uvm_pdaemon.c revision 1.68 1 1.68 yamt /* $NetBSD: uvm_pdaemon.c,v 1.68 2005/09/13 22:00:05 yamt Exp $ */
2 1.1 mrg
3 1.34 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.34 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.34 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.34 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.34 chs *
54 1.34 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.34 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.34 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_pdaemon.c: the page daemon
71 1.1 mrg */
72 1.42 lukem
73 1.42 lukem #include <sys/cdefs.h>
74 1.68 yamt __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.68 2005/09/13 22:00:05 yamt Exp $");
75 1.42 lukem
76 1.42 lukem #include "opt_uvmhist.h"
77 1.1 mrg
78 1.1 mrg #include <sys/param.h>
79 1.1 mrg #include <sys/proc.h>
80 1.1 mrg #include <sys/systm.h>
81 1.1 mrg #include <sys/kernel.h>
82 1.9 pk #include <sys/pool.h>
83 1.24 chs #include <sys/buf.h>
84 1.30 chs #include <sys/vnode.h>
85 1.1 mrg
86 1.1 mrg #include <uvm/uvm.h>
87 1.1 mrg
88 1.1 mrg /*
89 1.45 wiz * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
90 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
91 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
92 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
93 1.14 chs */
94 1.14 chs
95 1.14 chs #define UVMPD_NUMDIRTYREACTS 16
96 1.14 chs
97 1.14 chs
98 1.14 chs /*
99 1.1 mrg * local prototypes
100 1.1 mrg */
101 1.1 mrg
102 1.65 thorpej static void uvmpd_scan(void);
103 1.65 thorpej static void uvmpd_scan_inactive(struct pglist *);
104 1.65 thorpej static void uvmpd_tune(void);
105 1.1 mrg
106 1.1 mrg /*
107 1.61 chs * XXX hack to avoid hangs when large processes fork.
108 1.61 chs */
109 1.61 chs int uvm_extrapages;
110 1.61 chs
111 1.61 chs /*
112 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
113 1.1 mrg *
114 1.1 mrg * => should be called with all locks released
115 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
116 1.1 mrg */
117 1.1 mrg
118 1.19 thorpej void
119 1.65 thorpej uvm_wait(const char *wmsg)
120 1.8 mrg {
121 1.8 mrg int timo = 0;
122 1.8 mrg int s = splbio();
123 1.1 mrg
124 1.8 mrg /*
125 1.8 mrg * check for page daemon going to sleep (waiting for itself)
126 1.8 mrg */
127 1.1 mrg
128 1.37 chs if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
129 1.8 mrg /*
130 1.8 mrg * now we have a problem: the pagedaemon wants to go to
131 1.8 mrg * sleep until it frees more memory. but how can it
132 1.8 mrg * free more memory if it is asleep? that is a deadlock.
133 1.8 mrg * we have two options:
134 1.8 mrg * [1] panic now
135 1.8 mrg * [2] put a timeout on the sleep, thus causing the
136 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
137 1.8 mrg *
138 1.8 mrg * note that option [2] will only help us if we get lucky
139 1.8 mrg * and some other process on the system breaks the deadlock
140 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
141 1.8 mrg * to continue). for now we panic if DEBUG is defined,
142 1.8 mrg * otherwise we hope for the best with option [2] (better
143 1.8 mrg * yet, this should never happen in the first place!).
144 1.8 mrg */
145 1.1 mrg
146 1.8 mrg printf("pagedaemon: deadlock detected!\n");
147 1.8 mrg timo = hz >> 3; /* set timeout */
148 1.1 mrg #if defined(DEBUG)
149 1.8 mrg /* DEBUG: panic so we can debug it */
150 1.8 mrg panic("pagedaemon deadlock");
151 1.1 mrg #endif
152 1.8 mrg }
153 1.1 mrg
154 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
155 1.17 thorpej wakeup(&uvm.pagedaemon); /* wake the daemon! */
156 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
157 1.8 mrg timo);
158 1.1 mrg
159 1.8 mrg splx(s);
160 1.1 mrg }
161 1.1 mrg
162 1.1 mrg
163 1.1 mrg /*
164 1.1 mrg * uvmpd_tune: tune paging parameters
165 1.1 mrg *
166 1.1 mrg * => called when ever memory is added (or removed?) to the system
167 1.1 mrg * => caller must call with page queues locked
168 1.1 mrg */
169 1.1 mrg
170 1.65 thorpej static void
171 1.37 chs uvmpd_tune(void)
172 1.8 mrg {
173 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
174 1.1 mrg
175 1.8 mrg uvmexp.freemin = uvmexp.npages / 20;
176 1.1 mrg
177 1.8 mrg /* between 16k and 256k */
178 1.8 mrg /* XXX: what are these values good for? */
179 1.37 chs uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
180 1.37 chs uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
181 1.23 bjh21
182 1.23 bjh21 /* Make sure there's always a user page free. */
183 1.23 bjh21 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
184 1.23 bjh21 uvmexp.freemin = uvmexp.reserve_kernel + 1;
185 1.1 mrg
186 1.8 mrg uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
187 1.8 mrg if (uvmexp.freetarg <= uvmexp.freemin)
188 1.8 mrg uvmexp.freetarg = uvmexp.freemin + 1;
189 1.1 mrg
190 1.61 chs uvmexp.freetarg += uvm_extrapages;
191 1.61 chs uvm_extrapages = 0;
192 1.61 chs
193 1.8 mrg /* uvmexp.inactarg: computed in main daemon loop */
194 1.1 mrg
195 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
196 1.8 mrg UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
197 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
198 1.1 mrg }
199 1.1 mrg
200 1.1 mrg /*
201 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
202 1.1 mrg */
203 1.1 mrg
204 1.8 mrg void
205 1.22 thorpej uvm_pageout(void *arg)
206 1.8 mrg {
207 1.60 enami int bufcnt, npages = 0;
208 1.61 chs int extrapages = 0;
209 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
210 1.24 chs
211 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
212 1.8 mrg
213 1.8 mrg /*
214 1.8 mrg * ensure correct priority and set paging parameters...
215 1.8 mrg */
216 1.8 mrg
217 1.8 mrg uvm.pagedaemon_proc = curproc;
218 1.8 mrg uvm_lock_pageq();
219 1.8 mrg npages = uvmexp.npages;
220 1.8 mrg uvmpd_tune();
221 1.8 mrg uvm_unlock_pageq();
222 1.8 mrg
223 1.8 mrg /*
224 1.8 mrg * main loop
225 1.8 mrg */
226 1.24 chs
227 1.24 chs for (;;) {
228 1.24 chs simple_lock(&uvm.pagedaemon_lock);
229 1.24 chs
230 1.24 chs UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
231 1.24 chs UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
232 1.24 chs &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
233 1.24 chs uvmexp.pdwoke++;
234 1.24 chs UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
235 1.24 chs
236 1.8 mrg /*
237 1.24 chs * now lock page queues and recompute inactive count
238 1.8 mrg */
239 1.8 mrg
240 1.24 chs uvm_lock_pageq();
241 1.61 chs if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
242 1.24 chs npages = uvmexp.npages;
243 1.61 chs extrapages = uvm_extrapages;
244 1.24 chs uvmpd_tune();
245 1.24 chs }
246 1.24 chs
247 1.24 chs uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
248 1.24 chs if (uvmexp.inactarg <= uvmexp.freetarg) {
249 1.24 chs uvmexp.inactarg = uvmexp.freetarg + 1;
250 1.24 chs }
251 1.24 chs
252 1.60 enami /*
253 1.60 enami * Estimate a hint. Note that bufmem are returned to
254 1.60 enami * system only when entire pool page is empty.
255 1.60 enami */
256 1.60 enami bufcnt = uvmexp.freetarg - uvmexp.free;
257 1.60 enami if (bufcnt < 0)
258 1.60 enami bufcnt = 0;
259 1.60 enami
260 1.24 chs UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
261 1.24 chs uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
262 1.24 chs uvmexp.inactarg);
263 1.8 mrg
264 1.8 mrg /*
265 1.24 chs * scan if needed
266 1.8 mrg */
267 1.8 mrg
268 1.24 chs if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
269 1.30 chs uvmexp.inactive < uvmexp.inactarg) {
270 1.24 chs uvmpd_scan();
271 1.8 mrg }
272 1.8 mrg
273 1.8 mrg /*
274 1.24 chs * if there's any free memory to be had,
275 1.24 chs * wake up any waiters.
276 1.8 mrg */
277 1.8 mrg
278 1.24 chs if (uvmexp.free > uvmexp.reserve_kernel ||
279 1.24 chs uvmexp.paging == 0) {
280 1.24 chs wakeup(&uvmexp.free);
281 1.8 mrg }
282 1.1 mrg
283 1.8 mrg /*
284 1.24 chs * scan done. unlock page queues (the only lock we are holding)
285 1.8 mrg */
286 1.8 mrg
287 1.24 chs uvm_unlock_pageq();
288 1.38 chs
289 1.60 enami buf_drain(bufcnt << PAGE_SHIFT);
290 1.60 enami
291 1.38 chs /*
292 1.38 chs * drain pool resources now that we're not holding any locks
293 1.38 chs */
294 1.38 chs
295 1.38 chs pool_drain(0);
296 1.57 jdolecek
297 1.57 jdolecek /*
298 1.57 jdolecek * free any cached u-areas we don't need
299 1.57 jdolecek */
300 1.57 jdolecek uvm_uarea_drain(TRUE);
301 1.57 jdolecek
302 1.24 chs }
303 1.24 chs /*NOTREACHED*/
304 1.24 chs }
305 1.24 chs
306 1.8 mrg
307 1.24 chs /*
308 1.24 chs * uvm_aiodone_daemon: main loop for the aiodone daemon.
309 1.24 chs */
310 1.8 mrg
311 1.24 chs void
312 1.24 chs uvm_aiodone_daemon(void *arg)
313 1.24 chs {
314 1.24 chs int s, free;
315 1.24 chs struct buf *bp, *nbp;
316 1.24 chs UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
317 1.9 pk
318 1.24 chs for (;;) {
319 1.8 mrg
320 1.8 mrg /*
321 1.24 chs * carefully attempt to go to sleep (without losing "wakeups"!).
322 1.24 chs * we need splbio because we want to make sure the aio_done list
323 1.24 chs * is totally empty before we go to sleep.
324 1.8 mrg */
325 1.8 mrg
326 1.24 chs s = splbio();
327 1.24 chs simple_lock(&uvm.aiodoned_lock);
328 1.24 chs if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
329 1.24 chs UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
330 1.24 chs UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
331 1.24 chs &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
332 1.24 chs UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
333 1.24 chs
334 1.24 chs /* relock aiodoned_lock, still at splbio */
335 1.24 chs simple_lock(&uvm.aiodoned_lock);
336 1.8 mrg }
337 1.8 mrg
338 1.24 chs /*
339 1.24 chs * check for done aio structures
340 1.24 chs */
341 1.8 mrg
342 1.24 chs bp = TAILQ_FIRST(&uvm.aio_done);
343 1.24 chs if (bp) {
344 1.24 chs TAILQ_INIT(&uvm.aio_done);
345 1.24 chs }
346 1.8 mrg
347 1.24 chs simple_unlock(&uvm.aiodoned_lock);
348 1.24 chs splx(s);
349 1.8 mrg
350 1.8 mrg /*
351 1.24 chs * process each i/o that's done.
352 1.8 mrg */
353 1.8 mrg
354 1.24 chs free = uvmexp.free;
355 1.24 chs while (bp != NULL) {
356 1.24 chs nbp = TAILQ_NEXT(bp, b_freelist);
357 1.24 chs (*bp->b_iodone)(bp);
358 1.24 chs bp = nbp;
359 1.24 chs }
360 1.24 chs if (free <= uvmexp.reserve_kernel) {
361 1.24 chs s = uvm_lock_fpageq();
362 1.24 chs wakeup(&uvm.pagedaemon);
363 1.24 chs uvm_unlock_fpageq(s);
364 1.24 chs } else {
365 1.24 chs simple_lock(&uvm.pagedaemon_lock);
366 1.17 thorpej wakeup(&uvmexp.free);
367 1.24 chs simple_unlock(&uvm.pagedaemon_lock);
368 1.24 chs }
369 1.8 mrg }
370 1.1 mrg }
371 1.1 mrg
372 1.1 mrg /*
373 1.24 chs * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
374 1.1 mrg *
375 1.1 mrg * => called with page queues locked
376 1.1 mrg * => we work on meeting our free target by converting inactive pages
377 1.1 mrg * into free pages.
378 1.1 mrg * => we handle the building of swap-backed clusters
379 1.1 mrg * => we return TRUE if we are exiting because we met our target
380 1.1 mrg */
381 1.1 mrg
382 1.65 thorpej static void
383 1.65 thorpej uvmpd_scan_inactive(struct pglist *pglst)
384 1.8 mrg {
385 1.48 scw struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
386 1.8 mrg struct uvm_object *uobj;
387 1.37 chs struct vm_anon *anon;
388 1.68 yamt #if defined(VMSWAP)
389 1.51 tls struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
390 1.68 yamt int error;
391 1.68 yamt int result;
392 1.68 yamt #endif /* defined(VMSWAP) */
393 1.37 chs struct simplelock *slock;
394 1.37 chs int swnpages, swcpages;
395 1.14 chs int swslot;
396 1.68 yamt int dirtyreacts, t;
397 1.43 chs boolean_t anonunder, fileunder, execunder;
398 1.43 chs boolean_t anonover, fileover, execover;
399 1.43 chs boolean_t anonreact, filereact, execreact;
400 1.8 mrg UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
401 1.1 mrg
402 1.8 mrg /*
403 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
404 1.24 chs * to stay in the loop while we have a page to scan or we have
405 1.8 mrg * a swap-cluster to build.
406 1.8 mrg */
407 1.24 chs
408 1.8 mrg swslot = 0;
409 1.8 mrg swnpages = swcpages = 0;
410 1.14 chs dirtyreacts = 0;
411 1.43 chs
412 1.43 chs /*
413 1.43 chs * decide which types of pages we want to reactivate instead of freeing
414 1.43 chs * to keep usage within the minimum and maximum usage limits.
415 1.43 chs */
416 1.43 chs
417 1.43 chs t = uvmexp.active + uvmexp.inactive + uvmexp.free;
418 1.43 chs anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
419 1.43 chs fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
420 1.43 chs execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
421 1.43 chs anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
422 1.43 chs fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
423 1.43 chs execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
424 1.43 chs anonreact = anonunder || (!anonover && (fileover || execover));
425 1.43 chs filereact = fileunder || (!fileover && (anonover || execover));
426 1.43 chs execreact = execunder || (!execover && (anonover || fileover));
427 1.62 yamt if (filereact && execreact && (anonreact || uvm_swapisfull())) {
428 1.62 yamt anonreact = filereact = execreact = FALSE;
429 1.62 yamt }
430 1.68 yamt #if !defined(VMSWAP)
431 1.68 yamt /*
432 1.68 yamt * XXX no point to put swap-backed pages on the page queue.
433 1.68 yamt */
434 1.68 yamt
435 1.68 yamt anonreact = TRUE;
436 1.68 yamt #endif /* !defined(VMSWAP) */
437 1.24 chs for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
438 1.24 chs uobj = NULL;
439 1.24 chs anon = NULL;
440 1.8 mrg if (p) {
441 1.24 chs
442 1.8 mrg /*
443 1.37 chs * see if we've met the free target.
444 1.8 mrg */
445 1.24 chs
446 1.37 chs if (uvmexp.free + uvmexp.paging >=
447 1.37 chs uvmexp.freetarg << 2 ||
448 1.30 chs dirtyreacts == UVMPD_NUMDIRTYREACTS) {
449 1.30 chs UVMHIST_LOG(pdhist," met free target: "
450 1.30 chs "exit loop", 0, 0, 0, 0);
451 1.24 chs
452 1.30 chs if (swslot == 0) {
453 1.30 chs /* exit now if no swap-i/o pending */
454 1.30 chs break;
455 1.24 chs }
456 1.30 chs
457 1.30 chs /* set p to null to signal final swap i/o */
458 1.30 chs p = NULL;
459 1.37 chs nextpg = NULL;
460 1.8 mrg }
461 1.8 mrg }
462 1.24 chs if (p) { /* if (we have a new page to consider) */
463 1.30 chs
464 1.8 mrg /*
465 1.8 mrg * we are below target and have a new page to consider.
466 1.8 mrg */
467 1.37 chs
468 1.8 mrg uvmexp.pdscans++;
469 1.24 chs nextpg = TAILQ_NEXT(p, pageq);
470 1.8 mrg
471 1.27 mycroft /*
472 1.27 mycroft * move referenced pages back to active queue and
473 1.30 chs * skip to next page.
474 1.27 mycroft */
475 1.30 chs
476 1.37 chs if (pmap_clear_reference(p)) {
477 1.27 mycroft uvm_pageactivate(p);
478 1.27 mycroft uvmexp.pdreact++;
479 1.27 mycroft continue;
480 1.27 mycroft }
481 1.37 chs anon = p->uanon;
482 1.37 chs uobj = p->uobject;
483 1.30 chs
484 1.30 chs /*
485 1.30 chs * enforce the minimum thresholds on different
486 1.30 chs * types of memory usage. if reusing the current
487 1.30 chs * page would reduce that type of usage below its
488 1.30 chs * minimum, reactivate the page instead and move
489 1.30 chs * on to the next page.
490 1.30 chs */
491 1.30 chs
492 1.43 chs if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
493 1.30 chs uvm_pageactivate(p);
494 1.43 chs uvmexp.pdreexec++;
495 1.30 chs continue;
496 1.30 chs }
497 1.37 chs if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
498 1.43 chs !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
499 1.30 chs uvm_pageactivate(p);
500 1.43 chs uvmexp.pdrefile++;
501 1.30 chs continue;
502 1.30 chs }
503 1.47 chs if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
504 1.44 chs uvm_pageactivate(p);
505 1.44 chs uvmexp.pdreanon++;
506 1.44 chs continue;
507 1.44 chs }
508 1.30 chs
509 1.8 mrg /*
510 1.8 mrg * first we attempt to lock the object that this page
511 1.8 mrg * belongs to. if our attempt fails we skip on to
512 1.8 mrg * the next page (no harm done). it is important to
513 1.8 mrg * "try" locking the object as we are locking in the
514 1.8 mrg * wrong order (pageq -> object) and we don't want to
515 1.24 chs * deadlock.
516 1.8 mrg *
517 1.24 chs * the only time we expect to see an ownerless page
518 1.8 mrg * (i.e. a page with no uobject and !PQ_ANON) is if an
519 1.8 mrg * anon has loaned a page from a uvm_object and the
520 1.8 mrg * uvm_object has dropped the ownership. in that
521 1.8 mrg * case, the anon can "take over" the loaned page
522 1.8 mrg * and make it its own.
523 1.8 mrg */
524 1.30 chs
525 1.44 chs /* does the page belong to an object? */
526 1.44 chs if (uobj != NULL) {
527 1.44 chs slock = &uobj->vmobjlock;
528 1.44 chs if (!simple_lock_try(slock)) {
529 1.44 chs continue;
530 1.44 chs }
531 1.44 chs if (p->flags & PG_BUSY) {
532 1.44 chs simple_unlock(slock);
533 1.44 chs uvmexp.pdbusy++;
534 1.44 chs continue;
535 1.44 chs }
536 1.44 chs uvmexp.pdobscan++;
537 1.44 chs } else {
538 1.68 yamt #if defined(VMSWAP)
539 1.24 chs KASSERT(anon != NULL);
540 1.37 chs slock = &anon->an_lock;
541 1.37 chs if (!simple_lock_try(slock)) {
542 1.8 mrg continue;
543 1.30 chs }
544 1.8 mrg
545 1.8 mrg /*
546 1.44 chs * set PQ_ANON if it isn't set already.
547 1.8 mrg */
548 1.24 chs
549 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
550 1.24 chs KASSERT(p->loan_count > 0);
551 1.8 mrg p->loan_count--;
552 1.24 chs p->pqflags |= PQ_ANON;
553 1.24 chs /* anon now owns it */
554 1.8 mrg }
555 1.8 mrg if (p->flags & PG_BUSY) {
556 1.37 chs simple_unlock(slock);
557 1.8 mrg uvmexp.pdbusy++;
558 1.8 mrg continue;
559 1.8 mrg }
560 1.8 mrg uvmexp.pdanscan++;
561 1.68 yamt #else /* defined(VMSWAP) */
562 1.68 yamt panic("%s: anon", __func__);
563 1.68 yamt #endif /* defined(VMSWAP) */
564 1.8 mrg }
565 1.8 mrg
566 1.37 chs
567 1.8 mrg /*
568 1.8 mrg * we now have the object and the page queues locked.
569 1.37 chs * if the page is not swap-backed, call the object's
570 1.37 chs * pager to flush and free the page.
571 1.37 chs */
572 1.37 chs
573 1.37 chs if ((p->pqflags & PQ_SWAPBACKED) == 0) {
574 1.37 chs uvm_unlock_pageq();
575 1.50 simonb (void) (uobj->pgops->pgo_put)(uobj, p->offset,
576 1.37 chs p->offset + PAGE_SIZE,
577 1.37 chs PGO_CLEANIT|PGO_FREE);
578 1.37 chs uvm_lock_pageq();
579 1.37 chs if (nextpg &&
580 1.46 chs (nextpg->pqflags & PQ_INACTIVE) == 0) {
581 1.37 chs nextpg = TAILQ_FIRST(pglst);
582 1.37 chs }
583 1.37 chs continue;
584 1.37 chs }
585 1.37 chs
586 1.68 yamt #if defined(VMSWAP)
587 1.37 chs /*
588 1.37 chs * the page is swap-backed. remove all the permissions
589 1.29 thorpej * from the page so we can sync the modified info
590 1.29 thorpej * without any race conditions. if the page is clean
591 1.29 thorpej * we can free it now and continue.
592 1.8 mrg */
593 1.8 mrg
594 1.29 thorpej pmap_page_protect(p, VM_PROT_NONE);
595 1.37 chs if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
596 1.37 chs p->flags &= ~(PG_CLEAN);
597 1.30 chs }
598 1.8 mrg if (p->flags & PG_CLEAN) {
599 1.53 pk int slot;
600 1.55 chs int pageidx;
601 1.55 chs
602 1.55 chs pageidx = p->offset >> PAGE_SHIFT;
603 1.8 mrg uvm_pagefree(p);
604 1.8 mrg uvmexp.pdfreed++;
605 1.24 chs
606 1.37 chs /*
607 1.37 chs * for anons, we need to remove the page
608 1.37 chs * from the anon ourselves. for aobjs,
609 1.37 chs * pagefree did that for us.
610 1.37 chs */
611 1.37 chs
612 1.8 mrg if (anon) {
613 1.24 chs KASSERT(anon->an_swslot != 0);
614 1.64 yamt anon->an_page = NULL;
615 1.53 pk slot = anon->an_swslot;
616 1.53 pk } else {
617 1.55 chs slot = uao_find_swslot(uobj, pageidx);
618 1.8 mrg }
619 1.37 chs simple_unlock(slock);
620 1.41 chs
621 1.53 pk if (slot > 0) {
622 1.53 pk /* this page is now only in swap. */
623 1.53 pk simple_lock(&uvm.swap_data_lock);
624 1.53 pk KASSERT(uvmexp.swpgonly <
625 1.53 pk uvmexp.swpginuse);
626 1.53 pk uvmexp.swpgonly++;
627 1.53 pk simple_unlock(&uvm.swap_data_lock);
628 1.53 pk }
629 1.8 mrg continue;
630 1.8 mrg }
631 1.8 mrg
632 1.8 mrg /*
633 1.8 mrg * this page is dirty, skip it if we'll have met our
634 1.8 mrg * free target when all the current pageouts complete.
635 1.8 mrg */
636 1.24 chs
637 1.37 chs if (uvmexp.free + uvmexp.paging >
638 1.37 chs uvmexp.freetarg << 2) {
639 1.37 chs simple_unlock(slock);
640 1.8 mrg continue;
641 1.8 mrg }
642 1.8 mrg
643 1.8 mrg /*
644 1.37 chs * free any swap space allocated to the page since
645 1.37 chs * we'll have to write it again with its new data.
646 1.37 chs */
647 1.37 chs
648 1.37 chs if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
649 1.37 chs uvm_swap_free(anon->an_swslot, 1);
650 1.37 chs anon->an_swslot = 0;
651 1.37 chs } else if (p->pqflags & PQ_AOBJ) {
652 1.37 chs uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
653 1.37 chs }
654 1.37 chs
655 1.37 chs /*
656 1.37 chs * if all pages in swap are only in swap,
657 1.37 chs * the swap space is full and we can't page out
658 1.37 chs * any more swap-backed pages. reactivate this page
659 1.37 chs * so that we eventually cycle all pages through
660 1.37 chs * the inactive queue.
661 1.14 chs */
662 1.24 chs
663 1.52 pk if (uvm_swapisfull()) {
664 1.14 chs dirtyreacts++;
665 1.14 chs uvm_pageactivate(p);
666 1.37 chs simple_unlock(slock);
667 1.14 chs continue;
668 1.14 chs }
669 1.14 chs
670 1.14 chs /*
671 1.37 chs * start new swap pageout cluster (if necessary).
672 1.14 chs */
673 1.24 chs
674 1.37 chs if (swslot == 0) {
675 1.51 tls /* Even with strange MAXPHYS, the shift
676 1.51 tls implicitly rounds down to a page. */
677 1.51 tls swnpages = MAXPHYS >> PAGE_SHIFT;
678 1.37 chs swslot = uvm_swap_alloc(&swnpages, TRUE);
679 1.37 chs if (swslot == 0) {
680 1.37 chs simple_unlock(slock);
681 1.37 chs continue;
682 1.14 chs }
683 1.37 chs swcpages = 0;
684 1.14 chs }
685 1.14 chs
686 1.14 chs /*
687 1.37 chs * at this point, we're definitely going reuse this
688 1.37 chs * page. mark the page busy and delayed-free.
689 1.37 chs * we should remove the page from the page queues
690 1.37 chs * so we don't ever look at it again.
691 1.37 chs * adjust counters and such.
692 1.8 mrg */
693 1.30 chs
694 1.37 chs p->flags |= PG_BUSY;
695 1.8 mrg UVM_PAGE_OWN(p, "scan_inactive");
696 1.37 chs
697 1.37 chs p->flags |= PG_PAGEOUT;
698 1.37 chs uvmexp.paging++;
699 1.37 chs uvm_pagedequeue(p);
700 1.37 chs
701 1.8 mrg uvmexp.pgswapout++;
702 1.8 mrg
703 1.8 mrg /*
704 1.37 chs * add the new page to the cluster.
705 1.8 mrg */
706 1.24 chs
707 1.37 chs if (anon) {
708 1.37 chs anon->an_swslot = swslot + swcpages;
709 1.37 chs simple_unlock(slock);
710 1.37 chs } else {
711 1.37 chs result = uao_set_swslot(uobj,
712 1.37 chs p->offset >> PAGE_SHIFT, swslot + swcpages);
713 1.37 chs if (result == -1) {
714 1.37 chs p->flags &= ~(PG_BUSY|PG_PAGEOUT);
715 1.37 chs UVM_PAGE_OWN(p, NULL);
716 1.37 chs uvmexp.paging--;
717 1.37 chs uvm_pageactivate(p);
718 1.37 chs simple_unlock(slock);
719 1.37 chs continue;
720 1.8 mrg }
721 1.37 chs simple_unlock(slock);
722 1.37 chs }
723 1.37 chs swpps[swcpages] = p;
724 1.37 chs swcpages++;
725 1.8 mrg
726 1.37 chs /*
727 1.37 chs * if the cluster isn't full, look for more pages
728 1.37 chs * before starting the i/o.
729 1.37 chs */
730 1.24 chs
731 1.37 chs if (swcpages < swnpages) {
732 1.37 chs continue;
733 1.8 mrg }
734 1.68 yamt #else /* defined(VMSWAP) */
735 1.68 yamt panic("%s: swap-backed", __func__);
736 1.68 yamt #endif /* defined(VMSWAP) */
737 1.68 yamt
738 1.8 mrg }
739 1.8 mrg
740 1.68 yamt #if defined(VMSWAP)
741 1.8 mrg /*
742 1.37 chs * if this is the final pageout we could have a few
743 1.37 chs * unused swap blocks. if so, free them now.
744 1.8 mrg */
745 1.24 chs
746 1.37 chs if (swcpages < swnpages) {
747 1.37 chs uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
748 1.8 mrg }
749 1.8 mrg
750 1.8 mrg /*
751 1.37 chs * now start the pageout.
752 1.8 mrg */
753 1.8 mrg
754 1.37 chs uvm_unlock_pageq();
755 1.8 mrg uvmexp.pdpageouts++;
756 1.37 chs error = uvm_swap_put(swslot, swpps, swcpages, 0);
757 1.37 chs KASSERT(error == 0);
758 1.37 chs uvm_lock_pageq();
759 1.8 mrg
760 1.8 mrg /*
761 1.37 chs * zero swslot to indicate that we are
762 1.8 mrg * no longer building a swap-backed cluster.
763 1.8 mrg */
764 1.8 mrg
765 1.37 chs swslot = 0;
766 1.24 chs
767 1.8 mrg /*
768 1.31 chs * the pageout is in progress. bump counters and set up
769 1.31 chs * for the next loop.
770 1.8 mrg */
771 1.8 mrg
772 1.31 chs uvmexp.pdpending++;
773 1.37 chs if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
774 1.37 chs nextpg = TAILQ_FIRST(pglst);
775 1.8 mrg }
776 1.68 yamt #endif /* defined(VMSWAP) */
777 1.24 chs }
778 1.1 mrg }
779 1.1 mrg
780 1.1 mrg /*
781 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
782 1.1 mrg *
783 1.1 mrg * => called with pageq's locked
784 1.1 mrg */
785 1.1 mrg
786 1.65 thorpej static void
787 1.37 chs uvmpd_scan(void)
788 1.1 mrg {
789 1.37 chs int inactive_shortage, swap_shortage, pages_freed;
790 1.8 mrg struct vm_page *p, *nextpg;
791 1.8 mrg struct uvm_object *uobj;
792 1.37 chs struct vm_anon *anon;
793 1.44 chs struct simplelock *slock;
794 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
795 1.1 mrg
796 1.37 chs uvmexp.pdrevs++;
797 1.24 chs uobj = NULL;
798 1.37 chs anon = NULL;
799 1.1 mrg
800 1.1 mrg #ifndef __SWAP_BROKEN
801 1.39 chs
802 1.8 mrg /*
803 1.8 mrg * swap out some processes if we are below our free target.
804 1.8 mrg * we need to unlock the page queues for this.
805 1.8 mrg */
806 1.39 chs
807 1.39 chs if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
808 1.8 mrg uvmexp.pdswout++;
809 1.37 chs UVMHIST_LOG(pdhist," free %d < target %d: swapout",
810 1.37 chs uvmexp.free, uvmexp.freetarg, 0, 0);
811 1.8 mrg uvm_unlock_pageq();
812 1.8 mrg uvm_swapout_threads();
813 1.8 mrg uvm_lock_pageq();
814 1.1 mrg
815 1.8 mrg }
816 1.1 mrg #endif
817 1.1 mrg
818 1.8 mrg /*
819 1.8 mrg * now we want to work on meeting our targets. first we work on our
820 1.8 mrg * free target by converting inactive pages into free pages. then
821 1.8 mrg * we work on meeting our inactive target by converting active pages
822 1.8 mrg * to inactive ones.
823 1.8 mrg */
824 1.8 mrg
825 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
826 1.8 mrg
827 1.14 chs pages_freed = uvmexp.pdfreed;
828 1.46 chs uvmpd_scan_inactive(&uvm.page_inactive);
829 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
830 1.8 mrg
831 1.8 mrg /*
832 1.8 mrg * we have done the scan to get free pages. now we work on meeting
833 1.8 mrg * our inactive target.
834 1.8 mrg */
835 1.8 mrg
836 1.14 chs inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
837 1.14 chs
838 1.14 chs /*
839 1.14 chs * detect if we're not going to be able to page anything out
840 1.14 chs * until we free some swap resources from active pages.
841 1.14 chs */
842 1.24 chs
843 1.14 chs swap_shortage = 0;
844 1.14 chs if (uvmexp.free < uvmexp.freetarg &&
845 1.52 pk uvmexp.swpginuse >= uvmexp.swpgavail &&
846 1.52 pk !uvm_swapisfull() &&
847 1.14 chs pages_freed == 0) {
848 1.14 chs swap_shortage = uvmexp.freetarg - uvmexp.free;
849 1.14 chs }
850 1.24 chs
851 1.14 chs UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
852 1.14 chs inactive_shortage, swap_shortage,0,0);
853 1.24 chs for (p = TAILQ_FIRST(&uvm.page_active);
854 1.14 chs p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
855 1.14 chs p = nextpg) {
856 1.24 chs nextpg = TAILQ_NEXT(p, pageq);
857 1.37 chs if (p->flags & PG_BUSY) {
858 1.37 chs continue;
859 1.37 chs }
860 1.8 mrg
861 1.8 mrg /*
862 1.14 chs * lock the page's owner.
863 1.8 mrg */
864 1.44 chs
865 1.44 chs if (p->uobject != NULL) {
866 1.44 chs uobj = p->uobject;
867 1.44 chs slock = &uobj->vmobjlock;
868 1.44 chs if (!simple_lock_try(slock)) {
869 1.44 chs continue;
870 1.44 chs }
871 1.44 chs } else {
872 1.37 chs anon = p->uanon;
873 1.37 chs KASSERT(anon != NULL);
874 1.44 chs slock = &anon->an_lock;
875 1.44 chs if (!simple_lock_try(slock)) {
876 1.8 mrg continue;
877 1.37 chs }
878 1.1 mrg
879 1.8 mrg /* take over the page? */
880 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
881 1.24 chs KASSERT(p->loan_count > 0);
882 1.8 mrg p->loan_count--;
883 1.8 mrg p->pqflags |= PQ_ANON;
884 1.8 mrg }
885 1.8 mrg }
886 1.24 chs
887 1.14 chs /*
888 1.14 chs * skip this page if it's busy.
889 1.14 chs */
890 1.24 chs
891 1.14 chs if ((p->flags & PG_BUSY) != 0) {
892 1.44 chs simple_unlock(slock);
893 1.14 chs continue;
894 1.14 chs }
895 1.24 chs
896 1.68 yamt #if defined(VMSWAP)
897 1.14 chs /*
898 1.14 chs * if there's a shortage of swap, free any swap allocated
899 1.14 chs * to this page so that other pages can be paged out.
900 1.14 chs */
901 1.24 chs
902 1.14 chs if (swap_shortage > 0) {
903 1.37 chs if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
904 1.37 chs uvm_swap_free(anon->an_swslot, 1);
905 1.37 chs anon->an_swslot = 0;
906 1.14 chs p->flags &= ~PG_CLEAN;
907 1.14 chs swap_shortage--;
908 1.37 chs } else if (p->pqflags & PQ_AOBJ) {
909 1.37 chs int slot = uao_set_swslot(uobj,
910 1.14 chs p->offset >> PAGE_SHIFT, 0);
911 1.14 chs if (slot) {
912 1.14 chs uvm_swap_free(slot, 1);
913 1.14 chs p->flags &= ~PG_CLEAN;
914 1.14 chs swap_shortage--;
915 1.14 chs }
916 1.14 chs }
917 1.14 chs }
918 1.68 yamt #endif /* defined(VMSWAP) */
919 1.24 chs
920 1.14 chs /*
921 1.37 chs * if there's a shortage of inactive pages, deactivate.
922 1.14 chs */
923 1.24 chs
924 1.32 thorpej if (inactive_shortage > 0) {
925 1.8 mrg /* no need to check wire_count as pg is "active" */
926 1.8 mrg uvm_pagedeactivate(p);
927 1.8 mrg uvmexp.pddeact++;
928 1.14 chs inactive_shortage--;
929 1.8 mrg }
930 1.37 chs
931 1.37 chs /*
932 1.37 chs * we're done with this page.
933 1.37 chs */
934 1.37 chs
935 1.44 chs simple_unlock(slock);
936 1.8 mrg }
937 1.1 mrg }
938 1.62 yamt
939 1.62 yamt /*
940 1.62 yamt * uvm_reclaimable: decide whether to wait for pagedaemon.
941 1.62 yamt *
942 1.62 yamt * => return TRUE if it seems to be worth to do uvm_wait.
943 1.62 yamt *
944 1.62 yamt * XXX should be tunable.
945 1.62 yamt * XXX should consider pools, etc?
946 1.62 yamt */
947 1.62 yamt
948 1.62 yamt boolean_t
949 1.62 yamt uvm_reclaimable(void)
950 1.62 yamt {
951 1.62 yamt int filepages;
952 1.62 yamt
953 1.62 yamt /*
954 1.62 yamt * if swap is not full, no problem.
955 1.62 yamt */
956 1.62 yamt
957 1.62 yamt if (!uvm_swapisfull()) {
958 1.62 yamt return TRUE;
959 1.62 yamt }
960 1.62 yamt
961 1.62 yamt /*
962 1.62 yamt * file-backed pages can be reclaimed even when swap is full.
963 1.62 yamt * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
964 1.62 yamt *
965 1.62 yamt * XXX assume the worst case, ie. all wired pages are file-backed.
966 1.63 yamt *
967 1.63 yamt * XXX should consider about other reclaimable memory.
968 1.63 yamt * XXX ie. pools, traditional buffer cache.
969 1.62 yamt */
970 1.62 yamt
971 1.62 yamt filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
972 1.62 yamt if (filepages >= MIN((uvmexp.active + uvmexp.inactive) >> 4,
973 1.62 yamt 5 * 1024 * 1024 >> PAGE_SHIFT)) {
974 1.62 yamt return TRUE;
975 1.62 yamt }
976 1.62 yamt
977 1.62 yamt /*
978 1.62 yamt * kill the process, fail allocation, etc..
979 1.62 yamt */
980 1.62 yamt
981 1.62 yamt return FALSE;
982 1.62 yamt }
983