uvm_pdaemon.c revision 1.60 1 1.60 enami /* $NetBSD: uvm_pdaemon.c,v 1.60 2004/10/03 08:47:48 enami Exp $ */
2 1.1 mrg
3 1.34 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.34 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.34 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.34 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.34 chs *
54 1.34 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.34 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.34 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_pdaemon.c: the page daemon
71 1.1 mrg */
72 1.42 lukem
73 1.42 lukem #include <sys/cdefs.h>
74 1.60 enami __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.60 2004/10/03 08:47:48 enami Exp $");
75 1.42 lukem
76 1.42 lukem #include "opt_uvmhist.h"
77 1.1 mrg
78 1.1 mrg #include <sys/param.h>
79 1.1 mrg #include <sys/proc.h>
80 1.1 mrg #include <sys/systm.h>
81 1.1 mrg #include <sys/kernel.h>
82 1.9 pk #include <sys/pool.h>
83 1.24 chs #include <sys/buf.h>
84 1.30 chs #include <sys/vnode.h>
85 1.1 mrg
86 1.1 mrg #include <uvm/uvm.h>
87 1.1 mrg
88 1.1 mrg /*
89 1.45 wiz * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
90 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
91 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
92 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
93 1.14 chs */
94 1.14 chs
95 1.14 chs #define UVMPD_NUMDIRTYREACTS 16
96 1.14 chs
97 1.14 chs
98 1.14 chs /*
99 1.1 mrg * local prototypes
100 1.1 mrg */
101 1.1 mrg
102 1.59 junyoung void uvmpd_scan(void);
103 1.59 junyoung void uvmpd_scan_inactive(struct pglist *);
104 1.59 junyoung void uvmpd_tune(void);
105 1.1 mrg
106 1.1 mrg /*
107 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
108 1.1 mrg *
109 1.1 mrg * => should be called with all locks released
110 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
111 1.1 mrg */
112 1.1 mrg
113 1.19 thorpej void
114 1.19 thorpej uvm_wait(wmsg)
115 1.19 thorpej const char *wmsg;
116 1.8 mrg {
117 1.8 mrg int timo = 0;
118 1.8 mrg int s = splbio();
119 1.1 mrg
120 1.8 mrg /*
121 1.8 mrg * check for page daemon going to sleep (waiting for itself)
122 1.8 mrg */
123 1.1 mrg
124 1.37 chs if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
125 1.8 mrg /*
126 1.8 mrg * now we have a problem: the pagedaemon wants to go to
127 1.8 mrg * sleep until it frees more memory. but how can it
128 1.8 mrg * free more memory if it is asleep? that is a deadlock.
129 1.8 mrg * we have two options:
130 1.8 mrg * [1] panic now
131 1.8 mrg * [2] put a timeout on the sleep, thus causing the
132 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
133 1.8 mrg *
134 1.8 mrg * note that option [2] will only help us if we get lucky
135 1.8 mrg * and some other process on the system breaks the deadlock
136 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
137 1.8 mrg * to continue). for now we panic if DEBUG is defined,
138 1.8 mrg * otherwise we hope for the best with option [2] (better
139 1.8 mrg * yet, this should never happen in the first place!).
140 1.8 mrg */
141 1.1 mrg
142 1.8 mrg printf("pagedaemon: deadlock detected!\n");
143 1.8 mrg timo = hz >> 3; /* set timeout */
144 1.1 mrg #if defined(DEBUG)
145 1.8 mrg /* DEBUG: panic so we can debug it */
146 1.8 mrg panic("pagedaemon deadlock");
147 1.1 mrg #endif
148 1.8 mrg }
149 1.1 mrg
150 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
151 1.17 thorpej wakeup(&uvm.pagedaemon); /* wake the daemon! */
152 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
153 1.8 mrg timo);
154 1.1 mrg
155 1.8 mrg splx(s);
156 1.1 mrg }
157 1.1 mrg
158 1.1 mrg
159 1.1 mrg /*
160 1.1 mrg * uvmpd_tune: tune paging parameters
161 1.1 mrg *
162 1.1 mrg * => called when ever memory is added (or removed?) to the system
163 1.1 mrg * => caller must call with page queues locked
164 1.1 mrg */
165 1.1 mrg
166 1.37 chs void
167 1.37 chs uvmpd_tune(void)
168 1.8 mrg {
169 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
170 1.1 mrg
171 1.8 mrg uvmexp.freemin = uvmexp.npages / 20;
172 1.1 mrg
173 1.8 mrg /* between 16k and 256k */
174 1.8 mrg /* XXX: what are these values good for? */
175 1.37 chs uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
176 1.37 chs uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
177 1.23 bjh21
178 1.23 bjh21 /* Make sure there's always a user page free. */
179 1.23 bjh21 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
180 1.23 bjh21 uvmexp.freemin = uvmexp.reserve_kernel + 1;
181 1.1 mrg
182 1.8 mrg uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
183 1.8 mrg if (uvmexp.freetarg <= uvmexp.freemin)
184 1.8 mrg uvmexp.freetarg = uvmexp.freemin + 1;
185 1.1 mrg
186 1.8 mrg /* uvmexp.inactarg: computed in main daemon loop */
187 1.1 mrg
188 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
189 1.8 mrg UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
190 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
191 1.1 mrg }
192 1.1 mrg
193 1.1 mrg /*
194 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
195 1.1 mrg */
196 1.1 mrg
197 1.8 mrg void
198 1.22 thorpej uvm_pageout(void *arg)
199 1.8 mrg {
200 1.60 enami int bufcnt, npages = 0;
201 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
202 1.24 chs
203 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
204 1.8 mrg
205 1.8 mrg /*
206 1.8 mrg * ensure correct priority and set paging parameters...
207 1.8 mrg */
208 1.8 mrg
209 1.8 mrg uvm.pagedaemon_proc = curproc;
210 1.8 mrg uvm_lock_pageq();
211 1.8 mrg npages = uvmexp.npages;
212 1.8 mrg uvmpd_tune();
213 1.8 mrg uvm_unlock_pageq();
214 1.8 mrg
215 1.8 mrg /*
216 1.8 mrg * main loop
217 1.8 mrg */
218 1.24 chs
219 1.24 chs for (;;) {
220 1.24 chs simple_lock(&uvm.pagedaemon_lock);
221 1.24 chs
222 1.24 chs UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
223 1.24 chs UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
224 1.24 chs &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
225 1.24 chs uvmexp.pdwoke++;
226 1.24 chs UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
227 1.24 chs
228 1.8 mrg /*
229 1.24 chs * now lock page queues and recompute inactive count
230 1.8 mrg */
231 1.8 mrg
232 1.24 chs uvm_lock_pageq();
233 1.24 chs if (npages != uvmexp.npages) { /* check for new pages? */
234 1.24 chs npages = uvmexp.npages;
235 1.24 chs uvmpd_tune();
236 1.24 chs }
237 1.24 chs
238 1.24 chs uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
239 1.24 chs if (uvmexp.inactarg <= uvmexp.freetarg) {
240 1.24 chs uvmexp.inactarg = uvmexp.freetarg + 1;
241 1.24 chs }
242 1.24 chs
243 1.60 enami /*
244 1.60 enami * Estimate a hint. Note that bufmem are returned to
245 1.60 enami * system only when entire pool page is empty.
246 1.60 enami */
247 1.60 enami bufcnt = uvmexp.freetarg - uvmexp.free;
248 1.60 enami if (bufcnt < 0)
249 1.60 enami bufcnt = 0;
250 1.60 enami
251 1.24 chs UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
252 1.24 chs uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
253 1.24 chs uvmexp.inactarg);
254 1.8 mrg
255 1.8 mrg /*
256 1.24 chs * scan if needed
257 1.8 mrg */
258 1.8 mrg
259 1.24 chs if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
260 1.30 chs uvmexp.inactive < uvmexp.inactarg) {
261 1.24 chs uvmpd_scan();
262 1.8 mrg }
263 1.8 mrg
264 1.8 mrg /*
265 1.24 chs * if there's any free memory to be had,
266 1.24 chs * wake up any waiters.
267 1.8 mrg */
268 1.8 mrg
269 1.24 chs if (uvmexp.free > uvmexp.reserve_kernel ||
270 1.24 chs uvmexp.paging == 0) {
271 1.24 chs wakeup(&uvmexp.free);
272 1.8 mrg }
273 1.1 mrg
274 1.8 mrg /*
275 1.24 chs * scan done. unlock page queues (the only lock we are holding)
276 1.8 mrg */
277 1.8 mrg
278 1.24 chs uvm_unlock_pageq();
279 1.38 chs
280 1.60 enami buf_drain(bufcnt << PAGE_SHIFT);
281 1.60 enami
282 1.38 chs /*
283 1.38 chs * drain pool resources now that we're not holding any locks
284 1.38 chs */
285 1.38 chs
286 1.38 chs pool_drain(0);
287 1.57 jdolecek
288 1.57 jdolecek /*
289 1.57 jdolecek * free any cached u-areas we don't need
290 1.57 jdolecek */
291 1.57 jdolecek uvm_uarea_drain(TRUE);
292 1.57 jdolecek
293 1.24 chs }
294 1.24 chs /*NOTREACHED*/
295 1.24 chs }
296 1.24 chs
297 1.8 mrg
298 1.24 chs /*
299 1.24 chs * uvm_aiodone_daemon: main loop for the aiodone daemon.
300 1.24 chs */
301 1.8 mrg
302 1.24 chs void
303 1.24 chs uvm_aiodone_daemon(void *arg)
304 1.24 chs {
305 1.24 chs int s, free;
306 1.24 chs struct buf *bp, *nbp;
307 1.24 chs UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
308 1.9 pk
309 1.24 chs for (;;) {
310 1.8 mrg
311 1.8 mrg /*
312 1.24 chs * carefully attempt to go to sleep (without losing "wakeups"!).
313 1.24 chs * we need splbio because we want to make sure the aio_done list
314 1.24 chs * is totally empty before we go to sleep.
315 1.8 mrg */
316 1.8 mrg
317 1.24 chs s = splbio();
318 1.24 chs simple_lock(&uvm.aiodoned_lock);
319 1.24 chs if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
320 1.24 chs UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
321 1.24 chs UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
322 1.24 chs &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
323 1.24 chs UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
324 1.24 chs
325 1.24 chs /* relock aiodoned_lock, still at splbio */
326 1.24 chs simple_lock(&uvm.aiodoned_lock);
327 1.8 mrg }
328 1.8 mrg
329 1.24 chs /*
330 1.24 chs * check for done aio structures
331 1.24 chs */
332 1.8 mrg
333 1.24 chs bp = TAILQ_FIRST(&uvm.aio_done);
334 1.24 chs if (bp) {
335 1.24 chs TAILQ_INIT(&uvm.aio_done);
336 1.24 chs }
337 1.8 mrg
338 1.24 chs simple_unlock(&uvm.aiodoned_lock);
339 1.24 chs splx(s);
340 1.8 mrg
341 1.8 mrg /*
342 1.24 chs * process each i/o that's done.
343 1.8 mrg */
344 1.8 mrg
345 1.24 chs free = uvmexp.free;
346 1.24 chs while (bp != NULL) {
347 1.24 chs nbp = TAILQ_NEXT(bp, b_freelist);
348 1.24 chs (*bp->b_iodone)(bp);
349 1.24 chs bp = nbp;
350 1.24 chs }
351 1.24 chs if (free <= uvmexp.reserve_kernel) {
352 1.24 chs s = uvm_lock_fpageq();
353 1.24 chs wakeup(&uvm.pagedaemon);
354 1.24 chs uvm_unlock_fpageq(s);
355 1.24 chs } else {
356 1.24 chs simple_lock(&uvm.pagedaemon_lock);
357 1.17 thorpej wakeup(&uvmexp.free);
358 1.24 chs simple_unlock(&uvm.pagedaemon_lock);
359 1.24 chs }
360 1.8 mrg }
361 1.1 mrg }
362 1.1 mrg
363 1.1 mrg /*
364 1.24 chs * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
365 1.1 mrg *
366 1.1 mrg * => called with page queues locked
367 1.1 mrg * => we work on meeting our free target by converting inactive pages
368 1.1 mrg * into free pages.
369 1.1 mrg * => we handle the building of swap-backed clusters
370 1.1 mrg * => we return TRUE if we are exiting because we met our target
371 1.1 mrg */
372 1.1 mrg
373 1.46 chs void
374 1.8 mrg uvmpd_scan_inactive(pglst)
375 1.8 mrg struct pglist *pglst;
376 1.8 mrg {
377 1.37 chs int error;
378 1.48 scw struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
379 1.8 mrg struct uvm_object *uobj;
380 1.37 chs struct vm_anon *anon;
381 1.51 tls struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
382 1.37 chs struct simplelock *slock;
383 1.37 chs int swnpages, swcpages;
384 1.14 chs int swslot;
385 1.37 chs int dirtyreacts, t, result;
386 1.43 chs boolean_t anonunder, fileunder, execunder;
387 1.43 chs boolean_t anonover, fileover, execover;
388 1.43 chs boolean_t anonreact, filereact, execreact;
389 1.8 mrg UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
390 1.1 mrg
391 1.8 mrg /*
392 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
393 1.24 chs * to stay in the loop while we have a page to scan or we have
394 1.8 mrg * a swap-cluster to build.
395 1.8 mrg */
396 1.24 chs
397 1.8 mrg swslot = 0;
398 1.8 mrg swnpages = swcpages = 0;
399 1.14 chs dirtyreacts = 0;
400 1.43 chs
401 1.43 chs /*
402 1.43 chs * decide which types of pages we want to reactivate instead of freeing
403 1.43 chs * to keep usage within the minimum and maximum usage limits.
404 1.43 chs */
405 1.43 chs
406 1.43 chs t = uvmexp.active + uvmexp.inactive + uvmexp.free;
407 1.43 chs anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
408 1.43 chs fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
409 1.43 chs execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
410 1.43 chs anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
411 1.43 chs fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
412 1.43 chs execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
413 1.43 chs anonreact = anonunder || (!anonover && (fileover || execover));
414 1.43 chs filereact = fileunder || (!fileover && (anonover || execover));
415 1.43 chs execreact = execunder || (!execover && (anonover || fileover));
416 1.24 chs for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
417 1.24 chs uobj = NULL;
418 1.24 chs anon = NULL;
419 1.8 mrg if (p) {
420 1.24 chs
421 1.8 mrg /*
422 1.37 chs * see if we've met the free target.
423 1.8 mrg */
424 1.24 chs
425 1.37 chs if (uvmexp.free + uvmexp.paging >=
426 1.37 chs uvmexp.freetarg << 2 ||
427 1.30 chs dirtyreacts == UVMPD_NUMDIRTYREACTS) {
428 1.30 chs UVMHIST_LOG(pdhist," met free target: "
429 1.30 chs "exit loop", 0, 0, 0, 0);
430 1.24 chs
431 1.30 chs if (swslot == 0) {
432 1.30 chs /* exit now if no swap-i/o pending */
433 1.30 chs break;
434 1.24 chs }
435 1.30 chs
436 1.30 chs /* set p to null to signal final swap i/o */
437 1.30 chs p = NULL;
438 1.37 chs nextpg = NULL;
439 1.8 mrg }
440 1.8 mrg }
441 1.24 chs if (p) { /* if (we have a new page to consider) */
442 1.30 chs
443 1.8 mrg /*
444 1.8 mrg * we are below target and have a new page to consider.
445 1.8 mrg */
446 1.37 chs
447 1.8 mrg uvmexp.pdscans++;
448 1.24 chs nextpg = TAILQ_NEXT(p, pageq);
449 1.8 mrg
450 1.27 mycroft /*
451 1.27 mycroft * move referenced pages back to active queue and
452 1.30 chs * skip to next page.
453 1.27 mycroft */
454 1.30 chs
455 1.37 chs if (pmap_clear_reference(p)) {
456 1.27 mycroft uvm_pageactivate(p);
457 1.27 mycroft uvmexp.pdreact++;
458 1.27 mycroft continue;
459 1.27 mycroft }
460 1.37 chs anon = p->uanon;
461 1.37 chs uobj = p->uobject;
462 1.30 chs
463 1.30 chs /*
464 1.30 chs * enforce the minimum thresholds on different
465 1.30 chs * types of memory usage. if reusing the current
466 1.30 chs * page would reduce that type of usage below its
467 1.30 chs * minimum, reactivate the page instead and move
468 1.30 chs * on to the next page.
469 1.30 chs */
470 1.30 chs
471 1.43 chs if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
472 1.30 chs uvm_pageactivate(p);
473 1.43 chs uvmexp.pdreexec++;
474 1.30 chs continue;
475 1.30 chs }
476 1.37 chs if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
477 1.43 chs !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
478 1.30 chs uvm_pageactivate(p);
479 1.43 chs uvmexp.pdrefile++;
480 1.30 chs continue;
481 1.30 chs }
482 1.47 chs if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
483 1.44 chs uvm_pageactivate(p);
484 1.44 chs uvmexp.pdreanon++;
485 1.44 chs continue;
486 1.44 chs }
487 1.30 chs
488 1.8 mrg /*
489 1.8 mrg * first we attempt to lock the object that this page
490 1.8 mrg * belongs to. if our attempt fails we skip on to
491 1.8 mrg * the next page (no harm done). it is important to
492 1.8 mrg * "try" locking the object as we are locking in the
493 1.8 mrg * wrong order (pageq -> object) and we don't want to
494 1.24 chs * deadlock.
495 1.8 mrg *
496 1.24 chs * the only time we expect to see an ownerless page
497 1.8 mrg * (i.e. a page with no uobject and !PQ_ANON) is if an
498 1.8 mrg * anon has loaned a page from a uvm_object and the
499 1.8 mrg * uvm_object has dropped the ownership. in that
500 1.8 mrg * case, the anon can "take over" the loaned page
501 1.8 mrg * and make it its own.
502 1.8 mrg */
503 1.30 chs
504 1.44 chs /* does the page belong to an object? */
505 1.44 chs if (uobj != NULL) {
506 1.44 chs slock = &uobj->vmobjlock;
507 1.44 chs if (!simple_lock_try(slock)) {
508 1.44 chs continue;
509 1.44 chs }
510 1.44 chs if (p->flags & PG_BUSY) {
511 1.44 chs simple_unlock(slock);
512 1.44 chs uvmexp.pdbusy++;
513 1.44 chs continue;
514 1.44 chs }
515 1.44 chs uvmexp.pdobscan++;
516 1.44 chs } else {
517 1.24 chs KASSERT(anon != NULL);
518 1.37 chs slock = &anon->an_lock;
519 1.37 chs if (!simple_lock_try(slock)) {
520 1.8 mrg continue;
521 1.30 chs }
522 1.8 mrg
523 1.8 mrg /*
524 1.44 chs * set PQ_ANON if it isn't set already.
525 1.8 mrg */
526 1.24 chs
527 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
528 1.24 chs KASSERT(p->loan_count > 0);
529 1.8 mrg p->loan_count--;
530 1.24 chs p->pqflags |= PQ_ANON;
531 1.24 chs /* anon now owns it */
532 1.8 mrg }
533 1.8 mrg if (p->flags & PG_BUSY) {
534 1.37 chs simple_unlock(slock);
535 1.8 mrg uvmexp.pdbusy++;
536 1.8 mrg continue;
537 1.8 mrg }
538 1.8 mrg uvmexp.pdanscan++;
539 1.8 mrg }
540 1.8 mrg
541 1.37 chs
542 1.8 mrg /*
543 1.8 mrg * we now have the object and the page queues locked.
544 1.37 chs * if the page is not swap-backed, call the object's
545 1.37 chs * pager to flush and free the page.
546 1.37 chs */
547 1.37 chs
548 1.37 chs if ((p->pqflags & PQ_SWAPBACKED) == 0) {
549 1.37 chs uvm_unlock_pageq();
550 1.50 simonb (void) (uobj->pgops->pgo_put)(uobj, p->offset,
551 1.37 chs p->offset + PAGE_SIZE,
552 1.37 chs PGO_CLEANIT|PGO_FREE);
553 1.37 chs uvm_lock_pageq();
554 1.37 chs if (nextpg &&
555 1.46 chs (nextpg->pqflags & PQ_INACTIVE) == 0) {
556 1.37 chs nextpg = TAILQ_FIRST(pglst);
557 1.37 chs }
558 1.37 chs continue;
559 1.37 chs }
560 1.37 chs
561 1.37 chs /*
562 1.37 chs * the page is swap-backed. remove all the permissions
563 1.29 thorpej * from the page so we can sync the modified info
564 1.29 thorpej * without any race conditions. if the page is clean
565 1.29 thorpej * we can free it now and continue.
566 1.8 mrg */
567 1.8 mrg
568 1.29 thorpej pmap_page_protect(p, VM_PROT_NONE);
569 1.37 chs if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
570 1.37 chs p->flags &= ~(PG_CLEAN);
571 1.30 chs }
572 1.8 mrg if (p->flags & PG_CLEAN) {
573 1.53 pk int slot;
574 1.55 chs int pageidx;
575 1.55 chs
576 1.55 chs pageidx = p->offset >> PAGE_SHIFT;
577 1.8 mrg uvm_pagefree(p);
578 1.8 mrg uvmexp.pdfreed++;
579 1.24 chs
580 1.37 chs /*
581 1.37 chs * for anons, we need to remove the page
582 1.37 chs * from the anon ourselves. for aobjs,
583 1.37 chs * pagefree did that for us.
584 1.37 chs */
585 1.37 chs
586 1.8 mrg if (anon) {
587 1.24 chs KASSERT(anon->an_swslot != 0);
588 1.8 mrg anon->u.an_page = NULL;
589 1.53 pk slot = anon->an_swslot;
590 1.53 pk } else {
591 1.55 chs slot = uao_find_swslot(uobj, pageidx);
592 1.8 mrg }
593 1.37 chs simple_unlock(slock);
594 1.41 chs
595 1.53 pk if (slot > 0) {
596 1.53 pk /* this page is now only in swap. */
597 1.53 pk simple_lock(&uvm.swap_data_lock);
598 1.53 pk KASSERT(uvmexp.swpgonly <
599 1.53 pk uvmexp.swpginuse);
600 1.53 pk uvmexp.swpgonly++;
601 1.53 pk simple_unlock(&uvm.swap_data_lock);
602 1.53 pk }
603 1.8 mrg continue;
604 1.8 mrg }
605 1.8 mrg
606 1.8 mrg /*
607 1.8 mrg * this page is dirty, skip it if we'll have met our
608 1.8 mrg * free target when all the current pageouts complete.
609 1.8 mrg */
610 1.24 chs
611 1.37 chs if (uvmexp.free + uvmexp.paging >
612 1.37 chs uvmexp.freetarg << 2) {
613 1.37 chs simple_unlock(slock);
614 1.8 mrg continue;
615 1.8 mrg }
616 1.8 mrg
617 1.8 mrg /*
618 1.37 chs * free any swap space allocated to the page since
619 1.37 chs * we'll have to write it again with its new data.
620 1.37 chs */
621 1.37 chs
622 1.37 chs if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
623 1.37 chs uvm_swap_free(anon->an_swslot, 1);
624 1.37 chs anon->an_swslot = 0;
625 1.37 chs } else if (p->pqflags & PQ_AOBJ) {
626 1.37 chs uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
627 1.37 chs }
628 1.37 chs
629 1.37 chs /*
630 1.37 chs * if all pages in swap are only in swap,
631 1.37 chs * the swap space is full and we can't page out
632 1.37 chs * any more swap-backed pages. reactivate this page
633 1.37 chs * so that we eventually cycle all pages through
634 1.37 chs * the inactive queue.
635 1.14 chs */
636 1.24 chs
637 1.52 pk if (uvm_swapisfull()) {
638 1.14 chs dirtyreacts++;
639 1.14 chs uvm_pageactivate(p);
640 1.37 chs simple_unlock(slock);
641 1.14 chs continue;
642 1.14 chs }
643 1.14 chs
644 1.14 chs /*
645 1.37 chs * start new swap pageout cluster (if necessary).
646 1.14 chs */
647 1.24 chs
648 1.37 chs if (swslot == 0) {
649 1.51 tls /* Even with strange MAXPHYS, the shift
650 1.51 tls implicitly rounds down to a page. */
651 1.51 tls swnpages = MAXPHYS >> PAGE_SHIFT;
652 1.37 chs swslot = uvm_swap_alloc(&swnpages, TRUE);
653 1.37 chs if (swslot == 0) {
654 1.37 chs simple_unlock(slock);
655 1.37 chs continue;
656 1.14 chs }
657 1.37 chs swcpages = 0;
658 1.14 chs }
659 1.14 chs
660 1.14 chs /*
661 1.37 chs * at this point, we're definitely going reuse this
662 1.37 chs * page. mark the page busy and delayed-free.
663 1.37 chs * we should remove the page from the page queues
664 1.37 chs * so we don't ever look at it again.
665 1.37 chs * adjust counters and such.
666 1.8 mrg */
667 1.30 chs
668 1.37 chs p->flags |= PG_BUSY;
669 1.8 mrg UVM_PAGE_OWN(p, "scan_inactive");
670 1.37 chs
671 1.37 chs p->flags |= PG_PAGEOUT;
672 1.37 chs uvmexp.paging++;
673 1.37 chs uvm_pagedequeue(p);
674 1.37 chs
675 1.8 mrg uvmexp.pgswapout++;
676 1.8 mrg
677 1.8 mrg /*
678 1.37 chs * add the new page to the cluster.
679 1.8 mrg */
680 1.24 chs
681 1.37 chs if (anon) {
682 1.37 chs anon->an_swslot = swslot + swcpages;
683 1.37 chs simple_unlock(slock);
684 1.37 chs } else {
685 1.37 chs result = uao_set_swslot(uobj,
686 1.37 chs p->offset >> PAGE_SHIFT, swslot + swcpages);
687 1.37 chs if (result == -1) {
688 1.37 chs p->flags &= ~(PG_BUSY|PG_PAGEOUT);
689 1.37 chs UVM_PAGE_OWN(p, NULL);
690 1.37 chs uvmexp.paging--;
691 1.37 chs uvm_pageactivate(p);
692 1.37 chs simple_unlock(slock);
693 1.37 chs continue;
694 1.8 mrg }
695 1.37 chs simple_unlock(slock);
696 1.37 chs }
697 1.37 chs swpps[swcpages] = p;
698 1.37 chs swcpages++;
699 1.8 mrg
700 1.37 chs /*
701 1.37 chs * if the cluster isn't full, look for more pages
702 1.37 chs * before starting the i/o.
703 1.37 chs */
704 1.24 chs
705 1.37 chs if (swcpages < swnpages) {
706 1.37 chs continue;
707 1.8 mrg }
708 1.8 mrg }
709 1.8 mrg
710 1.8 mrg /*
711 1.37 chs * if this is the final pageout we could have a few
712 1.37 chs * unused swap blocks. if so, free them now.
713 1.8 mrg */
714 1.24 chs
715 1.37 chs if (swcpages < swnpages) {
716 1.37 chs uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
717 1.8 mrg }
718 1.8 mrg
719 1.8 mrg /*
720 1.37 chs * now start the pageout.
721 1.8 mrg */
722 1.8 mrg
723 1.37 chs uvm_unlock_pageq();
724 1.8 mrg uvmexp.pdpageouts++;
725 1.37 chs error = uvm_swap_put(swslot, swpps, swcpages, 0);
726 1.37 chs KASSERT(error == 0);
727 1.37 chs uvm_lock_pageq();
728 1.8 mrg
729 1.8 mrg /*
730 1.37 chs * zero swslot to indicate that we are
731 1.8 mrg * no longer building a swap-backed cluster.
732 1.8 mrg */
733 1.8 mrg
734 1.37 chs swslot = 0;
735 1.24 chs
736 1.8 mrg /*
737 1.31 chs * the pageout is in progress. bump counters and set up
738 1.31 chs * for the next loop.
739 1.8 mrg */
740 1.8 mrg
741 1.31 chs uvmexp.pdpending++;
742 1.37 chs if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
743 1.37 chs nextpg = TAILQ_FIRST(pglst);
744 1.8 mrg }
745 1.24 chs }
746 1.1 mrg }
747 1.1 mrg
748 1.1 mrg /*
749 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
750 1.1 mrg *
751 1.1 mrg * => called with pageq's locked
752 1.1 mrg */
753 1.1 mrg
754 1.8 mrg void
755 1.37 chs uvmpd_scan(void)
756 1.1 mrg {
757 1.37 chs int inactive_shortage, swap_shortage, pages_freed;
758 1.8 mrg struct vm_page *p, *nextpg;
759 1.8 mrg struct uvm_object *uobj;
760 1.37 chs struct vm_anon *anon;
761 1.44 chs struct simplelock *slock;
762 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
763 1.1 mrg
764 1.37 chs uvmexp.pdrevs++;
765 1.24 chs uobj = NULL;
766 1.37 chs anon = NULL;
767 1.1 mrg
768 1.1 mrg #ifndef __SWAP_BROKEN
769 1.39 chs
770 1.8 mrg /*
771 1.8 mrg * swap out some processes if we are below our free target.
772 1.8 mrg * we need to unlock the page queues for this.
773 1.8 mrg */
774 1.39 chs
775 1.39 chs if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
776 1.8 mrg uvmexp.pdswout++;
777 1.37 chs UVMHIST_LOG(pdhist," free %d < target %d: swapout",
778 1.37 chs uvmexp.free, uvmexp.freetarg, 0, 0);
779 1.8 mrg uvm_unlock_pageq();
780 1.8 mrg uvm_swapout_threads();
781 1.8 mrg uvm_lock_pageq();
782 1.1 mrg
783 1.8 mrg }
784 1.1 mrg #endif
785 1.1 mrg
786 1.8 mrg /*
787 1.8 mrg * now we want to work on meeting our targets. first we work on our
788 1.8 mrg * free target by converting inactive pages into free pages. then
789 1.8 mrg * we work on meeting our inactive target by converting active pages
790 1.8 mrg * to inactive ones.
791 1.8 mrg */
792 1.8 mrg
793 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
794 1.8 mrg
795 1.14 chs pages_freed = uvmexp.pdfreed;
796 1.46 chs uvmpd_scan_inactive(&uvm.page_inactive);
797 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
798 1.8 mrg
799 1.8 mrg /*
800 1.8 mrg * we have done the scan to get free pages. now we work on meeting
801 1.8 mrg * our inactive target.
802 1.8 mrg */
803 1.8 mrg
804 1.14 chs inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
805 1.14 chs
806 1.14 chs /*
807 1.14 chs * detect if we're not going to be able to page anything out
808 1.14 chs * until we free some swap resources from active pages.
809 1.14 chs */
810 1.24 chs
811 1.14 chs swap_shortage = 0;
812 1.14 chs if (uvmexp.free < uvmexp.freetarg &&
813 1.52 pk uvmexp.swpginuse >= uvmexp.swpgavail &&
814 1.52 pk !uvm_swapisfull() &&
815 1.14 chs pages_freed == 0) {
816 1.14 chs swap_shortage = uvmexp.freetarg - uvmexp.free;
817 1.14 chs }
818 1.24 chs
819 1.14 chs UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
820 1.14 chs inactive_shortage, swap_shortage,0,0);
821 1.24 chs for (p = TAILQ_FIRST(&uvm.page_active);
822 1.14 chs p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
823 1.14 chs p = nextpg) {
824 1.24 chs nextpg = TAILQ_NEXT(p, pageq);
825 1.37 chs if (p->flags & PG_BUSY) {
826 1.37 chs continue;
827 1.37 chs }
828 1.8 mrg
829 1.8 mrg /*
830 1.14 chs * lock the page's owner.
831 1.8 mrg */
832 1.44 chs
833 1.44 chs if (p->uobject != NULL) {
834 1.44 chs uobj = p->uobject;
835 1.44 chs slock = &uobj->vmobjlock;
836 1.44 chs if (!simple_lock_try(slock)) {
837 1.44 chs continue;
838 1.44 chs }
839 1.44 chs } else {
840 1.37 chs anon = p->uanon;
841 1.37 chs KASSERT(anon != NULL);
842 1.44 chs slock = &anon->an_lock;
843 1.44 chs if (!simple_lock_try(slock)) {
844 1.8 mrg continue;
845 1.37 chs }
846 1.1 mrg
847 1.8 mrg /* take over the page? */
848 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
849 1.24 chs KASSERT(p->loan_count > 0);
850 1.8 mrg p->loan_count--;
851 1.8 mrg p->pqflags |= PQ_ANON;
852 1.8 mrg }
853 1.8 mrg }
854 1.24 chs
855 1.14 chs /*
856 1.14 chs * skip this page if it's busy.
857 1.14 chs */
858 1.24 chs
859 1.14 chs if ((p->flags & PG_BUSY) != 0) {
860 1.44 chs simple_unlock(slock);
861 1.14 chs continue;
862 1.14 chs }
863 1.24 chs
864 1.14 chs /*
865 1.14 chs * if there's a shortage of swap, free any swap allocated
866 1.14 chs * to this page so that other pages can be paged out.
867 1.14 chs */
868 1.24 chs
869 1.14 chs if (swap_shortage > 0) {
870 1.37 chs if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
871 1.37 chs uvm_swap_free(anon->an_swslot, 1);
872 1.37 chs anon->an_swslot = 0;
873 1.14 chs p->flags &= ~PG_CLEAN;
874 1.14 chs swap_shortage--;
875 1.37 chs } else if (p->pqflags & PQ_AOBJ) {
876 1.37 chs int slot = uao_set_swslot(uobj,
877 1.14 chs p->offset >> PAGE_SHIFT, 0);
878 1.14 chs if (slot) {
879 1.14 chs uvm_swap_free(slot, 1);
880 1.14 chs p->flags &= ~PG_CLEAN;
881 1.14 chs swap_shortage--;
882 1.14 chs }
883 1.14 chs }
884 1.14 chs }
885 1.24 chs
886 1.14 chs /*
887 1.37 chs * if there's a shortage of inactive pages, deactivate.
888 1.14 chs */
889 1.24 chs
890 1.32 thorpej if (inactive_shortage > 0) {
891 1.8 mrg /* no need to check wire_count as pg is "active" */
892 1.8 mrg uvm_pagedeactivate(p);
893 1.8 mrg uvmexp.pddeact++;
894 1.14 chs inactive_shortage--;
895 1.8 mrg }
896 1.37 chs
897 1.37 chs /*
898 1.37 chs * we're done with this page.
899 1.37 chs */
900 1.37 chs
901 1.44 chs simple_unlock(slock);
902 1.8 mrg }
903 1.1 mrg }
904