Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.60.4.1
      1  1.60.4.1      kent /*	$NetBSD: uvm_pdaemon.c,v 1.60.4.1 2005/04/29 11:29:45 kent Exp $	*/
      2       1.1       mrg 
      3      1.34       chs /*
      4       1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5      1.34       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6       1.1       mrg  *
      7       1.1       mrg  * All rights reserved.
      8       1.1       mrg  *
      9       1.1       mrg  * This code is derived from software contributed to Berkeley by
     10       1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11       1.1       mrg  *
     12       1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13       1.1       mrg  * modification, are permitted provided that the following conditions
     14       1.1       mrg  * are met:
     15       1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16       1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17       1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19       1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20       1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21       1.1       mrg  *    must display the following acknowledgement:
     22       1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23      1.34       chs  *      Washington University, the University of California, Berkeley and
     24       1.1       mrg  *      its contributors.
     25       1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26       1.1       mrg  *    may be used to endorse or promote products derived from this software
     27       1.1       mrg  *    without specific prior written permission.
     28       1.1       mrg  *
     29       1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30       1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31       1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32       1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33       1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34       1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35       1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36       1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37       1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38       1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39       1.1       mrg  * SUCH DAMAGE.
     40       1.1       mrg  *
     41       1.1       mrg  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42       1.4       mrg  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43       1.1       mrg  *
     44       1.1       mrg  *
     45       1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46       1.1       mrg  * All rights reserved.
     47      1.34       chs  *
     48       1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49       1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50       1.1       mrg  * notice and this permission notice appear in all copies of the
     51       1.1       mrg  * software, derivative works or modified versions, and any portions
     52       1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53      1.34       chs  *
     54      1.34       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55      1.34       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56       1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57      1.34       chs  *
     58       1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59       1.1       mrg  *
     60       1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61       1.1       mrg  *  School of Computer Science
     62       1.1       mrg  *  Carnegie Mellon University
     63       1.1       mrg  *  Pittsburgh PA 15213-3890
     64       1.1       mrg  *
     65       1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66       1.1       mrg  * rights to redistribute these changes.
     67       1.1       mrg  */
     68       1.1       mrg 
     69       1.1       mrg /*
     70       1.1       mrg  * uvm_pdaemon.c: the page daemon
     71       1.1       mrg  */
     72      1.42     lukem 
     73      1.42     lukem #include <sys/cdefs.h>
     74  1.60.4.1      kent __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.60.4.1 2005/04/29 11:29:45 kent Exp $");
     75      1.42     lukem 
     76      1.42     lukem #include "opt_uvmhist.h"
     77       1.1       mrg 
     78       1.1       mrg #include <sys/param.h>
     79       1.1       mrg #include <sys/proc.h>
     80       1.1       mrg #include <sys/systm.h>
     81       1.1       mrg #include <sys/kernel.h>
     82       1.9        pk #include <sys/pool.h>
     83      1.24       chs #include <sys/buf.h>
     84      1.30       chs #include <sys/vnode.h>
     85       1.1       mrg 
     86       1.1       mrg #include <uvm/uvm.h>
     87       1.1       mrg 
     88       1.1       mrg /*
     89      1.45       wiz  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     90      1.14       chs  * in a pass thru the inactive list when swap is full.  the value should be
     91      1.14       chs  * "small"... if it's too large we'll cycle the active pages thru the inactive
     92      1.14       chs  * queue too quickly to for them to be referenced and avoid being freed.
     93      1.14       chs  */
     94      1.14       chs 
     95      1.14       chs #define UVMPD_NUMDIRTYREACTS 16
     96      1.14       chs 
     97      1.14       chs 
     98      1.14       chs /*
     99       1.1       mrg  * local prototypes
    100       1.1       mrg  */
    101       1.1       mrg 
    102      1.59  junyoung void		uvmpd_scan(void);
    103      1.59  junyoung void		uvmpd_scan_inactive(struct pglist *);
    104      1.59  junyoung void		uvmpd_tune(void);
    105       1.1       mrg 
    106       1.1       mrg /*
    107  1.60.4.1      kent  * XXX hack to avoid hangs when large processes fork.
    108  1.60.4.1      kent  */
    109  1.60.4.1      kent int uvm_extrapages;
    110  1.60.4.1      kent 
    111  1.60.4.1      kent /*
    112       1.1       mrg  * uvm_wait: wait (sleep) for the page daemon to free some pages
    113       1.1       mrg  *
    114       1.1       mrg  * => should be called with all locks released
    115       1.1       mrg  * => should _not_ be called by the page daemon (to avoid deadlock)
    116       1.1       mrg  */
    117       1.1       mrg 
    118      1.19   thorpej void
    119      1.19   thorpej uvm_wait(wmsg)
    120      1.19   thorpej 	const char *wmsg;
    121       1.8       mrg {
    122       1.8       mrg 	int timo = 0;
    123       1.8       mrg 	int s = splbio();
    124       1.1       mrg 
    125       1.8       mrg 	/*
    126       1.8       mrg 	 * check for page daemon going to sleep (waiting for itself)
    127       1.8       mrg 	 */
    128       1.1       mrg 
    129      1.37       chs 	if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
    130       1.8       mrg 		/*
    131       1.8       mrg 		 * now we have a problem: the pagedaemon wants to go to
    132       1.8       mrg 		 * sleep until it frees more memory.   but how can it
    133       1.8       mrg 		 * free more memory if it is asleep?  that is a deadlock.
    134       1.8       mrg 		 * we have two options:
    135       1.8       mrg 		 *  [1] panic now
    136       1.8       mrg 		 *  [2] put a timeout on the sleep, thus causing the
    137       1.8       mrg 		 *      pagedaemon to only pause (rather than sleep forever)
    138       1.8       mrg 		 *
    139       1.8       mrg 		 * note that option [2] will only help us if we get lucky
    140       1.8       mrg 		 * and some other process on the system breaks the deadlock
    141       1.8       mrg 		 * by exiting or freeing memory (thus allowing the pagedaemon
    142       1.8       mrg 		 * to continue).  for now we panic if DEBUG is defined,
    143       1.8       mrg 		 * otherwise we hope for the best with option [2] (better
    144       1.8       mrg 		 * yet, this should never happen in the first place!).
    145       1.8       mrg 		 */
    146       1.1       mrg 
    147       1.8       mrg 		printf("pagedaemon: deadlock detected!\n");
    148       1.8       mrg 		timo = hz >> 3;		/* set timeout */
    149       1.1       mrg #if defined(DEBUG)
    150       1.8       mrg 		/* DEBUG: panic so we can debug it */
    151       1.8       mrg 		panic("pagedaemon deadlock");
    152       1.1       mrg #endif
    153       1.8       mrg 	}
    154       1.1       mrg 
    155       1.8       mrg 	simple_lock(&uvm.pagedaemon_lock);
    156      1.17   thorpej 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    157       1.8       mrg 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    158       1.8       mrg 	    timo);
    159       1.1       mrg 
    160       1.8       mrg 	splx(s);
    161       1.1       mrg }
    162       1.1       mrg 
    163       1.1       mrg 
    164       1.1       mrg /*
    165       1.1       mrg  * uvmpd_tune: tune paging parameters
    166       1.1       mrg  *
    167       1.1       mrg  * => called when ever memory is added (or removed?) to the system
    168       1.1       mrg  * => caller must call with page queues locked
    169       1.1       mrg  */
    170       1.1       mrg 
    171      1.37       chs void
    172      1.37       chs uvmpd_tune(void)
    173       1.8       mrg {
    174       1.8       mrg 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    175       1.1       mrg 
    176       1.8       mrg 	uvmexp.freemin = uvmexp.npages / 20;
    177       1.1       mrg 
    178       1.8       mrg 	/* between 16k and 256k */
    179       1.8       mrg 	/* XXX:  what are these values good for? */
    180      1.37       chs 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    181      1.37       chs 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    182      1.23     bjh21 
    183      1.23     bjh21 	/* Make sure there's always a user page free. */
    184      1.23     bjh21 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    185      1.23     bjh21 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    186       1.1       mrg 
    187       1.8       mrg 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    188       1.8       mrg 	if (uvmexp.freetarg <= uvmexp.freemin)
    189       1.8       mrg 		uvmexp.freetarg = uvmexp.freemin + 1;
    190       1.1       mrg 
    191  1.60.4.1      kent 	uvmexp.freetarg += uvm_extrapages;
    192  1.60.4.1      kent 	uvm_extrapages = 0;
    193  1.60.4.1      kent 
    194       1.8       mrg 	/* uvmexp.inactarg: computed in main daemon loop */
    195       1.1       mrg 
    196       1.8       mrg 	uvmexp.wiredmax = uvmexp.npages / 3;
    197       1.8       mrg 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    198       1.1       mrg 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    199       1.1       mrg }
    200       1.1       mrg 
    201       1.1       mrg /*
    202       1.1       mrg  * uvm_pageout: the main loop for the pagedaemon
    203       1.1       mrg  */
    204       1.1       mrg 
    205       1.8       mrg void
    206      1.22   thorpej uvm_pageout(void *arg)
    207       1.8       mrg {
    208      1.60     enami 	int bufcnt, npages = 0;
    209  1.60.4.1      kent 	int extrapages = 0;
    210       1.8       mrg 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    211      1.24       chs 
    212       1.8       mrg 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    213       1.8       mrg 
    214       1.8       mrg 	/*
    215       1.8       mrg 	 * ensure correct priority and set paging parameters...
    216       1.8       mrg 	 */
    217       1.8       mrg 
    218       1.8       mrg 	uvm.pagedaemon_proc = curproc;
    219       1.8       mrg 	uvm_lock_pageq();
    220       1.8       mrg 	npages = uvmexp.npages;
    221       1.8       mrg 	uvmpd_tune();
    222       1.8       mrg 	uvm_unlock_pageq();
    223       1.8       mrg 
    224       1.8       mrg 	/*
    225       1.8       mrg 	 * main loop
    226       1.8       mrg 	 */
    227      1.24       chs 
    228      1.24       chs 	for (;;) {
    229      1.24       chs 		simple_lock(&uvm.pagedaemon_lock);
    230      1.24       chs 
    231      1.24       chs 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    232      1.24       chs 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    233      1.24       chs 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    234      1.24       chs 		uvmexp.pdwoke++;
    235      1.24       chs 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    236      1.24       chs 
    237       1.8       mrg 		/*
    238      1.24       chs 		 * now lock page queues and recompute inactive count
    239       1.8       mrg 		 */
    240       1.8       mrg 
    241      1.24       chs 		uvm_lock_pageq();
    242  1.60.4.1      kent 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    243      1.24       chs 			npages = uvmexp.npages;
    244  1.60.4.1      kent 			extrapages = uvm_extrapages;
    245      1.24       chs 			uvmpd_tune();
    246      1.24       chs 		}
    247      1.24       chs 
    248      1.24       chs 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    249      1.24       chs 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    250      1.24       chs 			uvmexp.inactarg = uvmexp.freetarg + 1;
    251      1.24       chs 		}
    252      1.24       chs 
    253      1.60     enami 		/*
    254      1.60     enami 		 * Estimate a hint.  Note that bufmem are returned to
    255      1.60     enami 		 * system only when entire pool page is empty.
    256      1.60     enami 		 */
    257      1.60     enami 		bufcnt = uvmexp.freetarg - uvmexp.free;
    258      1.60     enami 		if (bufcnt < 0)
    259      1.60     enami 			bufcnt = 0;
    260      1.60     enami 
    261      1.24       chs 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    262      1.24       chs 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    263      1.24       chs 		    uvmexp.inactarg);
    264       1.8       mrg 
    265       1.8       mrg 		/*
    266      1.24       chs 		 * scan if needed
    267       1.8       mrg 		 */
    268       1.8       mrg 
    269      1.24       chs 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    270      1.30       chs 		    uvmexp.inactive < uvmexp.inactarg) {
    271      1.24       chs 			uvmpd_scan();
    272       1.8       mrg 		}
    273       1.8       mrg 
    274       1.8       mrg 		/*
    275      1.24       chs 		 * if there's any free memory to be had,
    276      1.24       chs 		 * wake up any waiters.
    277       1.8       mrg 		 */
    278       1.8       mrg 
    279      1.24       chs 		if (uvmexp.free > uvmexp.reserve_kernel ||
    280      1.24       chs 		    uvmexp.paging == 0) {
    281      1.24       chs 			wakeup(&uvmexp.free);
    282       1.8       mrg 		}
    283       1.1       mrg 
    284       1.8       mrg 		/*
    285      1.24       chs 		 * scan done.  unlock page queues (the only lock we are holding)
    286       1.8       mrg 		 */
    287       1.8       mrg 
    288      1.24       chs 		uvm_unlock_pageq();
    289      1.38       chs 
    290      1.60     enami 		buf_drain(bufcnt << PAGE_SHIFT);
    291      1.60     enami 
    292      1.38       chs 		/*
    293      1.38       chs 		 * drain pool resources now that we're not holding any locks
    294      1.38       chs 		 */
    295      1.38       chs 
    296      1.38       chs 		pool_drain(0);
    297      1.57  jdolecek 
    298      1.57  jdolecek 		/*
    299      1.57  jdolecek 		 * free any cached u-areas we don't need
    300      1.57  jdolecek 		 */
    301      1.57  jdolecek 		uvm_uarea_drain(TRUE);
    302      1.57  jdolecek 
    303      1.24       chs 	}
    304      1.24       chs 	/*NOTREACHED*/
    305      1.24       chs }
    306      1.24       chs 
    307       1.8       mrg 
    308      1.24       chs /*
    309      1.24       chs  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    310      1.24       chs  */
    311       1.8       mrg 
    312      1.24       chs void
    313      1.24       chs uvm_aiodone_daemon(void *arg)
    314      1.24       chs {
    315      1.24       chs 	int s, free;
    316      1.24       chs 	struct buf *bp, *nbp;
    317      1.24       chs 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    318       1.9        pk 
    319      1.24       chs 	for (;;) {
    320       1.8       mrg 
    321       1.8       mrg 		/*
    322      1.24       chs 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    323      1.24       chs 		 * we need splbio because we want to make sure the aio_done list
    324      1.24       chs 		 * is totally empty before we go to sleep.
    325       1.8       mrg 		 */
    326       1.8       mrg 
    327      1.24       chs 		s = splbio();
    328      1.24       chs 		simple_lock(&uvm.aiodoned_lock);
    329      1.24       chs 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    330      1.24       chs 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    331      1.24       chs 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    332      1.24       chs 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    333      1.24       chs 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    334      1.24       chs 
    335      1.24       chs 			/* relock aiodoned_lock, still at splbio */
    336      1.24       chs 			simple_lock(&uvm.aiodoned_lock);
    337       1.8       mrg 		}
    338       1.8       mrg 
    339      1.24       chs 		/*
    340      1.24       chs 		 * check for done aio structures
    341      1.24       chs 		 */
    342       1.8       mrg 
    343      1.24       chs 		bp = TAILQ_FIRST(&uvm.aio_done);
    344      1.24       chs 		if (bp) {
    345      1.24       chs 			TAILQ_INIT(&uvm.aio_done);
    346      1.24       chs 		}
    347       1.8       mrg 
    348      1.24       chs 		simple_unlock(&uvm.aiodoned_lock);
    349      1.24       chs 		splx(s);
    350       1.8       mrg 
    351       1.8       mrg 		/*
    352      1.24       chs 		 * process each i/o that's done.
    353       1.8       mrg 		 */
    354       1.8       mrg 
    355      1.24       chs 		free = uvmexp.free;
    356      1.24       chs 		while (bp != NULL) {
    357      1.24       chs 			nbp = TAILQ_NEXT(bp, b_freelist);
    358      1.24       chs 			(*bp->b_iodone)(bp);
    359      1.24       chs 			bp = nbp;
    360      1.24       chs 		}
    361      1.24       chs 		if (free <= uvmexp.reserve_kernel) {
    362      1.24       chs 			s = uvm_lock_fpageq();
    363      1.24       chs 			wakeup(&uvm.pagedaemon);
    364      1.24       chs 			uvm_unlock_fpageq(s);
    365      1.24       chs 		} else {
    366      1.24       chs 			simple_lock(&uvm.pagedaemon_lock);
    367      1.17   thorpej 			wakeup(&uvmexp.free);
    368      1.24       chs 			simple_unlock(&uvm.pagedaemon_lock);
    369      1.24       chs 		}
    370       1.8       mrg 	}
    371       1.1       mrg }
    372       1.1       mrg 
    373       1.1       mrg /*
    374      1.24       chs  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    375       1.1       mrg  *
    376       1.1       mrg  * => called with page queues locked
    377       1.1       mrg  * => we work on meeting our free target by converting inactive pages
    378       1.1       mrg  *    into free pages.
    379       1.1       mrg  * => we handle the building of swap-backed clusters
    380       1.1       mrg  * => we return TRUE if we are exiting because we met our target
    381       1.1       mrg  */
    382       1.1       mrg 
    383      1.46       chs void
    384       1.8       mrg uvmpd_scan_inactive(pglst)
    385       1.8       mrg 	struct pglist *pglst;
    386       1.8       mrg {
    387      1.37       chs 	int error;
    388      1.48       scw 	struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
    389       1.8       mrg 	struct uvm_object *uobj;
    390      1.37       chs 	struct vm_anon *anon;
    391      1.51       tls 	struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
    392      1.37       chs 	struct simplelock *slock;
    393      1.37       chs 	int swnpages, swcpages;
    394      1.14       chs 	int swslot;
    395      1.37       chs 	int dirtyreacts, t, result;
    396      1.43       chs 	boolean_t anonunder, fileunder, execunder;
    397      1.43       chs 	boolean_t anonover, fileover, execover;
    398      1.43       chs 	boolean_t anonreact, filereact, execreact;
    399       1.8       mrg 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    400       1.1       mrg 
    401       1.8       mrg 	/*
    402       1.8       mrg 	 * swslot is non-zero if we are building a swap cluster.  we want
    403      1.24       chs 	 * to stay in the loop while we have a page to scan or we have
    404       1.8       mrg 	 * a swap-cluster to build.
    405       1.8       mrg 	 */
    406      1.24       chs 
    407       1.8       mrg 	swslot = 0;
    408       1.8       mrg 	swnpages = swcpages = 0;
    409      1.14       chs 	dirtyreacts = 0;
    410      1.43       chs 
    411      1.43       chs 	/*
    412      1.43       chs 	 * decide which types of pages we want to reactivate instead of freeing
    413      1.43       chs 	 * to keep usage within the minimum and maximum usage limits.
    414      1.43       chs 	 */
    415      1.43       chs 
    416      1.43       chs 	t = uvmexp.active + uvmexp.inactive + uvmexp.free;
    417      1.43       chs 	anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
    418      1.43       chs 	fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
    419      1.43       chs 	execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
    420      1.43       chs 	anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
    421      1.43       chs 	fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
    422      1.43       chs 	execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
    423      1.43       chs 	anonreact = anonunder || (!anonover && (fileover || execover));
    424      1.43       chs 	filereact = fileunder || (!fileover && (anonover || execover));
    425      1.43       chs 	execreact = execunder || (!execover && (anonover || fileover));
    426  1.60.4.1      kent 	if (filereact && execreact && (anonreact || uvm_swapisfull())) {
    427  1.60.4.1      kent 		anonreact = filereact = execreact = FALSE;
    428  1.60.4.1      kent 	}
    429      1.24       chs 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
    430      1.24       chs 		uobj = NULL;
    431      1.24       chs 		anon = NULL;
    432       1.8       mrg 		if (p) {
    433      1.24       chs 
    434       1.8       mrg 			/*
    435      1.37       chs 			 * see if we've met the free target.
    436       1.8       mrg 			 */
    437      1.24       chs 
    438      1.37       chs 			if (uvmexp.free + uvmexp.paging >=
    439      1.37       chs 			    uvmexp.freetarg << 2 ||
    440      1.30       chs 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    441      1.30       chs 				UVMHIST_LOG(pdhist,"  met free target: "
    442      1.30       chs 					    "exit loop", 0, 0, 0, 0);
    443      1.24       chs 
    444      1.30       chs 				if (swslot == 0) {
    445      1.30       chs 					/* exit now if no swap-i/o pending */
    446      1.30       chs 					break;
    447      1.24       chs 				}
    448      1.30       chs 
    449      1.30       chs 				/* set p to null to signal final swap i/o */
    450      1.30       chs 				p = NULL;
    451      1.37       chs 				nextpg = NULL;
    452       1.8       mrg 			}
    453       1.8       mrg 		}
    454      1.24       chs 		if (p) {	/* if (we have a new page to consider) */
    455      1.30       chs 
    456       1.8       mrg 			/*
    457       1.8       mrg 			 * we are below target and have a new page to consider.
    458       1.8       mrg 			 */
    459      1.37       chs 
    460       1.8       mrg 			uvmexp.pdscans++;
    461      1.24       chs 			nextpg = TAILQ_NEXT(p, pageq);
    462       1.8       mrg 
    463      1.27   mycroft 			/*
    464      1.27   mycroft 			 * move referenced pages back to active queue and
    465      1.30       chs 			 * skip to next page.
    466      1.27   mycroft 			 */
    467      1.30       chs 
    468      1.37       chs 			if (pmap_clear_reference(p)) {
    469      1.27   mycroft 				uvm_pageactivate(p);
    470      1.27   mycroft 				uvmexp.pdreact++;
    471      1.27   mycroft 				continue;
    472      1.27   mycroft 			}
    473      1.37       chs 			anon = p->uanon;
    474      1.37       chs 			uobj = p->uobject;
    475      1.30       chs 
    476      1.30       chs 			/*
    477      1.30       chs 			 * enforce the minimum thresholds on different
    478      1.30       chs 			 * types of memory usage.  if reusing the current
    479      1.30       chs 			 * page would reduce that type of usage below its
    480      1.30       chs 			 * minimum, reactivate the page instead and move
    481      1.30       chs 			 * on to the next page.
    482      1.30       chs 			 */
    483      1.30       chs 
    484      1.43       chs 			if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
    485      1.30       chs 				uvm_pageactivate(p);
    486      1.43       chs 				uvmexp.pdreexec++;
    487      1.30       chs 				continue;
    488      1.30       chs 			}
    489      1.37       chs 			if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
    490      1.43       chs 			    !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
    491      1.30       chs 				uvm_pageactivate(p);
    492      1.43       chs 				uvmexp.pdrefile++;
    493      1.30       chs 				continue;
    494      1.30       chs 			}
    495      1.47       chs 			if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
    496      1.44       chs 				uvm_pageactivate(p);
    497      1.44       chs 				uvmexp.pdreanon++;
    498      1.44       chs 				continue;
    499      1.44       chs 			}
    500      1.30       chs 
    501       1.8       mrg 			/*
    502       1.8       mrg 			 * first we attempt to lock the object that this page
    503       1.8       mrg 			 * belongs to.  if our attempt fails we skip on to
    504       1.8       mrg 			 * the next page (no harm done).  it is important to
    505       1.8       mrg 			 * "try" locking the object as we are locking in the
    506       1.8       mrg 			 * wrong order (pageq -> object) and we don't want to
    507      1.24       chs 			 * deadlock.
    508       1.8       mrg 			 *
    509      1.24       chs 			 * the only time we expect to see an ownerless page
    510       1.8       mrg 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    511       1.8       mrg 			 * anon has loaned a page from a uvm_object and the
    512       1.8       mrg 			 * uvm_object has dropped the ownership.  in that
    513       1.8       mrg 			 * case, the anon can "take over" the loaned page
    514       1.8       mrg 			 * and make it its own.
    515       1.8       mrg 			 */
    516      1.30       chs 
    517      1.44       chs 			/* does the page belong to an object? */
    518      1.44       chs 			if (uobj != NULL) {
    519      1.44       chs 				slock = &uobj->vmobjlock;
    520      1.44       chs 				if (!simple_lock_try(slock)) {
    521      1.44       chs 					continue;
    522      1.44       chs 				}
    523      1.44       chs 				if (p->flags & PG_BUSY) {
    524      1.44       chs 					simple_unlock(slock);
    525      1.44       chs 					uvmexp.pdbusy++;
    526      1.44       chs 					continue;
    527      1.44       chs 				}
    528      1.44       chs 				uvmexp.pdobscan++;
    529      1.44       chs 			} else {
    530      1.24       chs 				KASSERT(anon != NULL);
    531      1.37       chs 				slock = &anon->an_lock;
    532      1.37       chs 				if (!simple_lock_try(slock)) {
    533       1.8       mrg 					continue;
    534      1.30       chs 				}
    535       1.8       mrg 
    536       1.8       mrg 				/*
    537      1.44       chs 				 * set PQ_ANON if it isn't set already.
    538       1.8       mrg 				 */
    539      1.24       chs 
    540       1.8       mrg 				if ((p->pqflags & PQ_ANON) == 0) {
    541      1.24       chs 					KASSERT(p->loan_count > 0);
    542       1.8       mrg 					p->loan_count--;
    543      1.24       chs 					p->pqflags |= PQ_ANON;
    544      1.24       chs 					/* anon now owns it */
    545       1.8       mrg 				}
    546       1.8       mrg 				if (p->flags & PG_BUSY) {
    547      1.37       chs 					simple_unlock(slock);
    548       1.8       mrg 					uvmexp.pdbusy++;
    549       1.8       mrg 					continue;
    550       1.8       mrg 				}
    551       1.8       mrg 				uvmexp.pdanscan++;
    552       1.8       mrg 			}
    553       1.8       mrg 
    554      1.37       chs 
    555       1.8       mrg 			/*
    556       1.8       mrg 			 * we now have the object and the page queues locked.
    557      1.37       chs 			 * if the page is not swap-backed, call the object's
    558      1.37       chs 			 * pager to flush and free the page.
    559      1.37       chs 			 */
    560      1.37       chs 
    561      1.37       chs 			if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    562      1.37       chs 				uvm_unlock_pageq();
    563      1.50    simonb 				(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    564      1.37       chs 				    p->offset + PAGE_SIZE,
    565      1.37       chs 				    PGO_CLEANIT|PGO_FREE);
    566      1.37       chs 				uvm_lock_pageq();
    567      1.37       chs 				if (nextpg &&
    568      1.46       chs 				    (nextpg->pqflags & PQ_INACTIVE) == 0) {
    569      1.37       chs 					nextpg = TAILQ_FIRST(pglst);
    570      1.37       chs 				}
    571      1.37       chs 				continue;
    572      1.37       chs 			}
    573      1.37       chs 
    574      1.37       chs 			/*
    575      1.37       chs 			 * the page is swap-backed.  remove all the permissions
    576      1.29   thorpej 			 * from the page so we can sync the modified info
    577      1.29   thorpej 			 * without any race conditions.  if the page is clean
    578      1.29   thorpej 			 * we can free it now and continue.
    579       1.8       mrg 			 */
    580       1.8       mrg 
    581      1.29   thorpej 			pmap_page_protect(p, VM_PROT_NONE);
    582      1.37       chs 			if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    583      1.37       chs 				p->flags &= ~(PG_CLEAN);
    584      1.30       chs 			}
    585       1.8       mrg 			if (p->flags & PG_CLEAN) {
    586      1.53        pk 				int slot;
    587      1.55       chs 				int pageidx;
    588      1.55       chs 
    589      1.55       chs 				pageidx = p->offset >> PAGE_SHIFT;
    590       1.8       mrg 				uvm_pagefree(p);
    591       1.8       mrg 				uvmexp.pdfreed++;
    592      1.24       chs 
    593      1.37       chs 				/*
    594      1.37       chs 				 * for anons, we need to remove the page
    595      1.37       chs 				 * from the anon ourselves.  for aobjs,
    596      1.37       chs 				 * pagefree did that for us.
    597      1.37       chs 				 */
    598      1.37       chs 
    599       1.8       mrg 				if (anon) {
    600      1.24       chs 					KASSERT(anon->an_swslot != 0);
    601       1.8       mrg 					anon->u.an_page = NULL;
    602      1.53        pk 					slot = anon->an_swslot;
    603      1.53        pk 				} else {
    604      1.55       chs 					slot = uao_find_swslot(uobj, pageidx);
    605       1.8       mrg 				}
    606      1.37       chs 				simple_unlock(slock);
    607      1.41       chs 
    608      1.53        pk 				if (slot > 0) {
    609      1.53        pk 					/* this page is now only in swap. */
    610      1.53        pk 					simple_lock(&uvm.swap_data_lock);
    611      1.53        pk 					KASSERT(uvmexp.swpgonly <
    612      1.53        pk 						uvmexp.swpginuse);
    613      1.53        pk 					uvmexp.swpgonly++;
    614      1.53        pk 					simple_unlock(&uvm.swap_data_lock);
    615      1.53        pk 				}
    616       1.8       mrg 				continue;
    617       1.8       mrg 			}
    618       1.8       mrg 
    619       1.8       mrg 			/*
    620       1.8       mrg 			 * this page is dirty, skip it if we'll have met our
    621       1.8       mrg 			 * free target when all the current pageouts complete.
    622       1.8       mrg 			 */
    623      1.24       chs 
    624      1.37       chs 			if (uvmexp.free + uvmexp.paging >
    625      1.37       chs 			    uvmexp.freetarg << 2) {
    626      1.37       chs 				simple_unlock(slock);
    627       1.8       mrg 				continue;
    628       1.8       mrg 			}
    629       1.8       mrg 
    630       1.8       mrg 			/*
    631      1.37       chs 			 * free any swap space allocated to the page since
    632      1.37       chs 			 * we'll have to write it again with its new data.
    633      1.37       chs 			 */
    634      1.37       chs 
    635      1.37       chs 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    636      1.37       chs 				uvm_swap_free(anon->an_swslot, 1);
    637      1.37       chs 				anon->an_swslot = 0;
    638      1.37       chs 			} else if (p->pqflags & PQ_AOBJ) {
    639      1.37       chs 				uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
    640      1.37       chs 			}
    641      1.37       chs 
    642      1.37       chs 			/*
    643      1.37       chs 			 * if all pages in swap are only in swap,
    644      1.37       chs 			 * the swap space is full and we can't page out
    645      1.37       chs 			 * any more swap-backed pages.  reactivate this page
    646      1.37       chs 			 * so that we eventually cycle all pages through
    647      1.37       chs 			 * the inactive queue.
    648      1.14       chs 			 */
    649      1.24       chs 
    650      1.52        pk 			if (uvm_swapisfull()) {
    651      1.14       chs 				dirtyreacts++;
    652      1.14       chs 				uvm_pageactivate(p);
    653      1.37       chs 				simple_unlock(slock);
    654      1.14       chs 				continue;
    655      1.14       chs 			}
    656      1.14       chs 
    657      1.14       chs 			/*
    658      1.37       chs 			 * start new swap pageout cluster (if necessary).
    659      1.14       chs 			 */
    660      1.24       chs 
    661      1.37       chs 			if (swslot == 0) {
    662      1.51       tls 				/* Even with strange MAXPHYS, the shift
    663      1.51       tls 				   implicitly rounds down to a page. */
    664      1.51       tls 				swnpages = MAXPHYS >> PAGE_SHIFT;
    665      1.37       chs 				swslot = uvm_swap_alloc(&swnpages, TRUE);
    666      1.37       chs 				if (swslot == 0) {
    667      1.37       chs 					simple_unlock(slock);
    668      1.37       chs 					continue;
    669      1.14       chs 				}
    670      1.37       chs 				swcpages = 0;
    671      1.14       chs 			}
    672      1.14       chs 
    673      1.14       chs 			/*
    674      1.37       chs 			 * at this point, we're definitely going reuse this
    675      1.37       chs 			 * page.  mark the page busy and delayed-free.
    676      1.37       chs 			 * we should remove the page from the page queues
    677      1.37       chs 			 * so we don't ever look at it again.
    678      1.37       chs 			 * adjust counters and such.
    679       1.8       mrg 			 */
    680      1.30       chs 
    681      1.37       chs 			p->flags |= PG_BUSY;
    682       1.8       mrg 			UVM_PAGE_OWN(p, "scan_inactive");
    683      1.37       chs 
    684      1.37       chs 			p->flags |= PG_PAGEOUT;
    685      1.37       chs 			uvmexp.paging++;
    686      1.37       chs 			uvm_pagedequeue(p);
    687      1.37       chs 
    688       1.8       mrg 			uvmexp.pgswapout++;
    689       1.8       mrg 
    690       1.8       mrg 			/*
    691      1.37       chs 			 * add the new page to the cluster.
    692       1.8       mrg 			 */
    693      1.24       chs 
    694      1.37       chs 			if (anon) {
    695      1.37       chs 				anon->an_swslot = swslot + swcpages;
    696      1.37       chs 				simple_unlock(slock);
    697      1.37       chs 			} else {
    698      1.37       chs 				result = uao_set_swslot(uobj,
    699      1.37       chs 				    p->offset >> PAGE_SHIFT, swslot + swcpages);
    700      1.37       chs 				if (result == -1) {
    701      1.37       chs 					p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    702      1.37       chs 					UVM_PAGE_OWN(p, NULL);
    703      1.37       chs 					uvmexp.paging--;
    704      1.37       chs 					uvm_pageactivate(p);
    705      1.37       chs 					simple_unlock(slock);
    706      1.37       chs 					continue;
    707       1.8       mrg 				}
    708      1.37       chs 				simple_unlock(slock);
    709      1.37       chs 			}
    710      1.37       chs 			swpps[swcpages] = p;
    711      1.37       chs 			swcpages++;
    712       1.8       mrg 
    713      1.37       chs 			/*
    714      1.37       chs 			 * if the cluster isn't full, look for more pages
    715      1.37       chs 			 * before starting the i/o.
    716      1.37       chs 			 */
    717      1.24       chs 
    718      1.37       chs 			if (swcpages < swnpages) {
    719      1.37       chs 				continue;
    720       1.8       mrg 			}
    721       1.8       mrg 		}
    722       1.8       mrg 
    723       1.8       mrg 		/*
    724      1.37       chs 		 * if this is the final pageout we could have a few
    725      1.37       chs 		 * unused swap blocks.  if so, free them now.
    726       1.8       mrg 		 */
    727      1.24       chs 
    728      1.37       chs 		if (swcpages < swnpages) {
    729      1.37       chs 			uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
    730       1.8       mrg 		}
    731       1.8       mrg 
    732       1.8       mrg 		/*
    733      1.37       chs 		 * now start the pageout.
    734       1.8       mrg 		 */
    735       1.8       mrg 
    736      1.37       chs 		uvm_unlock_pageq();
    737       1.8       mrg 		uvmexp.pdpageouts++;
    738      1.37       chs 		error = uvm_swap_put(swslot, swpps, swcpages, 0);
    739      1.37       chs 		KASSERT(error == 0);
    740      1.37       chs 		uvm_lock_pageq();
    741       1.8       mrg 
    742       1.8       mrg 		/*
    743      1.37       chs 		 * zero swslot to indicate that we are
    744       1.8       mrg 		 * no longer building a swap-backed cluster.
    745       1.8       mrg 		 */
    746       1.8       mrg 
    747      1.37       chs 		swslot = 0;
    748      1.24       chs 
    749       1.8       mrg 		/*
    750      1.31       chs 		 * the pageout is in progress.  bump counters and set up
    751      1.31       chs 		 * for the next loop.
    752       1.8       mrg 		 */
    753       1.8       mrg 
    754      1.31       chs 		uvmexp.pdpending++;
    755      1.37       chs 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    756      1.37       chs 			nextpg = TAILQ_FIRST(pglst);
    757       1.8       mrg 		}
    758      1.24       chs 	}
    759       1.1       mrg }
    760       1.1       mrg 
    761       1.1       mrg /*
    762       1.1       mrg  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    763       1.1       mrg  *
    764       1.1       mrg  * => called with pageq's locked
    765       1.1       mrg  */
    766       1.1       mrg 
    767       1.8       mrg void
    768      1.37       chs uvmpd_scan(void)
    769       1.1       mrg {
    770      1.37       chs 	int inactive_shortage, swap_shortage, pages_freed;
    771       1.8       mrg 	struct vm_page *p, *nextpg;
    772       1.8       mrg 	struct uvm_object *uobj;
    773      1.37       chs 	struct vm_anon *anon;
    774      1.44       chs 	struct simplelock *slock;
    775       1.8       mrg 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    776       1.1       mrg 
    777      1.37       chs 	uvmexp.pdrevs++;
    778      1.24       chs 	uobj = NULL;
    779      1.37       chs 	anon = NULL;
    780       1.1       mrg 
    781       1.1       mrg #ifndef __SWAP_BROKEN
    782      1.39       chs 
    783       1.8       mrg 	/*
    784       1.8       mrg 	 * swap out some processes if we are below our free target.
    785       1.8       mrg 	 * we need to unlock the page queues for this.
    786       1.8       mrg 	 */
    787      1.39       chs 
    788      1.39       chs 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
    789       1.8       mrg 		uvmexp.pdswout++;
    790      1.37       chs 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    791      1.37       chs 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    792       1.8       mrg 		uvm_unlock_pageq();
    793       1.8       mrg 		uvm_swapout_threads();
    794       1.8       mrg 		uvm_lock_pageq();
    795       1.1       mrg 
    796       1.8       mrg 	}
    797       1.1       mrg #endif
    798       1.1       mrg 
    799       1.8       mrg 	/*
    800       1.8       mrg 	 * now we want to work on meeting our targets.   first we work on our
    801       1.8       mrg 	 * free target by converting inactive pages into free pages.  then
    802       1.8       mrg 	 * we work on meeting our inactive target by converting active pages
    803       1.8       mrg 	 * to inactive ones.
    804       1.8       mrg 	 */
    805       1.8       mrg 
    806       1.8       mrg 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    807       1.8       mrg 
    808      1.14       chs 	pages_freed = uvmexp.pdfreed;
    809      1.46       chs 	uvmpd_scan_inactive(&uvm.page_inactive);
    810      1.14       chs 	pages_freed = uvmexp.pdfreed - pages_freed;
    811       1.8       mrg 
    812       1.8       mrg 	/*
    813       1.8       mrg 	 * we have done the scan to get free pages.   now we work on meeting
    814       1.8       mrg 	 * our inactive target.
    815       1.8       mrg 	 */
    816       1.8       mrg 
    817      1.14       chs 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
    818      1.14       chs 
    819      1.14       chs 	/*
    820      1.14       chs 	 * detect if we're not going to be able to page anything out
    821      1.14       chs 	 * until we free some swap resources from active pages.
    822      1.14       chs 	 */
    823      1.24       chs 
    824      1.14       chs 	swap_shortage = 0;
    825      1.14       chs 	if (uvmexp.free < uvmexp.freetarg &&
    826      1.52        pk 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    827      1.52        pk 	    !uvm_swapisfull() &&
    828      1.14       chs 	    pages_freed == 0) {
    829      1.14       chs 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    830      1.14       chs 	}
    831      1.24       chs 
    832      1.14       chs 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
    833      1.14       chs 		    inactive_shortage, swap_shortage,0,0);
    834      1.24       chs 	for (p = TAILQ_FIRST(&uvm.page_active);
    835      1.14       chs 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
    836      1.14       chs 	     p = nextpg) {
    837      1.24       chs 		nextpg = TAILQ_NEXT(p, pageq);
    838      1.37       chs 		if (p->flags & PG_BUSY) {
    839      1.37       chs 			continue;
    840      1.37       chs 		}
    841       1.8       mrg 
    842       1.8       mrg 		/*
    843      1.14       chs 		 * lock the page's owner.
    844       1.8       mrg 		 */
    845      1.44       chs 
    846      1.44       chs 		if (p->uobject != NULL) {
    847      1.44       chs 			uobj = p->uobject;
    848      1.44       chs 			slock = &uobj->vmobjlock;
    849      1.44       chs 			if (!simple_lock_try(slock)) {
    850      1.44       chs 				continue;
    851      1.44       chs 			}
    852      1.44       chs 		} else {
    853      1.37       chs 			anon = p->uanon;
    854      1.37       chs 			KASSERT(anon != NULL);
    855      1.44       chs 			slock = &anon->an_lock;
    856      1.44       chs 			if (!simple_lock_try(slock)) {
    857       1.8       mrg 				continue;
    858      1.37       chs 			}
    859       1.1       mrg 
    860       1.8       mrg 			/* take over the page? */
    861       1.8       mrg 			if ((p->pqflags & PQ_ANON) == 0) {
    862      1.24       chs 				KASSERT(p->loan_count > 0);
    863       1.8       mrg 				p->loan_count--;
    864       1.8       mrg 				p->pqflags |= PQ_ANON;
    865       1.8       mrg 			}
    866       1.8       mrg 		}
    867      1.24       chs 
    868      1.14       chs 		/*
    869      1.14       chs 		 * skip this page if it's busy.
    870      1.14       chs 		 */
    871      1.24       chs 
    872      1.14       chs 		if ((p->flags & PG_BUSY) != 0) {
    873      1.44       chs 			simple_unlock(slock);
    874      1.14       chs 			continue;
    875      1.14       chs 		}
    876      1.24       chs 
    877      1.14       chs 		/*
    878      1.14       chs 		 * if there's a shortage of swap, free any swap allocated
    879      1.14       chs 		 * to this page so that other pages can be paged out.
    880      1.14       chs 		 */
    881      1.24       chs 
    882      1.14       chs 		if (swap_shortage > 0) {
    883      1.37       chs 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    884      1.37       chs 				uvm_swap_free(anon->an_swslot, 1);
    885      1.37       chs 				anon->an_swslot = 0;
    886      1.14       chs 				p->flags &= ~PG_CLEAN;
    887      1.14       chs 				swap_shortage--;
    888      1.37       chs 			} else if (p->pqflags & PQ_AOBJ) {
    889      1.37       chs 				int slot = uao_set_swslot(uobj,
    890      1.14       chs 					p->offset >> PAGE_SHIFT, 0);
    891      1.14       chs 				if (slot) {
    892      1.14       chs 					uvm_swap_free(slot, 1);
    893      1.14       chs 					p->flags &= ~PG_CLEAN;
    894      1.14       chs 					swap_shortage--;
    895      1.14       chs 				}
    896      1.14       chs 			}
    897      1.14       chs 		}
    898      1.24       chs 
    899      1.14       chs 		/*
    900      1.37       chs 		 * if there's a shortage of inactive pages, deactivate.
    901      1.14       chs 		 */
    902      1.24       chs 
    903      1.32   thorpej 		if (inactive_shortage > 0) {
    904       1.8       mrg 			/* no need to check wire_count as pg is "active" */
    905       1.8       mrg 			uvm_pagedeactivate(p);
    906       1.8       mrg 			uvmexp.pddeact++;
    907      1.14       chs 			inactive_shortage--;
    908       1.8       mrg 		}
    909      1.37       chs 
    910      1.37       chs 		/*
    911      1.37       chs 		 * we're done with this page.
    912      1.37       chs 		 */
    913      1.37       chs 
    914      1.44       chs 		simple_unlock(slock);
    915       1.8       mrg 	}
    916       1.1       mrg }
    917  1.60.4.1      kent 
    918  1.60.4.1      kent /*
    919  1.60.4.1      kent  * uvm_reclaimable: decide whether to wait for pagedaemon.
    920  1.60.4.1      kent  *
    921  1.60.4.1      kent  * => return TRUE if it seems to be worth to do uvm_wait.
    922  1.60.4.1      kent  *
    923  1.60.4.1      kent  * XXX should be tunable.
    924  1.60.4.1      kent  * XXX should consider pools, etc?
    925  1.60.4.1      kent  */
    926  1.60.4.1      kent 
    927  1.60.4.1      kent boolean_t
    928  1.60.4.1      kent uvm_reclaimable(void)
    929  1.60.4.1      kent {
    930  1.60.4.1      kent 	int filepages;
    931  1.60.4.1      kent 
    932  1.60.4.1      kent 	/*
    933  1.60.4.1      kent 	 * if swap is not full, no problem.
    934  1.60.4.1      kent 	 */
    935  1.60.4.1      kent 
    936  1.60.4.1      kent 	if (!uvm_swapisfull()) {
    937  1.60.4.1      kent 		return TRUE;
    938  1.60.4.1      kent 	}
    939  1.60.4.1      kent 
    940  1.60.4.1      kent 	/*
    941  1.60.4.1      kent 	 * file-backed pages can be reclaimed even when swap is full.
    942  1.60.4.1      kent 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    943  1.60.4.1      kent 	 *
    944  1.60.4.1      kent 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    945  1.60.4.1      kent 	 */
    946  1.60.4.1      kent 
    947  1.60.4.1      kent 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
    948  1.60.4.1      kent 	if (filepages >= MIN((uvmexp.active + uvmexp.inactive) >> 4,
    949  1.60.4.1      kent 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
    950  1.60.4.1      kent 		return TRUE;
    951  1.60.4.1      kent 	}
    952  1.60.4.1      kent 
    953  1.60.4.1      kent 	/*
    954  1.60.4.1      kent 	 * kill the process, fail allocation, etc..
    955  1.60.4.1      kent 	 */
    956  1.60.4.1      kent 
    957  1.60.4.1      kent 	return FALSE;
    958  1.60.4.1      kent }
    959