycroft 				continue;
    459  1.27   mycroft 			}
    460  1.37       chs 			anon = p->uanon;
    461  1.37       chs 			uobj = p->uobject;
    462  1.30       chs 
    463  1.30       chs 			/*
    464  1.30       chs 			 * enforce the minimum thresholds on different
    465  1.30       chs 			 * types of memory usage.  if reusing the current
    466  1.30       chs 			 * page would reduce that type of usage below its
    467  1.30       chs 			 * minimum, reactivate the page instead and move
    468  1.30       chs 			 * on to the next page.
    469  1.30       chs 			 */
    470  1.30       chs 
    471  1.43       chs 			if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
    472  1.30       chs 				uvm_pageactivate(p);
    473  1.43       chs 				uvmexp.pdreexec++;
    474  1.30       chs 				continue;
    475  1.30       chs 			}
    476  1.37       chs 			if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
    477  1.43       chs 			    !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
    478  1.30       chs 				uvm_pageactivate(p);
    479  1.43       chs 				uvmexp.pdrefile++;
    480  1.30       chs 				continue;
    481  1.30       chs 			}
    482  1.47       chs 			if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
    483  1.44       chs 				uvm_pageactivate(p);
    484  1.44       chs 				uvmexp.pdreanon++;
    485  1.44       chs 				continue;
    486  1.44       chs 			}
    487  1.30       chs 
    488   1.8       mrg 			/*
    489   1.8       mrg 			 * first we attempt to lock the object that this page
    490   1.8       mrg 			 * belongs to.  if our attempt fails we skip on to
    491   1.8       mrg 			 * the next page (no harm done).  it is important to
    492   1.8       mrg 			 * "try" locking the object as we are locking in the
    493   1.8       mrg 			 * wrong order (pageq -> object) and we don't want to
    494  1.24       chs 			 * deadlock.
    495   1.8       mrg 			 *
    496  1.24       chs 			 * the only time we expect to see an ownerless page
    497   1.8       mrg 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    498   1.8       mrg 			 * anon has loaned a page from a uvm_object and the
    499   1.8       mrg 			 * uvm_object has dropped the ownership.  in that
    500   1.8       mrg 			 * case, the anon can "take over" the loaned page
    501   1.8       mrg 			 * and make it its own.
    502   1.8       mrg 			 */
    503  1.30       chs 
    504  1.44       chs 			/* does the page belong to an object? */
    505  1.44       chs 			if (uobj != NULL) {
    506  1.44       chs 				slock = &uobj->vmobjlock;
    507  1.44       chs 				if (!simple_lock_try(slock)) {
    508  1.44       chs 					continue;
    509  1.44       chs 				}
    510  1.44       chs 				if (p->flags & PG_BUSY) {
    511  1.44       chs 					simple_unlock(slock);
    512  1.44       chs 					uvmexp.pdbusy++;
    513  1.44       chs 					continue;
    514  1.44       chs 				}
    515  1.44       chs 				uvmexp.pdobscan++;
    516  1.44       chs 			} else {
    517  1.24       chs 				KASSERT(anon != NULL);
    518  1.37       chs 				slock = &anon->an_lock;
    519  1.37       chs 				if (!simple_lock_try(slock)) {
    520   1.8       mrg 					continue;
    521  1.30       chs 				}
    522   1.8       mrg 
    523   1.8       mrg 				/*
    524  1.44       chs 				 * set PQ_ANON if it isn't set already.
    525   1.8       mrg 				 */
    526  1.24       chs 
    527   1.8       mrg 				if ((p->pqflags & PQ_ANON) == 0) {
    528  1.24       chs 					KASSERT(p->loan_count > 0);
    529   1.8       mrg 					p->loan_count--;
    530  1.24       chs 					p->pqflags |= PQ_ANON;
    531  1.24       chs 					/* anon now owns it */
    532   1.8       mrg 				}
    533   1.8       mrg 				if (p->flags & PG_BUSY) {
    534  1.37       chs 					simple_unlock(slock);
    535   1.8       mrg 					uvmexp.pdbusy++;
    536   1.8       mrg 					continue;
    537   1.8       mrg 				}
    538   1.8       mrg 				uvmexp.pdanscan++;
    539   1.8       mrg 			}
    540   1.8       mrg 
    541  1.37       chs 
    542   1.8       mrg 			/*
    543   1.8       mrg 			 * we now have the object and the page queues locked.
    544  1.37       chs 			 * if the page is not swap-backed, call the object's
    545  1.37       chs 			 * pager to flush and free the page.
    546  1.37       chs 			 */
    547  1.37       chs 
    548  1.37       chs 			if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    549  1.37       chs 				uvm_unlock_pageq();
    550  1.50    simonb 				(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    551  1.37       chs 				    p->offset + PAGE_SIZE,
    552  1.37       chs 				    PGO_CLEANIT|PGO_FREE);
    553  1.37       chs 				uvm_lock_pageq();
    554  1.37       chs 				if (nextpg &&
    555  1.46       chs 				    (nextpg->pqflags & PQ_INACTIVE) == 0) {
    556  1.37       chs 					nextpg = TAILQ_FIRST(pglst);
    557  1.37       chs 				}
    558  1.37       chs 				continue;
    559  1.37       chs 			}
    560  1.37       chs 
    561  1.37       chs 			/*
    562  1.37       chs 			 * the page is swap-backed.  remove all the permissions
    563  1.29   thorpej 			 * from the page so we can sync the modified info
    564  1.29   thorpej 			 * without any race conditions.  if the page is clean
    565  1.29   thorpej 			 * we can free it now and continue.
    566   1.8       mrg 			 */
    567   1.8       mrg 
    568  1.29   thorpej 			pmap_page_protect(p, VM_PROT_NONE);
    569  1.37       chs 			if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    570  1.37       chs 				p->flags &= ~(PG_CLEAN);
    571  1.30       chs 			}
    572   1.8       mrg 			if (p->flags & PG_CLEAN) {
    573  1.53        pk 				int slot;
    574  1.55       chs 				int pageidx;
    575  1.55       chs 
    576  1.55       chs 				pageidx = p->offset >> PAGE_SHIFT;
    577   1.8       mrg 				uvm_pagefree(p);
    578   1.8       mrg 				uvmexp.pdfreed++;
    579  1.24       chs 
    580  1.37       chs 				/*
    581  1.37       chs 				 * for anons, we need to remove the page
    582  1.37       chs 				 * from the anon ourselves.  for aobjs,
    583  1.37       chs 				 * pagefree did that for us.
    584  1.37       chs 				 */
    585  1.37       chs 
    586   1.8       mrg 				if (anon) {
    587  1.24       chs 					KASSERT(anon->an_swslot != 0);
    588   1.8       mrg 					anon->u.an_page = NULL;
    589  1.53        pk 					slot = anon->an_swslot;
    590  1.53        pk 				} else {
    591  1.55       chs 					slot = uao_find_swslot(uobj, pageidx);
    592   1.8       mrg 				}
    593  1.37       chs 				simple_unlock(slock);
    594  1.41       chs 
    595  1.53        pk 				if (slot > 0) {
    596  1.53        pk 					/* this page is now only in swap. */
    597  1.53        pk 					simple_lock(&uvm.swap_data_lock);
    598  1.53        pk 					KASSERT(uvmexp.swpgonly <
    599  1.53        pk 						uvmexp.swpginuse);
    600  1.53        pk 					uvmexp.swpgonly++;
    601  1.53        pk 					simple_unlock(&uvm.swap_data_lock);
    602  1.53        pk 				}
    603   1.8       mrg 				continue;
    604   1.8       mrg 			}
    605   1.8       mrg 
    606   1.8       mrg 			/*
    607   1.8       mrg 			 * this page is dirty, skip it if we'll have met our
    608   1.8       mrg 			 * free target when all the current pageouts complete.
    609   1.8       mrg 			 */
    610  1.24       chs 
    611  1.37       chs 			if (uvmexp.free + uvmexp.paging >
    612  1.37       chs 			    uvmexp.freetarg << 2) {
    613  1.37       chs 				simple_unlock(slock);
    614   1.8       mrg 				continue;
    615   1.8       mrg 			}
    616   1.8       mrg 
    617   1.8       mrg 			/*
    618  1.37       chs 			 * free any swap space allocated to the page since
    619  1.37       chs 			 * we'll have to write it again with its new data.
    620  1.37       chs 			 */
    621  1.37       chs 
    622  1.37       chs 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    623  1.37       chs 				uvm_swap_free(anon->an_swslot, 1);
    624  1.37       chs 				anon->an_swslot = 0;
    625  1.37       chs 			} else if (p->pqflags & PQ_AOBJ) {
    626  1.37       chs 				uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
    627  1.37       chs 			}
    628  1.37       chs 
    629  1.37       chs 			/*
    630  1.37       chs 			 * if all pages in swap are only in swap,
    631  1.37       chs 			 * the swap space is full and we can't page out
    632  1.37       chs 			 * any more swap-backed pages.  reactivate this page
    633  1.37       chs 			 * so that we eventually cycle all pages through
    634  1.37       chs 			 * the inactive queue.
    635  1.14       chs 			 */
    636  1.24       chs 
    637  1.52        pk 			if (uvm_swapisfull()) {
    638  1.14       chs 				dirtyreacts++;
    639  1.14       chs 				uvm_pageactivate(p);
    640  1.37       chs 				simple_unlock(slock);
    641  1.14       chs 				continue;
    642  1.14       chs 			}
    643  1.14       chs 
    644  1.14       chs 			/*
    645  1.37       chs 			 * start new swap pageout cluster (if necessary).
    646  1.14       chs 			 */
    647  1.24       chs 
    648  1.37       chs 			if (swslot == 0) {
    649  1.51       tls 				/* Even with strange MAXPHYS, the shift
    650  1.51       tls 				   implicitly rounds down to a page. */
    651  1.51       tls 				swnpages = MAXPHYS >> PAGE_SHIFT;
    652  1.37       chs 				swslot = uvm_swap_alloc(&swnpages, TRUE);
    653  1.37       chs 				if (swslot == 0) {
    654  1.37       chs 					simple_unlock(slock);
    655  1.37       chs 					continue;
    656  1.14       chs 				}
    657  1.37       chs 				swcpages = 0;
    658  1.14       chs 			}
    659  1.14       chs 
    660  1.14       chs 			/*
    661  1.37       chs 			 * at this point, we're definitely going reuse this
    662  1.37       chs 			 * page.  mark the page busy and delayed-free.
    663  1.37       chs 			 * we should remove the page from the page queues
    664  1.37       chs 			 * so we don't ever look at it again.
    665  1.37       chs 			 * adjust counters and such.
    666   1.8       mrg 			 */
    667  1.30       chs 
    668  1.37       chs 			p->flags |= PG_BUSY;
    669   1.8       mrg 			UVM_PAGE_OWN(p, "scan_inactive");
    670  1.37       chs 
    671  1.37       chs 			p->flags |= PG_PAGEOUT;
    672  1.37       chs 			uvmexp.paging++;
    673  1.37       chs 			uvm_pagedequeue(p);
    674  1.37       chs 
    675   1.8       mrg 			uvmexp.pgswapout++;
    676   1.8       mrg 
    677   1.8       mrg 			/*
    678  1.37       chs 			 * add the new page to the cluster.
    679   1.8       mrg 			 */
    680  1.24       chs 
    681  1.37       chs 			if (anon) {
    682  1.37       chs 				anon->an_swslot = swslot + swcpages;
    683  1.37       chs 				simple_unlock(slock);
    684  1.37       chs 			} else {
    685  1.37       chs 				result = uao_set_swslot(uobj,
    686  1.37       chs 				    p->offset >> PAGE_SHIFT, swslot + swcpages);
    687  1.37       chs 				if (result == -1) {
    688  1.37       chs 					p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    689  1.37       chs 					UVM_PAGE_OWN(p, NULL);
    690  1.37       chs 					uvmexp.paging--;
    691  1.37       chs 					uvm_pageactivate(p);
    692  1.37       chs 					simple_unlock(slock);
    693  1.37       chs 					continue;
    694   1.8       mrg 				}
    695  1.37       chs 				simple_unlock(slock);
    696  1.37       chs 			}
    697  1.37       chs 			swpps[swcpages] = p;
    698  1.37       chs 			swcpages++;
    699   1.8       mrg 
    700  1.37       chs 			/*
    701  1.37       chs 			 * if the cluster isn't full, look for more pages
    702  1.37       chs 			 * before starting the i/o.
    703  1.37       chs 			 */
    704  1.24       chs 
    705  1.37       chs 			if (swcpages < swnpages) {
    706  1.37       chs 				continue;
    707   1.8       mrg 			}
    708   1.8       mrg 		}
    709   1.8       mrg 
    710   1.8       mrg 		/*
    711  1.37       chs 		 * if this is the final pageout we could have a few
    712  1.37       chs 		 * unused swap blocks.  if so, free them now.
    713   1.8       mrg 		 */
    714  1.24       chs 
    715  1.37       chs 		if (swcpages < swnpages) {
    716  1.37       chs 			uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
    717   1.8       mrg 		}
    718   1.8       mrg 
    719   1.8       mrg 		/*
    720  1.37       chs 		 * now start the pageout.
    721   1.8       mrg 		 */
    722   1.8       mrg 
    723  1.37       chs 		uvm_unlock_pageq();
    724   1.8       mrg 		uvmexp.pdpageouts++;
    725  1.37       chs 		error = uvm_swap_put(swslot, swpps, swcpages, 0);
    726  1.37       chs 		KASSERT(error == 0);
    727  1.37       chs 		uvm_lock_pageq();
    728   1.8       mrg 
    729   1.8       mrg 		/*
    730  1.37       chs 		 * zero swslot to indicate that we are
    731   1.8       mrg 		 * no longer building a swap-backed cluster.
    732   1.8       mrg 		 */
    733   1.8       mrg 
    734  1.37       chs 		swslot = 0;
    735  1.24       chs 
    736   1.8       mrg 		/*
    737  1.31       chs 		 * the pageout is in progress.  bump counters and set up
    738  1.31       chs 		 * for the next loop.
    739   1.8       mrg 		 */
    740   1.8       mrg 
    741  1.31       chs 		uvmexp.pdpending++;
    742  1.37       chs 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    743  1.37       chs 			nextpg = TAILQ_FIRST(pglst);
    744   1.8       mrg 		}
    745  1.24       chs 	}
    746   1.1       mrg }
    747   1.1       mrg 
    748   1.1       mrg /*
    749   1.1       mrg  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    750   1.1       mrg  *
    751   1.1       mrg  * => called with pageq's locked
    752   1.1       mrg  */
    753   1.1       mrg 
    754   1.8       mrg void
    755  1.37       chs uvmpd_scan(void)
    756   1.1       mrg {
    757  1.37       chs 	int inactive_shortage, swap_shortage, pages_freed;
    758   1.8       mrg 	struct vm_page *p, *nextpg;
    759   1.8       mrg 	struct uvm_object *uobj;
    760  1.37       chs 	struct vm_anon *anon;
    761  1.44       chs 	struct simplelock *slock;
    762   1.8       mrg 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    763   1.1       mrg 
    764  1.37       chs 	uvmexp.pdrevs++;
    765  1.24       chs 	uobj = NULL;
    766  1.37       chs 	anon = NULL;
    767   1.1       mrg 
    768   1.1       mrg #ifndef __SWAP_BROKEN
    769  1.39       chs 
    770   1.8       mrg 	/*
    771   1.8       mrg 	 * swap out some processes if we are below our free target.
    772   1.8       mrg 	 * we need to unlock the page queues for this.
    773   1.8       mrg 	 */
    774  1.39       chs 
    775  1.39       chs 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
    776   1.8       mrg 		uvmexp.pdswout++;
    777  1.37       chs 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    778  1.37       chs 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    779   1.8       mrg 		uvm_unlock_pageq();
    780   1.8       mrg 		uvm_swapout_threads();
    781   1.8       mrg 		uvm_lock_pageq();
    782   1.1       mrg 
    783   1.8       mrg 	}
    784   1.1       mrg #endif
    785   1.1       mrg 
    786   1.8       mrg 	/*
    787   1.8       mrg 	 * now we want to work on meeting our targets.   first we work on our
    788   1.8       mrg 	 * free target by converting inactive pages into free pages.  then
    789   1.8       mrg 	 * we work on meeting our inactive target by converting active pages
    790   1.8       mrg 	 * to inactive ones.
    791   1.8       mrg 	 */
    792   1.8       mrg 
    793   1.8       mrg 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    794   1.8       mrg 
    795  1.14       chs 	pages_freed = uvmexp.pdfreed;
    796  1.46       chs 	uvmpd_scan_inactive(&uvm.page_inactive);
    797  1.14       chs 	pages_freed = uvmexp.pdfreed - pages_freed;
    798   1.8       mrg 
    799   1.8       mrg 	/*
    800   1.8       mrg 	 * we have done the scan to get free pages.   now we work on meeting
    801   1.8       mrg 	 * our inactive target.
    802   1.8       mrg 	 */
    803   1.8       mrg 
    804  1.14       chs 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
    805  1.14       chs 
    806  1.14       chs 	/*
    807  1.14       chs 	 * detect if we're not going to be able to page anything out
    808  1.14       chs 	 * until we free some swap resources from active pages.
    809  1.14       chs 	 */
    810  1.24       chs 
    811  1.14       chs 	swap_shortage = 0;
    812  1.14       chs 	if (uvmexp.free < uvmexp.freetarg &&
    813  1.52        pk 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    814  1.52        pk 	    !uvm_swapisfull() &&
    815  1.14       chs 	    pages_freed == 0) {
    816  1.14       chs 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    817  1.14       chs 	}
    818  1.24       chs 
    819  1.14       chs 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
    820  1.14       chs 		    inactive_shortage, swap_shortage,0,0);
    821  1.24       chs 	for (p = TAILQ_FIRST(&uvm.page_active);
    822  1.14       chs 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
    823  1.14       chs 	     p = nextpg) {
    824  1.24       chs 		nextpg = TAILQ_NEXT(p, pageq);
    825  1.37       chs 		if (p->flags & PG_BUSY) {
    826  1.37       chs 			continue;
    827  1.37       chs 		}
    828   1.8       mrg 
    829   1.8       mrg 		/*
    830  1.14       chs 		 * lock the page's owner.
    831   1.8       mrg 		 */
    832  1.44       chs 
    833  1.44       chs 		if (p->uobject != NULL) {
    834  1.44       chs 			uobj = p->uobject;
    835  1.44       chs 			slock = &uobj->vmobjlock;
    836  1.44       chs 			if (!simple_lock_try(slock)) {
    837  1.44       chs 				continue;
    838  1.44       chs 			}
    839  1.44       chs 		} else {
    840  1.37       chs 			anon = p->uanon;
    841  1.37       chs 			KASSERT(anon != NULL);
    842  1.44       chs 			slock = &anon->an_lock;
    843  1.44       chs 			if (!simple_lock_try(slock)) {
    844   1.8       mrg 				continue;
    845  1.37       chs 			}
    846   1.1       mrg 
    847   1.8       mrg 			/* take over the page? */
    848   1.8       mrg 			if ((p->pqflags & PQ_ANON) == 0) {
    849  1.24       chs 				KASSERT(p->loan_count > 0);
    850   1.8       mrg 				p->loan_count--;
    851   1.8       mrg 				p->pqflags |= PQ_ANON;
    852   1.8       mrg 			}
    853   1.8       mrg 		}
    854  1.24       chs 
    855  1.14       chs 		/*
    856  1.14       chs 		 * skip this page if it's busy.
    857  1.14       chs 		 */
    858  1.24       chs 
    859  1.14       chs 		if ((p->flags & PG_BUSY) != 0) {
    860  1.44       chs 			simple_unlock(slock);
    861  1.14       chs 			continue;
    862  1.14       chs 		}
    863  1.24       chs 
    864  1.14       chs 		/*
    865  1.14       chs 		 * if there's a shortage of swap, free any swap allocated
    866  1.14       chs 		 * to this page so that other pages can be paged out.
    867  1.14       chs 		 */
    868  1.24       chs 
    869  1.14       chs 		if (swap_shortage > 0) {
    870  1.37       chs 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    871  1.37       chs 				uvm_swap_free(anon->an_swslot, 1);
    872  1.37       chs 				anon->an_swslot = 0;
    873  1.14       chs 				p->flags &= ~PG_CLEAN;
    874  1.14       chs 				swap_shortage--;
    875  1.37       chs 			} else if (p->pqflags & PQ_AOBJ) {
    876  1.37       chs 				int slot = uao_set_swslot(uobj,
    877  1.14       chs 					p->offset >> PAGE_SHIFT, 0);
    878  1.14       chs 				if (slot) {
    879  1.14       chs 					uvm_swap_free(slot, 1);
    880  1.14       chs 					p->flags &= ~PG_CLEAN;
    881  1.14       chs 					swap_shortage--;
    882  1.14       chs 				}
    883  1.14       chs 			}
    884  1.14       chs 		}
    885  1.24       chs 
    886  1.14       chs 		/*
    887  1.37       chs 		 * if there's a shortage of inactive pages, deactivate.
    888  1.14       chs 		 */
    889  1.24       chs 
    890  1.32   thorpej 		if (inactive_shortage > 0) {
    891   1.8       mrg 			/* no need to check wire_count as pg is "active" */
    892   1.8       mrg 			uvm_pagedeactivate(p);
    893   1.8       mrg 			uvmexp.pddeact++;
    894  1.14       chs 			inactive_shortage--;
    895   1.8       mrg 		}
    896  1.37       chs 
    897  1.37       chs 		/*
    898  1.37       chs 		 * we're done with this page.
    899  1.37       chs 		 */
    900  1.37       chs 
    901  1.44       chs 		simple_unlock(slock);
    902   1.8       mrg 	}
    903   1.1       mrg }
    904