Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.64
      1  1.64      yamt /*	$NetBSD: uvm_pdaemon.c,v 1.64 2005/05/11 13:02:26 yamt Exp $	*/
      2   1.1       mrg 
      3  1.34       chs /*
      4   1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  1.34       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1       mrg  *
      7   1.1       mrg  * All rights reserved.
      8   1.1       mrg  *
      9   1.1       mrg  * This code is derived from software contributed to Berkeley by
     10   1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1       mrg  *
     12   1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1       mrg  * modification, are permitted provided that the following conditions
     14   1.1       mrg  * are met:
     15   1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1       mrg  *    must display the following acknowledgement:
     22   1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23  1.34       chs  *      Washington University, the University of California, Berkeley and
     24   1.1       mrg  *      its contributors.
     25   1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1       mrg  *    may be used to endorse or promote products derived from this software
     27   1.1       mrg  *    without specific prior written permission.
     28   1.1       mrg  *
     29   1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1       mrg  * SUCH DAMAGE.
     40   1.1       mrg  *
     41   1.1       mrg  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42   1.4       mrg  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43   1.1       mrg  *
     44   1.1       mrg  *
     45   1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1       mrg  * All rights reserved.
     47  1.34       chs  *
     48   1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1       mrg  * notice and this permission notice appear in all copies of the
     51   1.1       mrg  * software, derivative works or modified versions, and any portions
     52   1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53  1.34       chs  *
     54  1.34       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  1.34       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  1.34       chs  *
     58   1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1       mrg  *
     60   1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1       mrg  *  School of Computer Science
     62   1.1       mrg  *  Carnegie Mellon University
     63   1.1       mrg  *  Pittsburgh PA 15213-3890
     64   1.1       mrg  *
     65   1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1       mrg  * rights to redistribute these changes.
     67   1.1       mrg  */
     68   1.1       mrg 
     69   1.1       mrg /*
     70   1.1       mrg  * uvm_pdaemon.c: the page daemon
     71   1.1       mrg  */
     72  1.42     lukem 
     73  1.42     lukem #include <sys/cdefs.h>
     74  1.64      yamt __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.64 2005/05/11 13:02:26 yamt Exp $");
     75  1.42     lukem 
     76  1.42     lukem #include "opt_uvmhist.h"
     77   1.1       mrg 
     78   1.1       mrg #include <sys/param.h>
     79   1.1       mrg #include <sys/proc.h>
     80   1.1       mrg #include <sys/systm.h>
     81   1.1       mrg #include <sys/kernel.h>
     82   1.9        pk #include <sys/pool.h>
     83  1.24       chs #include <sys/buf.h>
     84  1.30       chs #include <sys/vnode.h>
     85   1.1       mrg 
     86   1.1       mrg #include <uvm/uvm.h>
     87   1.1       mrg 
     88   1.1       mrg /*
     89  1.45       wiz  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     90  1.14       chs  * in a pass thru the inactive list when swap is full.  the value should be
     91  1.14       chs  * "small"... if it's too large we'll cycle the active pages thru the inactive
     92  1.14       chs  * queue too quickly to for them to be referenced and avoid being freed.
     93  1.14       chs  */
     94  1.14       chs 
     95  1.14       chs #define UVMPD_NUMDIRTYREACTS 16
     96  1.14       chs 
     97  1.14       chs 
     98  1.14       chs /*
     99   1.1       mrg  * local prototypes
    100   1.1       mrg  */
    101   1.1       mrg 
    102  1.59  junyoung void		uvmpd_scan(void);
    103  1.59  junyoung void		uvmpd_scan_inactive(struct pglist *);
    104  1.59  junyoung void		uvmpd_tune(void);
    105   1.1       mrg 
    106   1.1       mrg /*
    107  1.61       chs  * XXX hack to avoid hangs when large processes fork.
    108  1.61       chs  */
    109  1.61       chs int uvm_extrapages;
    110  1.61       chs 
    111  1.61       chs /*
    112   1.1       mrg  * uvm_wait: wait (sleep) for the page daemon to free some pages
    113   1.1       mrg  *
    114   1.1       mrg  * => should be called with all locks released
    115   1.1       mrg  * => should _not_ be called by the page daemon (to avoid deadlock)
    116   1.1       mrg  */
    117   1.1       mrg 
    118  1.19   thorpej void
    119  1.19   thorpej uvm_wait(wmsg)
    120  1.19   thorpej 	const char *wmsg;
    121   1.8       mrg {
    122   1.8       mrg 	int timo = 0;
    123   1.8       mrg 	int s = splbio();
    124   1.1       mrg 
    125   1.8       mrg 	/*
    126   1.8       mrg 	 * check for page daemon going to sleep (waiting for itself)
    127   1.8       mrg 	 */
    128   1.1       mrg 
    129  1.37       chs 	if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
    130   1.8       mrg 		/*
    131   1.8       mrg 		 * now we have a problem: the pagedaemon wants to go to
    132   1.8       mrg 		 * sleep until it frees more memory.   but how can it
    133   1.8       mrg 		 * free more memory if it is asleep?  that is a deadlock.
    134   1.8       mrg 		 * we have two options:
    135   1.8       mrg 		 *  [1] panic now
    136   1.8       mrg 		 *  [2] put a timeout on the sleep, thus causing the
    137   1.8       mrg 		 *      pagedaemon to only pause (rather than sleep forever)
    138   1.8       mrg 		 *
    139   1.8       mrg 		 * note that option [2] will only help us if we get lucky
    140   1.8       mrg 		 * and some other process on the system breaks the deadlock
    141   1.8       mrg 		 * by exiting or freeing memory (thus allowing the pagedaemon
    142   1.8       mrg 		 * to continue).  for now we panic if DEBUG is defined,
    143   1.8       mrg 		 * otherwise we hope for the best with option [2] (better
    144   1.8       mrg 		 * yet, this should never happen in the first place!).
    145   1.8       mrg 		 */
    146   1.1       mrg 
    147   1.8       mrg 		printf("pagedaemon: deadlock detected!\n");
    148   1.8       mrg 		timo = hz >> 3;		/* set timeout */
    149   1.1       mrg #if defined(DEBUG)
    150   1.8       mrg 		/* DEBUG: panic so we can debug it */
    151   1.8       mrg 		panic("pagedaemon deadlock");
    152   1.1       mrg #endif
    153   1.8       mrg 	}
    154   1.1       mrg 
    155   1.8       mrg 	simple_lock(&uvm.pagedaemon_lock);
    156  1.17   thorpej 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    157   1.8       mrg 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    158   1.8       mrg 	    timo);
    159   1.1       mrg 
    160   1.8       mrg 	splx(s);
    161   1.1       mrg }
    162   1.1       mrg 
    163   1.1       mrg 
    164   1.1       mrg /*
    165   1.1       mrg  * uvmpd_tune: tune paging parameters
    166   1.1       mrg  *
    167   1.1       mrg  * => called when ever memory is added (or removed?) to the system
    168   1.1       mrg  * => caller must call with page queues locked
    169   1.1       mrg  */
    170   1.1       mrg 
    171  1.37       chs void
    172  1.37       chs uvmpd_tune(void)
    173   1.8       mrg {
    174   1.8       mrg 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    175   1.1       mrg 
    176   1.8       mrg 	uvmexp.freemin = uvmexp.npages / 20;
    177   1.1       mrg 
    178   1.8       mrg 	/* between 16k and 256k */
    179   1.8       mrg 	/* XXX:  what are these values good for? */
    180  1.37       chs 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    181  1.37       chs 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    182  1.23     bjh21 
    183  1.23     bjh21 	/* Make sure there's always a user page free. */
    184  1.23     bjh21 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    185  1.23     bjh21 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    186   1.1       mrg 
    187   1.8       mrg 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    188   1.8       mrg 	if (uvmexp.freetarg <= uvmexp.freemin)
    189   1.8       mrg 		uvmexp.freetarg = uvmexp.freemin + 1;
    190   1.1       mrg 
    191  1.61       chs 	uvmexp.freetarg += uvm_extrapages;
    192  1.61       chs 	uvm_extrapages = 0;
    193  1.61       chs 
    194   1.8       mrg 	/* uvmexp.inactarg: computed in main daemon loop */
    195   1.1       mrg 
    196   1.8       mrg 	uvmexp.wiredmax = uvmexp.npages / 3;
    197   1.8       mrg 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    198   1.1       mrg 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    199   1.1       mrg }
    200   1.1       mrg 
    201   1.1       mrg /*
    202   1.1       mrg  * uvm_pageout: the main loop for the pagedaemon
    203   1.1       mrg  */
    204   1.1       mrg 
    205   1.8       mrg void
    206  1.22   thorpej uvm_pageout(void *arg)
    207   1.8       mrg {
    208  1.60     enami 	int bufcnt, npages = 0;
    209  1.61       chs 	int extrapages = 0;
    210   1.8       mrg 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    211  1.24       chs 
    212   1.8       mrg 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    213   1.8       mrg 
    214   1.8       mrg 	/*
    215   1.8       mrg 	 * ensure correct priority and set paging parameters...
    216   1.8       mrg 	 */
    217   1.8       mrg 
    218   1.8       mrg 	uvm.pagedaemon_proc = curproc;
    219   1.8       mrg 	uvm_lock_pageq();
    220   1.8       mrg 	npages = uvmexp.npages;
    221   1.8       mrg 	uvmpd_tune();
    222   1.8       mrg 	uvm_unlock_pageq();
    223   1.8       mrg 
    224   1.8       mrg 	/*
    225   1.8       mrg 	 * main loop
    226   1.8       mrg 	 */
    227  1.24       chs 
    228  1.24       chs 	for (;;) {
    229  1.24       chs 		simple_lock(&uvm.pagedaemon_lock);
    230  1.24       chs 
    231  1.24       chs 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    232  1.24       chs 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    233  1.24       chs 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    234  1.24       chs 		uvmexp.pdwoke++;
    235  1.24       chs 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    236  1.24       chs 
    237   1.8       mrg 		/*
    238  1.24       chs 		 * now lock page queues and recompute inactive count
    239   1.8       mrg 		 */
    240   1.8       mrg 
    241  1.24       chs 		uvm_lock_pageq();
    242  1.61       chs 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    243  1.24       chs 			npages = uvmexp.npages;
    244  1.61       chs 			extrapages = uvm_extrapages;
    245  1.24       chs 			uvmpd_tune();
    246  1.24       chs 		}
    247  1.24       chs 
    248  1.24       chs 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    249  1.24       chs 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    250  1.24       chs 			uvmexp.inactarg = uvmexp.freetarg + 1;
    251  1.24       chs 		}
    252  1.24       chs 
    253  1.60     enami 		/*
    254  1.60     enami 		 * Estimate a hint.  Note that bufmem are returned to
    255  1.60     enami 		 * system only when entire pool page is empty.
    256  1.60     enami 		 */
    257  1.60     enami 		bufcnt = uvmexp.freetarg - uvmexp.free;
    258  1.60     enami 		if (bufcnt < 0)
    259  1.60     enami 			bufcnt = 0;
    260  1.60     enami 
    261  1.24       chs 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    262  1.24       chs 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    263  1.24       chs 		    uvmexp.inactarg);
    264   1.8       mrg 
    265   1.8       mrg 		/*
    266  1.24       chs 		 * scan if needed
    267   1.8       mrg 		 */
    268   1.8       mrg 
    269  1.24       chs 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    270  1.30       chs 		    uvmexp.inactive < uvmexp.inactarg) {
    271  1.24       chs 			uvmpd_scan();
    272   1.8       mrg 		}
    273   1.8       mrg 
    274   1.8       mrg 		/*
    275  1.24       chs 		 * if there's any free memory to be had,
    276  1.24       chs 		 * wake up any waiters.
    277   1.8       mrg 		 */
    278   1.8       mrg 
    279  1.24       chs 		if (uvmexp.free > uvmexp.reserve_kernel ||
    280  1.24       chs 		    uvmexp.paging == 0) {
    281  1.24       chs 			wakeup(&uvmexp.free);
    282   1.8       mrg 		}
    283   1.1       mrg 
    284   1.8       mrg 		/*
    285  1.24       chs 		 * scan done.  unlock page queues (the only lock we are holding)
    286   1.8       mrg 		 */
    287   1.8       mrg 
    288  1.24       chs 		uvm_unlock_pageq();
    289  1.38       chs 
    290  1.60     enami 		buf_drain(bufcnt << PAGE_SHIFT);
    291  1.60     enami 
    292  1.38       chs 		/*
    293  1.38       chs 		 * drain pool resources now that we're not holding any locks
    294  1.38       chs 		 */
    295  1.38       chs 
    296  1.38       chs 		pool_drain(0);
    297  1.57  jdolecek 
    298  1.57  jdolecek 		/*
    299  1.57  jdolecek 		 * free any cached u-areas we don't need
    300  1.57  jdolecek 		 */
    301  1.57  jdolecek 		uvm_uarea_drain(TRUE);
    302  1.57  jdolecek 
    303  1.24       chs 	}
    304  1.24       chs 	/*NOTREACHED*/
    305  1.24       chs }
    306  1.24       chs 
    307   1.8       mrg 
    308  1.24       chs /*
    309  1.24       chs  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    310  1.24       chs  */
    311   1.8       mrg 
    312  1.24       chs void
    313  1.24       chs uvm_aiodone_daemon(void *arg)
    314  1.24       chs {
    315  1.24       chs 	int s, free;
    316  1.24       chs 	struct buf *bp, *nbp;
    317  1.24       chs 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    318   1.9        pk 
    319  1.24       chs 	for (;;) {
    320   1.8       mrg 
    321   1.8       mrg 		/*
    322  1.24       chs 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    323  1.24       chs 		 * we need splbio because we want to make sure the aio_done list
    324  1.24       chs 		 * is totally empty before we go to sleep.
    325   1.8       mrg 		 */
    326   1.8       mrg 
    327  1.24       chs 		s = splbio();
    328  1.24       chs 		simple_lock(&uvm.aiodoned_lock);
    329  1.24       chs 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    330  1.24       chs 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    331  1.24       chs 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    332  1.24       chs 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    333  1.24       chs 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    334  1.24       chs 
    335  1.24       chs 			/* relock aiodoned_lock, still at splbio */
    336  1.24       chs 			simple_lock(&uvm.aiodoned_lock);
    337   1.8       mrg 		}
    338   1.8       mrg 
    339  1.24       chs 		/*
    340  1.24       chs 		 * check for done aio structures
    341  1.24       chs 		 */
    342   1.8       mrg 
    343  1.24       chs 		bp = TAILQ_FIRST(&uvm.aio_done);
    344  1.24       chs 		if (bp) {
    345  1.24       chs 			TAILQ_INIT(&uvm.aio_done);
    346  1.24       chs 		}
    347   1.8       mrg 
    348  1.24       chs 		simple_unlock(&uvm.aiodoned_lock);
    349  1.24       chs 		splx(s);
    350   1.8       mrg 
    351   1.8       mrg 		/*
    352  1.24       chs 		 * process each i/o that's done.
    353   1.8       mrg 		 */
    354   1.8       mrg 
    355  1.24       chs 		free = uvmexp.free;
    356  1.24       chs 		while (bp != NULL) {
    357  1.24       chs 			nbp = TAILQ_NEXT(bp, b_freelist);
    358  1.24       chs 			(*bp->b_iodone)(bp);
    359  1.24       chs 			bp = nbp;
    360  1.24       chs 		}
    361  1.24       chs 		if (free <= uvmexp.reserve_kernel) {
    362  1.24       chs 			s = uvm_lock_fpageq();
    363  1.24       chs 			wakeup(&uvm.pagedaemon);
    364  1.24       chs 			uvm_unlock_fpageq(s);
    365  1.24       chs 		} else {
    366  1.24       chs 			simple_lock(&uvm.pagedaemon_lock);
    367  1.17   thorpej 			wakeup(&uvmexp.free);
    368  1.24       chs 			simple_unlock(&uvm.pagedaemon_lock);
    369  1.24       chs 		}
    370   1.8       mrg 	}
    371   1.1       mrg }
    372   1.1       mrg 
    373   1.1       mrg /*
    374  1.24       chs  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    375   1.1       mrg  *
    376   1.1       mrg  * => called with page queues locked
    377   1.1       mrg  * => we work on meeting our free target by converting inactive pages
    378   1.1       mrg  *    into free pages.
    379   1.1       mrg  * => we handle the building of swap-backed clusters
    380   1.1       mrg  * => we return TRUE if we are exiting because we met our target
    381   1.1       mrg  */
    382   1.1       mrg 
    383  1.46       chs void
    384   1.8       mrg uvmpd_scan_inactive(pglst)
    385   1.8       mrg 	struct pglist *pglst;
    386   1.8       mrg {
    387  1.37       chs 	int error;
    388  1.48       scw 	struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
    389   1.8       mrg 	struct uvm_object *uobj;
    390  1.37       chs 	struct vm_anon *anon;
    391  1.51       tls 	struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
    392  1.37       chs 	struct simplelock *slock;
    393  1.37       chs 	int swnpages, swcpages;
    394  1.14       chs 	int swslot;
    395  1.37       chs 	int dirtyreacts, t, result;
    396  1.43       chs 	boolean_t anonunder, fileunder, execunder;
    397  1.43       chs 	boolean_t anonover, fileover, execover;
    398  1.43       chs 	boolean_t anonreact, filereact, execreact;
    399   1.8       mrg 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    400   1.1       mrg 
    401   1.8       mrg 	/*
    402   1.8       mrg 	 * swslot is non-zero if we are building a swap cluster.  we want
    403  1.24       chs 	 * to stay in the loop while we have a page to scan or we have
    404   1.8       mrg 	 * a swap-cluster to build.
    405   1.8       mrg 	 */
    406  1.24       chs 
    407   1.8       mrg 	swslot = 0;
    408   1.8       mrg 	swnpages = swcpages = 0;
    409  1.14       chs 	dirtyreacts = 0;
    410  1.43       chs 
    411  1.43       chs 	/*
    412  1.43       chs 	 * decide which types of pages we want to reactivate instead of freeing
    413  1.43       chs 	 * to keep usage within the minimum and maximum usage limits.
    414  1.43       chs 	 */
    415  1.43       chs 
    416  1.43       chs 	t = uvmexp.active + uvmexp.inactive + uvmexp.free;
    417  1.43       chs 	anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
    418  1.43       chs 	fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
    419  1.43       chs 	execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
    420  1.43       chs 	anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
    421  1.43       chs 	fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
    422  1.43       chs 	execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
    423  1.43       chs 	anonreact = anonunder || (!anonover && (fileover || execover));
    424  1.43       chs 	filereact = fileunder || (!fileover && (anonover || execover));
    425  1.43       chs 	execreact = execunder || (!execover && (anonover || fileover));
    426  1.62      yamt 	if (filereact && execreact && (anonreact || uvm_swapisfull())) {
    427  1.62      yamt 		anonreact = filereact = execreact = FALSE;
    428  1.62      yamt 	}
    429  1.24       chs 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
    430  1.24       chs 		uobj = NULL;
    431  1.24       chs 		anon = NULL;
    432   1.8       mrg 		if (p) {
    433  1.24       chs 
    434   1.8       mrg 			/*
    435  1.37       chs 			 * see if we've met the free target.
    436   1.8       mrg 			 */
    437  1.24       chs 
    438  1.37       chs 			if (uvmexp.free + uvmexp.paging >=
    439  1.37       chs 			    uvmexp.freetarg << 2 ||
    440  1.30       chs 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    441  1.30       chs 				UVMHIST_LOG(pdhist,"  met free target: "
    442  1.30       chs 					    "exit loop", 0, 0, 0, 0);
    443  1.24       chs 
    444  1.30       chs 				if (swslot == 0) {
    445  1.30       chs 					/* exit now if no swap-i/o pending */
    446  1.30       chs 					break;
    447  1.24       chs 				}
    448  1.30       chs 
    449  1.30       chs 				/* set p to null to signal final swap i/o */
    450  1.30       chs 				p = NULL;
    451  1.37       chs 				nextpg = NULL;
    452   1.8       mrg 			}
    453   1.8       mrg 		}
    454  1.24       chs 		if (p) {	/* if (we have a new page to consider) */
    455  1.30       chs 
    456   1.8       mrg 			/*
    457   1.8       mrg 			 * we are below target and have a new page to consider.
    458   1.8       mrg 			 */
    459  1.37       chs 
    460   1.8       mrg 			uvmexp.pdscans++;
    461  1.24       chs 			nextpg = TAILQ_NEXT(p, pageq);
    462   1.8       mrg 
    463  1.27   mycroft 			/*
    464  1.27   mycroft 			 * move referenced pages back to active queue and
    465  1.30       chs 			 * skip to next page.
    466  1.27   mycroft 			 */
    467  1.30       chs 
    468  1.37       chs 			if (pmap_clear_reference(p)) {
    469  1.27   mycroft 				uvm_pageactivate(p);
    470  1.27   mycroft 				uvmexp.pdreact++;
    471  1.27   mycroft 				continue;
    472  1.27   mycroft 			}
    473  1.37       chs 			anon = p->uanon;
    474  1.37       chs 			uobj = p->uobject;
    475  1.30       chs 
    476  1.30       chs 			/*
    477  1.30       chs 			 * enforce the minimum thresholds on different
    478  1.30       chs 			 * types of memory usage.  if reusing the current
    479  1.30       chs 			 * page would reduce that type of usage below its
    480  1.30       chs 			 * minimum, reactivate the page instead and move
    481  1.30       chs 			 * on to the next page.
    482  1.30       chs 			 */
    483  1.30       chs 
    484  1.43       chs 			if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
    485  1.30       chs 				uvm_pageactivate(p);
    486  1.43       chs 				uvmexp.pdreexec++;
    487  1.30       chs 				continue;
    488  1.30       chs 			}
    489  1.37       chs 			if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
    490  1.43       chs 			    !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
    491  1.30       chs 				uvm_pageactivate(p);
    492  1.43       chs 				uvmexp.pdrefile++;
    493  1.30       chs 				continue;
    494  1.30       chs 			}
    495  1.47       chs 			if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
    496  1.44       chs 				uvm_pageactivate(p);
    497  1.44       chs 				uvmexp.pdreanon++;
    498  1.44       chs 				continue;
    499  1.44       chs 			}
    500  1.30       chs 
    501   1.8       mrg 			/*
    502   1.8       mrg 			 * first we attempt to lock the object that this page
    503   1.8       mrg 			 * belongs to.  if our attempt fails we skip on to
    504   1.8       mrg 			 * the next page (no harm done).  it is important to
    505   1.8       mrg 			 * "try" locking the object as we are locking in the
    506   1.8       mrg 			 * wrong order (pageq -> object) and we don't want to
    507  1.24       chs 			 * deadlock.
    508   1.8       mrg 			 *
    509  1.24       chs 			 * the only time we expect to see an ownerless page
    510   1.8       mrg 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    511   1.8       mrg 			 * anon has loaned a page from a uvm_object and the
    512   1.8       mrg 			 * uvm_object has dropped the ownership.  in that
    513   1.8       mrg 			 * case, the anon can "take over" the loaned page
    514   1.8       mrg 			 * and make it its own.
    515   1.8       mrg 			 */
    516  1.30       chs 
    517  1.44       chs 			/* does the page belong to an object? */
    518  1.44       chs 			if (uobj != NULL) {
    519  1.44       chs 				slock = &uobj->vmobjlock;
    520  1.44       chs 				if (!simple_lock_try(slock)) {
    521  1.44       chs 					continue;
    522  1.44       chs 				}
    523  1.44       chs 				if (p->flags & PG_BUSY) {
    524  1.44       chs 					simple_unlock(slock);
    525  1.44       chs 					uvmexp.pdbusy++;
    526  1.44       chs 					continue;
    527  1.44       chs 				}
    528  1.44       chs 				uvmexp.pdobscan++;
    529  1.44       chs 			} else {
    530  1.24       chs 				KASSERT(anon != NULL);
    531  1.37       chs 				slock = &anon->an_lock;
    532  1.37       chs 				if (!simple_lock_try(slock)) {
    533   1.8       mrg 					continue;
    534  1.30       chs 				}
    535   1.8       mrg 
    536   1.8       mrg 				/*
    537  1.44       chs 				 * set PQ_ANON if it isn't set already.
    538   1.8       mrg 				 */
    539  1.24       chs 
    540   1.8       mrg 				if ((p->pqflags & PQ_ANON) == 0) {
    541  1.24       chs 					KASSERT(p->loan_count > 0);
    542   1.8       mrg 					p->loan_count--;
    543  1.24       chs 					p->pqflags |= PQ_ANON;
    544  1.24       chs 					/* anon now owns it */
    545   1.8       mrg 				}
    546   1.8       mrg 				if (p->flags & PG_BUSY) {
    547  1.37       chs 					simple_unlock(slock);
    548   1.8       mrg 					uvmexp.pdbusy++;
    549   1.8       mrg 					continue;
    550   1.8       mrg 				}
    551   1.8       mrg 				uvmexp.pdanscan++;
    552   1.8       mrg 			}
    553   1.8       mrg 
    554  1.37       chs 
    555   1.8       mrg 			/*
    556   1.8       mrg 			 * we now have the object and the page queues locked.
    557  1.37       chs 			 * if the page is not swap-backed, call the object's
    558  1.37       chs 			 * pager to flush and free the page.
    559  1.37       chs 			 */
    560  1.37       chs 
    561  1.37       chs 			if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    562  1.37       chs 				uvm_unlock_pageq();
    563  1.50    simonb 				(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    564  1.37       chs 				    p->offset + PAGE_SIZE,
    565  1.37       chs 				    PGO_CLEANIT|PGO_FREE);
    566  1.37       chs 				uvm_lock_pageq();
    567  1.37       chs 				if (nextpg &&
    568  1.46       chs 				    (nextpg->pqflags & PQ_INACTIVE) == 0) {
    569  1.37       chs 					nextpg = TAILQ_FIRST(pglst);
    570  1.37       chs 				}
    571  1.37       chs 				continue;
    572  1.37       chs 			}
    573  1.37       chs 
    574  1.37       chs 			/*
    575  1.37       chs 			 * the page is swap-backed.  remove all the permissions
    576  1.29   thorpej 			 * from the page so we can sync the modified info
    577  1.29   thorpej 			 * without any race conditions.  if the page is clean
    578  1.29   thorpej 			 * we can free it now and continue.
    579   1.8       mrg 			 */
    580   1.8       mrg 
    581  1.29   thorpej 			pmap_page_protect(p, VM_PROT_NONE);
    582  1.37       chs 			if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    583  1.37       chs 				p->flags &= ~(PG_CLEAN);
    584  1.30       chs 			}
    585   1.8       mrg 			if (p->flags & PG_CLEAN) {
    586  1.53        pk 				int slot;
    587  1.55       chs 				int pageidx;
    588  1.55       chs 
    589  1.55       chs 				pageidx = p->offset >> PAGE_SHIFT;
    590   1.8       mrg 				uvm_pagefree(p);
    591   1.8       mrg 				uvmexp.pdfreed++;
    592  1.24       chs 
    593  1.37       chs 				/*
    594  1.37       chs 				 * for anons, we need to remove the page
    595  1.37       chs 				 * from the anon ourselves.  for aobjs,
    596  1.37       chs 				 * pagefree did that for us.
    597  1.37       chs 				 */
    598  1.37       chs 
    599   1.8       mrg 				if (anon) {
    600  1.24       chs 					KASSERT(anon->an_swslot != 0);
    601  1.64      yamt 					anon->an_page = NULL;
    602  1.53        pk 					slot = anon->an_swslot;
    603  1.53        pk 				} else {
    604  1.55       chs 					slot = uao_find_swslot(uobj, pageidx);
    605   1.8       mrg 				}
    606  1.37       chs 				simple_unlock(slock);
    607  1.41       chs 
    608  1.53        pk 				if (slot > 0) {
    609  1.53        pk 					/* this page is now only in swap. */
    610  1.53        pk 					simple_lock(&uvm.swap_data_lock);
    611  1.53        pk 					KASSERT(uvmexp.swpgonly <
    612  1.53        pk 						uvmexp.swpginuse);
    613  1.53        pk 					uvmexp.swpgonly++;
    614  1.53        pk 					simple_unlock(&uvm.swap_data_lock);
    615  1.53        pk 				}
    616   1.8       mrg 				continue;
    617   1.8       mrg 			}
    618   1.8       mrg 
    619   1.8       mrg 			/*
    620   1.8       mrg 			 * this page is dirty, skip it if we'll have met our
    621   1.8       mrg 			 * free target when all the current pageouts complete.
    622   1.8       mrg 			 */
    623  1.24       chs 
    624  1.37       chs 			if (uvmexp.free + uvmexp.paging >
    625  1.37       chs 			    uvmexp.freetarg << 2) {
    626  1.37       chs 				simple_unlock(slock);
    627   1.8       mrg 				continue;
    628   1.8       mrg 			}
    629   1.8       mrg 
    630   1.8       mrg 			/*
    631  1.37       chs 			 * free any swap space allocated to the page since
    632  1.37       chs 			 * we'll have to write it again with its new data.
    633  1.37       chs 			 */
    634  1.37       chs 
    635  1.37       chs 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    636  1.37       chs 				uvm_swap_free(anon->an_swslot, 1);
    637  1.37       chs 				anon->an_swslot = 0;
    638  1.37       chs 			} else if (p->pqflags & PQ_AOBJ) {
    639  1.37       chs 				uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
    640  1.37       chs 			}
    641  1.37       chs 
    642  1.37       chs 			/*
    643  1.37       chs 			 * if all pages in swap are only in swap,
    644  1.37       chs 			 * the swap space is full and we can't page out
    645  1.37       chs 			 * any more swap-backed pages.  reactivate this page
    646  1.37       chs 			 * so that we eventually cycle all pages through
    647  1.37       chs 			 * the inactive queue.
    648  1.14       chs 			 */
    649  1.24       chs 
    650  1.52        pk 			if (uvm_swapisfull()) {
    651  1.14       chs 				dirtyreacts++;
    652  1.14       chs 				uvm_pageactivate(p);
    653  1.37       chs 				simple_unlock(slock);
    654  1.14       chs 				continue;
    655  1.14       chs 			}
    656  1.14       chs 
    657  1.14       chs 			/*
    658  1.37       chs 			 * start new swap pageout cluster (if necessary).
    659  1.14       chs 			 */
    660  1.24       chs 
    661  1.37       chs 			if (swslot == 0) {
    662  1.51       tls 				/* Even with strange MAXPHYS, the shift
    663  1.51       tls 				   implicitly rounds down to a page. */
    664  1.51       tls 				swnpages = MAXPHYS >> PAGE_SHIFT;
    665  1.37       chs 				swslot = uvm_swap_alloc(&swnpages, TRUE);
    666  1.37       chs 				if (swslot == 0) {
    667  1.37       chs 					simple_unlock(slock);
    668  1.37       chs 					continue;
    669  1.14       chs 				}
    670  1.37       chs 				swcpages = 0;
    671  1.14       chs 			}
    672  1.14       chs 
    673  1.14       chs 			/*
    674  1.37       chs 			 * at this point, we're definitely going reuse this
    675  1.37       chs 			 * page.  mark the page busy and delayed-free.
    676  1.37       chs 			 * we should remove the page from the page queues
    677  1.37       chs 			 * so we don't ever look at it again.
    678  1.37       chs 			 * adjust counters and such.
    679   1.8       mrg 			 */
    680  1.30       chs 
    681  1.37       chs 			p->flags |= PG_BUSY;
    682   1.8       mrg 			UVM_PAGE_OWN(p, "scan_inactive");
    683  1.37       chs 
    684  1.37       chs 			p->flags |= PG_PAGEOUT;
    685  1.37       chs 			uvmexp.paging++;
    686  1.37       chs 			uvm_pagedequeue(p);
    687  1.37       chs 
    688   1.8       mrg 			uvmexp.pgswapout++;
    689   1.8       mrg 
    690   1.8       mrg 			/*
    691  1.37       chs 			 * add the new page to the cluster.
    692   1.8       mrg 			 */
    693  1.24       chs 
    694  1.37       chs 			if (anon) {
    695  1.37       chs 				anon->an_swslot = swslot + swcpages;
    696  1.37       chs 				simple_unlock(slock);
    697  1.37       chs 			} else {
    698  1.37       chs 				result = uao_set_swslot(uobj,
    699  1.37       chs 				    p->offset >> PAGE_SHIFT, swslot + swcpages);
    700  1.37       chs 				if (result == -1) {
    701  1.37       chs 					p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    702  1.37       chs 					UVM_PAGE_OWN(p, NULL);
    703  1.37       chs 					uvmexp.paging--;
    704  1.37       chs 					uvm_pageactivate(p);
    705  1.37       chs 					simple_unlock(slock);
    706  1.37       chs 					continue;
    707   1.8       mrg 				}
    708  1.37       chs 				simple_unlock(slock);
    709  1.37       chs 			}
    710  1.37       chs 			swpps[swcpages] = p;
    711  1.37       chs 			swcpages++;
    712   1.8       mrg 
    713  1.37       chs 			/*
    714  1.37       chs 			 * if the cluster isn't full, look for more pages
    715  1.37       chs 			 * before starting the i/o.
    716  1.37       chs 			 */
    717  1.24       chs 
    718  1.37       chs 			if (swcpages < swnpages) {
    719  1.37       chs 				continue;
    720   1.8       mrg 			}
    721   1.8       mrg 		}
    722   1.8       mrg 
    723   1.8       mrg 		/*
    724  1.37       chs 		 * if this is the final pageout we could have a few
    725  1.37       chs 		 * unused swap blocks.  if so, free them now.
    726   1.8       mrg 		 */
    727  1.24       chs 
    728  1.37       chs 		if (swcpages < swnpages) {
    729  1.37       chs 			uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
    730   1.8       mrg 		}
    731   1.8       mrg 
    732   1.8       mrg 		/*
    733  1.37       chs 		 * now start the pageout.
    734   1.8       mrg 		 */
    735   1.8       mrg 
    736  1.37       chs 		uvm_unlock_pageq();
    737   1.8       mrg 		uvmexp.pdpageouts++;
    738  1.37       chs 		error = uvm_swap_put(swslot, swpps, swcpages, 0);
    739  1.37       chs 		KASSERT(error == 0);
    740  1.37       chs 		uvm_lock_pageq();
    741   1.8       mrg 
    742   1.8       mrg 		/*
    743  1.37       chs 		 * zero swslot to indicate that we are
    744   1.8       mrg 		 * no longer building a swap-backed cluster.
    745   1.8       mrg 		 */
    746   1.8       mrg 
    747  1.37       chs 		swslot = 0;
    748  1.24       chs 
    749   1.8       mrg 		/*
    750  1.31       chs 		 * the pageout is in progress.  bump counters and set up
    751  1.31       chs 		 * for the next loop.
    752   1.8       mrg 		 */
    753   1.8       mrg 
    754  1.31       chs 		uvmexp.pdpending++;
    755  1.37       chs 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    756  1.37       chs 			nextpg = TAILQ_FIRST(pglst);
    757   1.8       mrg 		}
    758  1.24       chs 	}
    759   1.1       mrg }
    760   1.1       mrg 
    761   1.1       mrg /*
    762   1.1       mrg  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    763   1.1       mrg  *
    764   1.1       mrg  * => called with pageq's locked
    765   1.1       mrg  */
    766   1.1       mrg 
    767   1.8       mrg void
    768  1.37       chs uvmpd_scan(void)
    769   1.1       mrg {
    770  1.37       chs 	int inactive_shortage, swap_shortage, pages_freed;
    771   1.8       mrg 	struct vm_page *p, *nextpg;
    772   1.8       mrg 	struct uvm_object *uobj;
    773  1.37       chs 	struct vm_anon *anon;
    774  1.44       chs 	struct simplelock *slock;
    775   1.8       mrg 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    776   1.1       mrg 
    777  1.37       chs 	uvmexp.pdrevs++;
    778  1.24       chs 	uobj = NULL;
    779  1.37       chs 	anon = NULL;
    780   1.1       mrg 
    781   1.1       mrg #ifndef __SWAP_BROKEN
    782  1.39       chs 
    783   1.8       mrg 	/*
    784   1.8       mrg 	 * swap out some processes if we are below our free target.
    785   1.8       mrg 	 * we need to unlock the page queues for this.
    786   1.8       mrg 	 */
    787  1.39       chs 
    788  1.39       chs 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
    789   1.8       mrg 		uvmexp.pdswout++;
    790  1.37       chs 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    791  1.37       chs 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    792   1.8       mrg 		uvm_unlock_pageq();
    793   1.8       mrg 		uvm_swapout_threads();
    794   1.8       mrg 		uvm_lock_pageq();
    795   1.1       mrg 
    796   1.8       mrg 	}
    797   1.1       mrg #endif
    798   1.1       mrg 
    799   1.8       mrg 	/*
    800   1.8       mrg 	 * now we want to work on meeting our targets.   first we work on our
    801   1.8       mrg 	 * free target by converting inactive pages into free pages.  then
    802   1.8       mrg 	 * we work on meeting our inactive target by converting active pages
    803   1.8       mrg 	 * to inactive ones.
    804   1.8       mrg 	 */
    805   1.8       mrg 
    806   1.8       mrg 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    807   1.8       mrg 
    808  1.14       chs 	pages_freed = uvmexp.pdfreed;
    809  1.46       chs 	uvmpd_scan_inactive(&uvm.page_inactive);
    810  1.14       chs 	pages_freed = uvmexp.pdfreed - pages_freed;
    811   1.8       mrg 
    812   1.8       mrg 	/*
    813   1.8       mrg 	 * we have done the scan to get free pages.   now we work on meeting
    814   1.8       mrg 	 * our inactive target.
    815   1.8       mrg 	 */
    816   1.8       mrg 
    817  1.14       chs 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
    818  1.14       chs 
    819  1.14       chs 	/*
    820  1.14       chs 	 * detect if we're not going to be able to page anything out
    821  1.14       chs 	 * until we free some swap resources from active pages.
    822  1.14       chs 	 */
    823  1.24       chs 
    824  1.14       chs 	swap_shortage = 0;
    825  1.14       chs 	if (uvmexp.free < uvmexp.freetarg &&
    826  1.52        pk 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    827  1.52        pk 	    !uvm_swapisfull() &&
    828  1.14       chs 	    pages_freed == 0) {
    829  1.14       chs 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    830  1.14       chs 	}
    831  1.24       chs 
    832  1.14       chs 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
    833  1.14       chs 		    inactive_shortage, swap_shortage,0,0);
    834  1.24       chs 	for (p = TAILQ_FIRST(&uvm.page_active);
    835  1.14       chs 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
    836  1.14       chs 	     p = nextpg) {
    837  1.24       chs 		nextpg = TAILQ_NEXT(p, pageq);
    838  1.37       chs 		if (p->flags & PG_BUSY) {
    839  1.37       chs 			continue;
    840  1.37       chs 		}
    841   1.8       mrg 
    842   1.8       mrg 		/*
    843  1.14       chs 		 * lock the page's owner.
    844   1.8       mrg 		 */
    845  1.44       chs 
    846  1.44       chs 		if (p->uobject != NULL) {
    847  1.44       chs 			uobj = p->uobject;
    848  1.44       chs 			slock = &uobj->vmobjlock;
    849  1.44       chs 			if (!simple_lock_try(slock)) {
    850  1.44       chs 				continue;
    851  1.44       chs 			}
    852  1.44       chs 		} else {
    853  1.37       chs 			anon = p->uanon;
    854  1.37       chs 			KASSERT(anon != NULL);
    855  1.44       chs 			slock = &anon->an_lock;
    856  1.44       chs 			if (!simple_lock_try(slock)) {
    857   1.8       mrg 				continue;
    858  1.37       chs 			}
    859   1.1       mrg 
    860   1.8       mrg 			/* take over the page? */
    861   1.8       mrg 			if ((p->pqflags & PQ_ANON) == 0) {
    862  1.24       chs 				KASSERT(p->loan_count > 0);
    863   1.8       mrg 				p->loan_count--;
    864   1.8       mrg 				p->pqflags |= PQ_ANON;
    865   1.8       mrg 			}
    866   1.8       mrg 		}
    867  1.24       chs 
    868  1.14       chs 		/*
    869  1.14       chs 		 * skip this page if it's busy.
    870  1.14       chs 		 */
    871  1.24       chs 
    872  1.14       chs 		if ((p->flags & PG_BUSY) != 0) {
    873  1.44       chs 			simple_unlock(slock);
    874  1.14       chs 			continue;
    875  1.14       chs 		}
    876  1.24       chs 
    877  1.14       chs 		/*
    878  1.14       chs 		 * if there's a shortage of swap, free any swap allocated
    879  1.14       chs 		 * to this page so that other pages can be paged out.
    880  1.14       chs 		 */
    881  1.24       chs 
    882  1.14       chs 		if (swap_shortage > 0) {
    883  1.37       chs 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    884  1.37       chs 				uvm_swap_free(anon->an_swslot, 1);
    885  1.37       chs 				anon->an_swslot = 0;
    886  1.14       chs 				p->flags &= ~PG_CLEAN;
    887  1.14       chs 				swap_shortage--;
    888  1.37       chs 			} else if (p->pqflags & PQ_AOBJ) {
    889  1.37       chs 				int slot = uao_set_swslot(uobj,
    890  1.14       chs 					p->offset >> PAGE_SHIFT, 0);
    891  1.14       chs 				if (slot) {
    892  1.14       chs 					uvm_swap_free(slot, 1);
    893  1.14       chs 					p->flags &= ~PG_CLEAN;
    894  1.14       chs 					swap_shortage--;
    895  1.14       chs 				}
    896  1.14       chs 			}
    897  1.14       chs 		}
    898  1.24       chs 
    899  1.14       chs 		/*
    900  1.37       chs 		 * if there's a shortage of inactive pages, deactivate.
    901  1.14       chs 		 */
    902  1.24       chs 
    903  1.32   thorpej 		if (inactive_shortage > 0) {
    904   1.8       mrg 			/* no need to check wire_count as pg is "active" */
    905   1.8       mrg 			uvm_pagedeactivate(p);
    906   1.8       mrg 			uvmexp.pddeact++;
    907  1.14       chs 			inactive_shortage--;
    908   1.8       mrg 		}
    909  1.37       chs 
    910  1.37       chs 		/*
    911  1.37       chs 		 * we're done with this page.
    912  1.37       chs 		 */
    913  1.37       chs 
    914  1.44       chs 		simple_unlock(slock);
    915   1.8       mrg 	}
    916   1.1       mrg }
    917  1.62      yamt 
    918  1.62      yamt /*
    919  1.62      yamt  * uvm_reclaimable: decide whether to wait for pagedaemon.
    920  1.62      yamt  *
    921  1.62      yamt  * => return TRUE if it seems to be worth to do uvm_wait.
    922  1.62      yamt  *
    923  1.62      yamt  * XXX should be tunable.
    924  1.62      yamt  * XXX should consider pools, etc?
    925  1.62      yamt  */
    926  1.62      yamt 
    927  1.62      yamt boolean_t
    928  1.62      yamt uvm_reclaimable(void)
    929  1.62      yamt {
    930  1.62      yamt 	int filepages;
    931  1.62      yamt 
    932  1.62      yamt 	/*
    933  1.62      yamt 	 * if swap is not full, no problem.
    934  1.62      yamt 	 */
    935  1.62      yamt 
    936  1.62      yamt 	if (!uvm_swapisfull()) {
    937  1.62      yamt 		return TRUE;
    938  1.62      yamt 	}
    939  1.62      yamt 
    940  1.62      yamt 	/*
    941  1.62      yamt 	 * file-backed pages can be reclaimed even when swap is full.
    942  1.62      yamt 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    943  1.62      yamt 	 *
    944  1.62      yamt 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    945  1.63      yamt 	 *
    946  1.63      yamt 	 * XXX should consider about other reclaimable memory.
    947  1.63      yamt 	 * XXX ie. pools, traditional buffer cache.
    948  1.62      yamt 	 */
    949  1.62      yamt 
    950  1.62      yamt 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
    951  1.62      yamt 	if (filepages >= MIN((uvmexp.active + uvmexp.inactive) >> 4,
    952  1.62      yamt 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
    953  1.62      yamt 		return TRUE;
    954  1.62      yamt 	}
    955  1.62      yamt 
    956  1.62      yamt 	/*
    957  1.62      yamt 	 * kill the process, fail allocation, etc..
    958  1.62      yamt 	 */
    959  1.62      yamt 
    960  1.62      yamt 	return FALSE;
    961  1.62      yamt }
    962