uvm_pdaemon.c revision 1.71 1 1.71 yamt /* $NetBSD: uvm_pdaemon.c,v 1.71 2005/12/21 12:24:47 yamt Exp $ */
2 1.1 mrg
3 1.34 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.34 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.34 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.34 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.34 chs *
54 1.34 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.34 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.34 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_pdaemon.c: the page daemon
71 1.1 mrg */
72 1.42 lukem
73 1.42 lukem #include <sys/cdefs.h>
74 1.71 yamt __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.71 2005/12/21 12:24:47 yamt Exp $");
75 1.42 lukem
76 1.42 lukem #include "opt_uvmhist.h"
77 1.69 yamt #include "opt_readahead.h"
78 1.1 mrg
79 1.1 mrg #include <sys/param.h>
80 1.1 mrg #include <sys/proc.h>
81 1.1 mrg #include <sys/systm.h>
82 1.1 mrg #include <sys/kernel.h>
83 1.9 pk #include <sys/pool.h>
84 1.24 chs #include <sys/buf.h>
85 1.30 chs #include <sys/vnode.h>
86 1.1 mrg
87 1.1 mrg #include <uvm/uvm.h>
88 1.1 mrg
89 1.1 mrg /*
90 1.45 wiz * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
91 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
92 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
93 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
94 1.14 chs */
95 1.14 chs
96 1.14 chs #define UVMPD_NUMDIRTYREACTS 16
97 1.14 chs
98 1.14 chs
99 1.14 chs /*
100 1.1 mrg * local prototypes
101 1.1 mrg */
102 1.1 mrg
103 1.65 thorpej static void uvmpd_scan(void);
104 1.65 thorpej static void uvmpd_scan_inactive(struct pglist *);
105 1.65 thorpej static void uvmpd_tune(void);
106 1.1 mrg
107 1.1 mrg /*
108 1.61 chs * XXX hack to avoid hangs when large processes fork.
109 1.61 chs */
110 1.61 chs int uvm_extrapages;
111 1.61 chs
112 1.61 chs /*
113 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
114 1.1 mrg *
115 1.1 mrg * => should be called with all locks released
116 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
117 1.1 mrg */
118 1.1 mrg
119 1.19 thorpej void
120 1.65 thorpej uvm_wait(const char *wmsg)
121 1.8 mrg {
122 1.8 mrg int timo = 0;
123 1.8 mrg int s = splbio();
124 1.1 mrg
125 1.8 mrg /*
126 1.8 mrg * check for page daemon going to sleep (waiting for itself)
127 1.8 mrg */
128 1.1 mrg
129 1.37 chs if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
130 1.8 mrg /*
131 1.8 mrg * now we have a problem: the pagedaemon wants to go to
132 1.8 mrg * sleep until it frees more memory. but how can it
133 1.8 mrg * free more memory if it is asleep? that is a deadlock.
134 1.8 mrg * we have two options:
135 1.8 mrg * [1] panic now
136 1.8 mrg * [2] put a timeout on the sleep, thus causing the
137 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
138 1.8 mrg *
139 1.8 mrg * note that option [2] will only help us if we get lucky
140 1.8 mrg * and some other process on the system breaks the deadlock
141 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
142 1.8 mrg * to continue). for now we panic if DEBUG is defined,
143 1.8 mrg * otherwise we hope for the best with option [2] (better
144 1.8 mrg * yet, this should never happen in the first place!).
145 1.8 mrg */
146 1.1 mrg
147 1.8 mrg printf("pagedaemon: deadlock detected!\n");
148 1.8 mrg timo = hz >> 3; /* set timeout */
149 1.1 mrg #if defined(DEBUG)
150 1.8 mrg /* DEBUG: panic so we can debug it */
151 1.8 mrg panic("pagedaemon deadlock");
152 1.1 mrg #endif
153 1.8 mrg }
154 1.1 mrg
155 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
156 1.17 thorpej wakeup(&uvm.pagedaemon); /* wake the daemon! */
157 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
158 1.8 mrg timo);
159 1.1 mrg
160 1.8 mrg splx(s);
161 1.1 mrg }
162 1.1 mrg
163 1.1 mrg
164 1.1 mrg /*
165 1.1 mrg * uvmpd_tune: tune paging parameters
166 1.1 mrg *
167 1.1 mrg * => called when ever memory is added (or removed?) to the system
168 1.1 mrg * => caller must call with page queues locked
169 1.1 mrg */
170 1.1 mrg
171 1.65 thorpej static void
172 1.37 chs uvmpd_tune(void)
173 1.8 mrg {
174 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
175 1.1 mrg
176 1.8 mrg uvmexp.freemin = uvmexp.npages / 20;
177 1.1 mrg
178 1.8 mrg /* between 16k and 256k */
179 1.8 mrg /* XXX: what are these values good for? */
180 1.37 chs uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
181 1.37 chs uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
182 1.23 bjh21
183 1.23 bjh21 /* Make sure there's always a user page free. */
184 1.23 bjh21 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
185 1.23 bjh21 uvmexp.freemin = uvmexp.reserve_kernel + 1;
186 1.1 mrg
187 1.8 mrg uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
188 1.8 mrg if (uvmexp.freetarg <= uvmexp.freemin)
189 1.8 mrg uvmexp.freetarg = uvmexp.freemin + 1;
190 1.1 mrg
191 1.61 chs uvmexp.freetarg += uvm_extrapages;
192 1.61 chs uvm_extrapages = 0;
193 1.61 chs
194 1.8 mrg /* uvmexp.inactarg: computed in main daemon loop */
195 1.1 mrg
196 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
197 1.8 mrg UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
198 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
199 1.1 mrg }
200 1.1 mrg
201 1.1 mrg /*
202 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
203 1.1 mrg */
204 1.1 mrg
205 1.8 mrg void
206 1.22 thorpej uvm_pageout(void *arg)
207 1.8 mrg {
208 1.60 enami int bufcnt, npages = 0;
209 1.61 chs int extrapages = 0;
210 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
211 1.24 chs
212 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
213 1.8 mrg
214 1.8 mrg /*
215 1.8 mrg * ensure correct priority and set paging parameters...
216 1.8 mrg */
217 1.8 mrg
218 1.8 mrg uvm.pagedaemon_proc = curproc;
219 1.8 mrg uvm_lock_pageq();
220 1.8 mrg npages = uvmexp.npages;
221 1.8 mrg uvmpd_tune();
222 1.8 mrg uvm_unlock_pageq();
223 1.8 mrg
224 1.8 mrg /*
225 1.8 mrg * main loop
226 1.8 mrg */
227 1.24 chs
228 1.24 chs for (;;) {
229 1.24 chs simple_lock(&uvm.pagedaemon_lock);
230 1.24 chs
231 1.24 chs UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
232 1.24 chs UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
233 1.24 chs &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
234 1.24 chs uvmexp.pdwoke++;
235 1.24 chs UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
236 1.24 chs
237 1.8 mrg /*
238 1.24 chs * now lock page queues and recompute inactive count
239 1.8 mrg */
240 1.8 mrg
241 1.24 chs uvm_lock_pageq();
242 1.61 chs if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
243 1.24 chs npages = uvmexp.npages;
244 1.61 chs extrapages = uvm_extrapages;
245 1.24 chs uvmpd_tune();
246 1.24 chs }
247 1.24 chs
248 1.70 yamt uvmexp.inactarg = UVM_PCTPARAM_APPLY(&uvmexp.inactivepct,
249 1.70 yamt uvmexp.active + uvmexp.inactive);
250 1.24 chs if (uvmexp.inactarg <= uvmexp.freetarg) {
251 1.24 chs uvmexp.inactarg = uvmexp.freetarg + 1;
252 1.24 chs }
253 1.24 chs
254 1.60 enami /*
255 1.60 enami * Estimate a hint. Note that bufmem are returned to
256 1.60 enami * system only when entire pool page is empty.
257 1.60 enami */
258 1.60 enami bufcnt = uvmexp.freetarg - uvmexp.free;
259 1.60 enami if (bufcnt < 0)
260 1.60 enami bufcnt = 0;
261 1.60 enami
262 1.24 chs UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
263 1.24 chs uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
264 1.24 chs uvmexp.inactarg);
265 1.8 mrg
266 1.8 mrg /*
267 1.24 chs * scan if needed
268 1.8 mrg */
269 1.8 mrg
270 1.24 chs if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
271 1.30 chs uvmexp.inactive < uvmexp.inactarg) {
272 1.24 chs uvmpd_scan();
273 1.8 mrg }
274 1.8 mrg
275 1.8 mrg /*
276 1.24 chs * if there's any free memory to be had,
277 1.24 chs * wake up any waiters.
278 1.8 mrg */
279 1.8 mrg
280 1.24 chs if (uvmexp.free > uvmexp.reserve_kernel ||
281 1.24 chs uvmexp.paging == 0) {
282 1.24 chs wakeup(&uvmexp.free);
283 1.8 mrg }
284 1.1 mrg
285 1.8 mrg /*
286 1.24 chs * scan done. unlock page queues (the only lock we are holding)
287 1.8 mrg */
288 1.8 mrg
289 1.24 chs uvm_unlock_pageq();
290 1.38 chs
291 1.60 enami buf_drain(bufcnt << PAGE_SHIFT);
292 1.60 enami
293 1.38 chs /*
294 1.38 chs * drain pool resources now that we're not holding any locks
295 1.38 chs */
296 1.38 chs
297 1.38 chs pool_drain(0);
298 1.57 jdolecek
299 1.57 jdolecek /*
300 1.57 jdolecek * free any cached u-areas we don't need
301 1.57 jdolecek */
302 1.57 jdolecek uvm_uarea_drain(TRUE);
303 1.57 jdolecek
304 1.24 chs }
305 1.24 chs /*NOTREACHED*/
306 1.24 chs }
307 1.24 chs
308 1.8 mrg
309 1.24 chs /*
310 1.24 chs * uvm_aiodone_daemon: main loop for the aiodone daemon.
311 1.24 chs */
312 1.8 mrg
313 1.24 chs void
314 1.24 chs uvm_aiodone_daemon(void *arg)
315 1.24 chs {
316 1.24 chs int s, free;
317 1.24 chs struct buf *bp, *nbp;
318 1.24 chs UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
319 1.9 pk
320 1.24 chs for (;;) {
321 1.8 mrg
322 1.8 mrg /*
323 1.24 chs * carefully attempt to go to sleep (without losing "wakeups"!).
324 1.24 chs * we need splbio because we want to make sure the aio_done list
325 1.24 chs * is totally empty before we go to sleep.
326 1.8 mrg */
327 1.8 mrg
328 1.24 chs s = splbio();
329 1.24 chs simple_lock(&uvm.aiodoned_lock);
330 1.24 chs if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
331 1.24 chs UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
332 1.24 chs UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
333 1.24 chs &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
334 1.24 chs UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
335 1.24 chs
336 1.24 chs /* relock aiodoned_lock, still at splbio */
337 1.24 chs simple_lock(&uvm.aiodoned_lock);
338 1.8 mrg }
339 1.8 mrg
340 1.24 chs /*
341 1.24 chs * check for done aio structures
342 1.24 chs */
343 1.8 mrg
344 1.24 chs bp = TAILQ_FIRST(&uvm.aio_done);
345 1.24 chs if (bp) {
346 1.24 chs TAILQ_INIT(&uvm.aio_done);
347 1.24 chs }
348 1.8 mrg
349 1.24 chs simple_unlock(&uvm.aiodoned_lock);
350 1.24 chs splx(s);
351 1.8 mrg
352 1.8 mrg /*
353 1.24 chs * process each i/o that's done.
354 1.8 mrg */
355 1.8 mrg
356 1.24 chs free = uvmexp.free;
357 1.24 chs while (bp != NULL) {
358 1.24 chs nbp = TAILQ_NEXT(bp, b_freelist);
359 1.24 chs (*bp->b_iodone)(bp);
360 1.24 chs bp = nbp;
361 1.24 chs }
362 1.24 chs if (free <= uvmexp.reserve_kernel) {
363 1.24 chs s = uvm_lock_fpageq();
364 1.24 chs wakeup(&uvm.pagedaemon);
365 1.24 chs uvm_unlock_fpageq(s);
366 1.24 chs } else {
367 1.24 chs simple_lock(&uvm.pagedaemon_lock);
368 1.17 thorpej wakeup(&uvmexp.free);
369 1.24 chs simple_unlock(&uvm.pagedaemon_lock);
370 1.24 chs }
371 1.8 mrg }
372 1.1 mrg }
373 1.1 mrg
374 1.1 mrg /*
375 1.24 chs * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
376 1.1 mrg *
377 1.1 mrg * => called with page queues locked
378 1.1 mrg * => we work on meeting our free target by converting inactive pages
379 1.1 mrg * into free pages.
380 1.1 mrg * => we handle the building of swap-backed clusters
381 1.1 mrg * => we return TRUE if we are exiting because we met our target
382 1.1 mrg */
383 1.1 mrg
384 1.65 thorpej static void
385 1.65 thorpej uvmpd_scan_inactive(struct pglist *pglst)
386 1.8 mrg {
387 1.48 scw struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
388 1.8 mrg struct uvm_object *uobj;
389 1.37 chs struct vm_anon *anon;
390 1.68 yamt #if defined(VMSWAP)
391 1.51 tls struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
392 1.68 yamt int error;
393 1.68 yamt int result;
394 1.68 yamt #endif /* defined(VMSWAP) */
395 1.37 chs struct simplelock *slock;
396 1.37 chs int swnpages, swcpages;
397 1.14 chs int swslot;
398 1.68 yamt int dirtyreacts, t;
399 1.43 chs boolean_t anonunder, fileunder, execunder;
400 1.43 chs boolean_t anonover, fileover, execover;
401 1.43 chs boolean_t anonreact, filereact, execreact;
402 1.8 mrg UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
403 1.1 mrg
404 1.8 mrg /*
405 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
406 1.24 chs * to stay in the loop while we have a page to scan or we have
407 1.8 mrg * a swap-cluster to build.
408 1.8 mrg */
409 1.24 chs
410 1.8 mrg swslot = 0;
411 1.8 mrg swnpages = swcpages = 0;
412 1.14 chs dirtyreacts = 0;
413 1.43 chs
414 1.43 chs /*
415 1.43 chs * decide which types of pages we want to reactivate instead of freeing
416 1.43 chs * to keep usage within the minimum and maximum usage limits.
417 1.43 chs */
418 1.43 chs
419 1.43 chs t = uvmexp.active + uvmexp.inactive + uvmexp.free;
420 1.43 chs anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
421 1.43 chs fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
422 1.43 chs execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
423 1.43 chs anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
424 1.43 chs fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
425 1.43 chs execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
426 1.43 chs anonreact = anonunder || (!anonover && (fileover || execover));
427 1.43 chs filereact = fileunder || (!fileover && (anonover || execover));
428 1.43 chs execreact = execunder || (!execover && (anonover || fileover));
429 1.62 yamt if (filereact && execreact && (anonreact || uvm_swapisfull())) {
430 1.62 yamt anonreact = filereact = execreact = FALSE;
431 1.62 yamt }
432 1.68 yamt #if !defined(VMSWAP)
433 1.68 yamt /*
434 1.68 yamt * XXX no point to put swap-backed pages on the page queue.
435 1.68 yamt */
436 1.68 yamt
437 1.68 yamt anonreact = TRUE;
438 1.68 yamt #endif /* !defined(VMSWAP) */
439 1.24 chs for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
440 1.24 chs uobj = NULL;
441 1.24 chs anon = NULL;
442 1.8 mrg if (p) {
443 1.24 chs
444 1.8 mrg /*
445 1.37 chs * see if we've met the free target.
446 1.8 mrg */
447 1.24 chs
448 1.37 chs if (uvmexp.free + uvmexp.paging >=
449 1.37 chs uvmexp.freetarg << 2 ||
450 1.30 chs dirtyreacts == UVMPD_NUMDIRTYREACTS) {
451 1.30 chs UVMHIST_LOG(pdhist," met free target: "
452 1.30 chs "exit loop", 0, 0, 0, 0);
453 1.24 chs
454 1.30 chs if (swslot == 0) {
455 1.30 chs /* exit now if no swap-i/o pending */
456 1.30 chs break;
457 1.24 chs }
458 1.30 chs
459 1.30 chs /* set p to null to signal final swap i/o */
460 1.30 chs p = NULL;
461 1.37 chs nextpg = NULL;
462 1.8 mrg }
463 1.8 mrg }
464 1.24 chs if (p) { /* if (we have a new page to consider) */
465 1.30 chs
466 1.8 mrg /*
467 1.8 mrg * we are below target and have a new page to consider.
468 1.8 mrg */
469 1.37 chs
470 1.8 mrg uvmexp.pdscans++;
471 1.24 chs nextpg = TAILQ_NEXT(p, pageq);
472 1.8 mrg
473 1.27 mycroft /*
474 1.27 mycroft * move referenced pages back to active queue and
475 1.30 chs * skip to next page.
476 1.27 mycroft */
477 1.30 chs
478 1.37 chs if (pmap_clear_reference(p)) {
479 1.27 mycroft uvm_pageactivate(p);
480 1.27 mycroft uvmexp.pdreact++;
481 1.27 mycroft continue;
482 1.27 mycroft }
483 1.37 chs anon = p->uanon;
484 1.37 chs uobj = p->uobject;
485 1.30 chs
486 1.30 chs /*
487 1.30 chs * enforce the minimum thresholds on different
488 1.30 chs * types of memory usage. if reusing the current
489 1.30 chs * page would reduce that type of usage below its
490 1.30 chs * minimum, reactivate the page instead and move
491 1.30 chs * on to the next page.
492 1.30 chs */
493 1.30 chs
494 1.43 chs if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
495 1.30 chs uvm_pageactivate(p);
496 1.43 chs uvmexp.pdreexec++;
497 1.30 chs continue;
498 1.30 chs }
499 1.37 chs if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
500 1.43 chs !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
501 1.30 chs uvm_pageactivate(p);
502 1.43 chs uvmexp.pdrefile++;
503 1.30 chs continue;
504 1.30 chs }
505 1.47 chs if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
506 1.44 chs uvm_pageactivate(p);
507 1.44 chs uvmexp.pdreanon++;
508 1.44 chs continue;
509 1.44 chs }
510 1.30 chs
511 1.8 mrg /*
512 1.8 mrg * first we attempt to lock the object that this page
513 1.8 mrg * belongs to. if our attempt fails we skip on to
514 1.8 mrg * the next page (no harm done). it is important to
515 1.8 mrg * "try" locking the object as we are locking in the
516 1.8 mrg * wrong order (pageq -> object) and we don't want to
517 1.24 chs * deadlock.
518 1.8 mrg *
519 1.24 chs * the only time we expect to see an ownerless page
520 1.8 mrg * (i.e. a page with no uobject and !PQ_ANON) is if an
521 1.8 mrg * anon has loaned a page from a uvm_object and the
522 1.8 mrg * uvm_object has dropped the ownership. in that
523 1.8 mrg * case, the anon can "take over" the loaned page
524 1.8 mrg * and make it its own.
525 1.8 mrg */
526 1.30 chs
527 1.44 chs /* does the page belong to an object? */
528 1.44 chs if (uobj != NULL) {
529 1.44 chs slock = &uobj->vmobjlock;
530 1.44 chs if (!simple_lock_try(slock)) {
531 1.44 chs continue;
532 1.44 chs }
533 1.44 chs if (p->flags & PG_BUSY) {
534 1.44 chs simple_unlock(slock);
535 1.44 chs uvmexp.pdbusy++;
536 1.44 chs continue;
537 1.44 chs }
538 1.44 chs uvmexp.pdobscan++;
539 1.44 chs } else {
540 1.68 yamt #if defined(VMSWAP)
541 1.24 chs KASSERT(anon != NULL);
542 1.37 chs slock = &anon->an_lock;
543 1.37 chs if (!simple_lock_try(slock)) {
544 1.8 mrg continue;
545 1.30 chs }
546 1.8 mrg
547 1.8 mrg /*
548 1.44 chs * set PQ_ANON if it isn't set already.
549 1.8 mrg */
550 1.24 chs
551 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
552 1.24 chs KASSERT(p->loan_count > 0);
553 1.8 mrg p->loan_count--;
554 1.24 chs p->pqflags |= PQ_ANON;
555 1.24 chs /* anon now owns it */
556 1.8 mrg }
557 1.8 mrg if (p->flags & PG_BUSY) {
558 1.37 chs simple_unlock(slock);
559 1.8 mrg uvmexp.pdbusy++;
560 1.8 mrg continue;
561 1.8 mrg }
562 1.8 mrg uvmexp.pdanscan++;
563 1.68 yamt #else /* defined(VMSWAP) */
564 1.68 yamt panic("%s: anon", __func__);
565 1.68 yamt #endif /* defined(VMSWAP) */
566 1.8 mrg }
567 1.8 mrg
568 1.37 chs
569 1.8 mrg /*
570 1.8 mrg * we now have the object and the page queues locked.
571 1.37 chs * if the page is not swap-backed, call the object's
572 1.37 chs * pager to flush and free the page.
573 1.37 chs */
574 1.37 chs
575 1.69 yamt #if defined(READAHEAD_STATS)
576 1.69 yamt if ((p->flags & PG_SPECULATIVE) != 0) {
577 1.69 yamt p->flags &= ~PG_SPECULATIVE;
578 1.69 yamt uvm_ra_miss.ev_count++;
579 1.69 yamt }
580 1.69 yamt #endif /* defined(READAHEAD_STATS) */
581 1.69 yamt
582 1.37 chs if ((p->pqflags & PQ_SWAPBACKED) == 0) {
583 1.37 chs uvm_unlock_pageq();
584 1.50 simonb (void) (uobj->pgops->pgo_put)(uobj, p->offset,
585 1.37 chs p->offset + PAGE_SIZE,
586 1.37 chs PGO_CLEANIT|PGO_FREE);
587 1.37 chs uvm_lock_pageq();
588 1.37 chs if (nextpg &&
589 1.46 chs (nextpg->pqflags & PQ_INACTIVE) == 0) {
590 1.37 chs nextpg = TAILQ_FIRST(pglst);
591 1.37 chs }
592 1.37 chs continue;
593 1.37 chs }
594 1.37 chs
595 1.68 yamt #if defined(VMSWAP)
596 1.37 chs /*
597 1.37 chs * the page is swap-backed. remove all the permissions
598 1.29 thorpej * from the page so we can sync the modified info
599 1.29 thorpej * without any race conditions. if the page is clean
600 1.29 thorpej * we can free it now and continue.
601 1.8 mrg */
602 1.8 mrg
603 1.29 thorpej pmap_page_protect(p, VM_PROT_NONE);
604 1.37 chs if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
605 1.37 chs p->flags &= ~(PG_CLEAN);
606 1.30 chs }
607 1.8 mrg if (p->flags & PG_CLEAN) {
608 1.53 pk int slot;
609 1.55 chs int pageidx;
610 1.55 chs
611 1.55 chs pageidx = p->offset >> PAGE_SHIFT;
612 1.8 mrg uvm_pagefree(p);
613 1.8 mrg uvmexp.pdfreed++;
614 1.24 chs
615 1.37 chs /*
616 1.37 chs * for anons, we need to remove the page
617 1.37 chs * from the anon ourselves. for aobjs,
618 1.37 chs * pagefree did that for us.
619 1.37 chs */
620 1.37 chs
621 1.8 mrg if (anon) {
622 1.24 chs KASSERT(anon->an_swslot != 0);
623 1.64 yamt anon->an_page = NULL;
624 1.53 pk slot = anon->an_swslot;
625 1.53 pk } else {
626 1.55 chs slot = uao_find_swslot(uobj, pageidx);
627 1.8 mrg }
628 1.37 chs simple_unlock(slock);
629 1.41 chs
630 1.53 pk if (slot > 0) {
631 1.53 pk /* this page is now only in swap. */
632 1.53 pk simple_lock(&uvm.swap_data_lock);
633 1.53 pk KASSERT(uvmexp.swpgonly <
634 1.53 pk uvmexp.swpginuse);
635 1.53 pk uvmexp.swpgonly++;
636 1.53 pk simple_unlock(&uvm.swap_data_lock);
637 1.53 pk }
638 1.8 mrg continue;
639 1.8 mrg }
640 1.8 mrg
641 1.8 mrg /*
642 1.8 mrg * this page is dirty, skip it if we'll have met our
643 1.8 mrg * free target when all the current pageouts complete.
644 1.8 mrg */
645 1.24 chs
646 1.37 chs if (uvmexp.free + uvmexp.paging >
647 1.37 chs uvmexp.freetarg << 2) {
648 1.37 chs simple_unlock(slock);
649 1.8 mrg continue;
650 1.8 mrg }
651 1.8 mrg
652 1.8 mrg /*
653 1.37 chs * free any swap space allocated to the page since
654 1.37 chs * we'll have to write it again with its new data.
655 1.37 chs */
656 1.37 chs
657 1.37 chs if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
658 1.37 chs uvm_swap_free(anon->an_swslot, 1);
659 1.37 chs anon->an_swslot = 0;
660 1.37 chs } else if (p->pqflags & PQ_AOBJ) {
661 1.37 chs uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
662 1.37 chs }
663 1.37 chs
664 1.37 chs /*
665 1.37 chs * if all pages in swap are only in swap,
666 1.37 chs * the swap space is full and we can't page out
667 1.37 chs * any more swap-backed pages. reactivate this page
668 1.37 chs * so that we eventually cycle all pages through
669 1.37 chs * the inactive queue.
670 1.14 chs */
671 1.24 chs
672 1.52 pk if (uvm_swapisfull()) {
673 1.14 chs dirtyreacts++;
674 1.14 chs uvm_pageactivate(p);
675 1.37 chs simple_unlock(slock);
676 1.14 chs continue;
677 1.14 chs }
678 1.14 chs
679 1.14 chs /*
680 1.37 chs * start new swap pageout cluster (if necessary).
681 1.14 chs */
682 1.24 chs
683 1.37 chs if (swslot == 0) {
684 1.51 tls /* Even with strange MAXPHYS, the shift
685 1.51 tls implicitly rounds down to a page. */
686 1.51 tls swnpages = MAXPHYS >> PAGE_SHIFT;
687 1.37 chs swslot = uvm_swap_alloc(&swnpages, TRUE);
688 1.37 chs if (swslot == 0) {
689 1.37 chs simple_unlock(slock);
690 1.37 chs continue;
691 1.14 chs }
692 1.37 chs swcpages = 0;
693 1.14 chs }
694 1.14 chs
695 1.14 chs /*
696 1.37 chs * at this point, we're definitely going reuse this
697 1.37 chs * page. mark the page busy and delayed-free.
698 1.37 chs * we should remove the page from the page queues
699 1.37 chs * so we don't ever look at it again.
700 1.37 chs * adjust counters and such.
701 1.8 mrg */
702 1.30 chs
703 1.37 chs p->flags |= PG_BUSY;
704 1.8 mrg UVM_PAGE_OWN(p, "scan_inactive");
705 1.37 chs
706 1.37 chs p->flags |= PG_PAGEOUT;
707 1.37 chs uvmexp.paging++;
708 1.37 chs uvm_pagedequeue(p);
709 1.37 chs
710 1.8 mrg uvmexp.pgswapout++;
711 1.8 mrg
712 1.8 mrg /*
713 1.37 chs * add the new page to the cluster.
714 1.8 mrg */
715 1.24 chs
716 1.37 chs if (anon) {
717 1.37 chs anon->an_swslot = swslot + swcpages;
718 1.37 chs simple_unlock(slock);
719 1.37 chs } else {
720 1.37 chs result = uao_set_swslot(uobj,
721 1.37 chs p->offset >> PAGE_SHIFT, swslot + swcpages);
722 1.37 chs if (result == -1) {
723 1.37 chs p->flags &= ~(PG_BUSY|PG_PAGEOUT);
724 1.37 chs UVM_PAGE_OWN(p, NULL);
725 1.37 chs uvmexp.paging--;
726 1.37 chs uvm_pageactivate(p);
727 1.37 chs simple_unlock(slock);
728 1.37 chs continue;
729 1.8 mrg }
730 1.37 chs simple_unlock(slock);
731 1.37 chs }
732 1.37 chs swpps[swcpages] = p;
733 1.37 chs swcpages++;
734 1.8 mrg
735 1.37 chs /*
736 1.37 chs * if the cluster isn't full, look for more pages
737 1.37 chs * before starting the i/o.
738 1.37 chs */
739 1.24 chs
740 1.37 chs if (swcpages < swnpages) {
741 1.37 chs continue;
742 1.8 mrg }
743 1.68 yamt #else /* defined(VMSWAP) */
744 1.68 yamt panic("%s: swap-backed", __func__);
745 1.68 yamt #endif /* defined(VMSWAP) */
746 1.68 yamt
747 1.8 mrg }
748 1.8 mrg
749 1.68 yamt #if defined(VMSWAP)
750 1.8 mrg /*
751 1.37 chs * if this is the final pageout we could have a few
752 1.37 chs * unused swap blocks. if so, free them now.
753 1.8 mrg */
754 1.24 chs
755 1.37 chs if (swcpages < swnpages) {
756 1.37 chs uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
757 1.8 mrg }
758 1.8 mrg
759 1.8 mrg /*
760 1.37 chs * now start the pageout.
761 1.8 mrg */
762 1.8 mrg
763 1.37 chs uvm_unlock_pageq();
764 1.8 mrg uvmexp.pdpageouts++;
765 1.37 chs error = uvm_swap_put(swslot, swpps, swcpages, 0);
766 1.37 chs KASSERT(error == 0);
767 1.37 chs uvm_lock_pageq();
768 1.8 mrg
769 1.8 mrg /*
770 1.37 chs * zero swslot to indicate that we are
771 1.8 mrg * no longer building a swap-backed cluster.
772 1.8 mrg */
773 1.8 mrg
774 1.37 chs swslot = 0;
775 1.24 chs
776 1.8 mrg /*
777 1.31 chs * the pageout is in progress. bump counters and set up
778 1.31 chs * for the next loop.
779 1.8 mrg */
780 1.8 mrg
781 1.31 chs uvmexp.pdpending++;
782 1.37 chs if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
783 1.37 chs nextpg = TAILQ_FIRST(pglst);
784 1.8 mrg }
785 1.68 yamt #endif /* defined(VMSWAP) */
786 1.24 chs }
787 1.1 mrg }
788 1.1 mrg
789 1.1 mrg /*
790 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
791 1.1 mrg *
792 1.1 mrg * => called with pageq's locked
793 1.1 mrg */
794 1.1 mrg
795 1.65 thorpej static void
796 1.37 chs uvmpd_scan(void)
797 1.1 mrg {
798 1.37 chs int inactive_shortage, swap_shortage, pages_freed;
799 1.8 mrg struct vm_page *p, *nextpg;
800 1.8 mrg struct uvm_object *uobj;
801 1.37 chs struct vm_anon *anon;
802 1.44 chs struct simplelock *slock;
803 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
804 1.1 mrg
805 1.37 chs uvmexp.pdrevs++;
806 1.24 chs uobj = NULL;
807 1.37 chs anon = NULL;
808 1.1 mrg
809 1.1 mrg #ifndef __SWAP_BROKEN
810 1.39 chs
811 1.8 mrg /*
812 1.8 mrg * swap out some processes if we are below our free target.
813 1.8 mrg * we need to unlock the page queues for this.
814 1.8 mrg */
815 1.39 chs
816 1.39 chs if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
817 1.8 mrg uvmexp.pdswout++;
818 1.37 chs UVMHIST_LOG(pdhist," free %d < target %d: swapout",
819 1.37 chs uvmexp.free, uvmexp.freetarg, 0, 0);
820 1.8 mrg uvm_unlock_pageq();
821 1.8 mrg uvm_swapout_threads();
822 1.8 mrg uvm_lock_pageq();
823 1.1 mrg
824 1.8 mrg }
825 1.1 mrg #endif
826 1.1 mrg
827 1.8 mrg /*
828 1.8 mrg * now we want to work on meeting our targets. first we work on our
829 1.8 mrg * free target by converting inactive pages into free pages. then
830 1.8 mrg * we work on meeting our inactive target by converting active pages
831 1.8 mrg * to inactive ones.
832 1.8 mrg */
833 1.8 mrg
834 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
835 1.8 mrg
836 1.14 chs pages_freed = uvmexp.pdfreed;
837 1.46 chs uvmpd_scan_inactive(&uvm.page_inactive);
838 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
839 1.8 mrg
840 1.8 mrg /*
841 1.8 mrg * we have done the scan to get free pages. now we work on meeting
842 1.8 mrg * our inactive target.
843 1.8 mrg */
844 1.8 mrg
845 1.14 chs inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
846 1.14 chs
847 1.14 chs /*
848 1.14 chs * detect if we're not going to be able to page anything out
849 1.14 chs * until we free some swap resources from active pages.
850 1.14 chs */
851 1.24 chs
852 1.14 chs swap_shortage = 0;
853 1.14 chs if (uvmexp.free < uvmexp.freetarg &&
854 1.52 pk uvmexp.swpginuse >= uvmexp.swpgavail &&
855 1.52 pk !uvm_swapisfull() &&
856 1.14 chs pages_freed == 0) {
857 1.14 chs swap_shortage = uvmexp.freetarg - uvmexp.free;
858 1.14 chs }
859 1.24 chs
860 1.14 chs UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
861 1.14 chs inactive_shortage, swap_shortage,0,0);
862 1.24 chs for (p = TAILQ_FIRST(&uvm.page_active);
863 1.14 chs p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
864 1.14 chs p = nextpg) {
865 1.24 chs nextpg = TAILQ_NEXT(p, pageq);
866 1.37 chs if (p->flags & PG_BUSY) {
867 1.37 chs continue;
868 1.37 chs }
869 1.8 mrg
870 1.8 mrg /*
871 1.14 chs * lock the page's owner.
872 1.8 mrg */
873 1.44 chs
874 1.44 chs if (p->uobject != NULL) {
875 1.44 chs uobj = p->uobject;
876 1.44 chs slock = &uobj->vmobjlock;
877 1.44 chs if (!simple_lock_try(slock)) {
878 1.44 chs continue;
879 1.44 chs }
880 1.44 chs } else {
881 1.37 chs anon = p->uanon;
882 1.37 chs KASSERT(anon != NULL);
883 1.44 chs slock = &anon->an_lock;
884 1.44 chs if (!simple_lock_try(slock)) {
885 1.8 mrg continue;
886 1.37 chs }
887 1.1 mrg
888 1.8 mrg /* take over the page? */
889 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
890 1.24 chs KASSERT(p->loan_count > 0);
891 1.8 mrg p->loan_count--;
892 1.8 mrg p->pqflags |= PQ_ANON;
893 1.8 mrg }
894 1.8 mrg }
895 1.24 chs
896 1.14 chs /*
897 1.14 chs * skip this page if it's busy.
898 1.14 chs */
899 1.24 chs
900 1.14 chs if ((p->flags & PG_BUSY) != 0) {
901 1.44 chs simple_unlock(slock);
902 1.14 chs continue;
903 1.14 chs }
904 1.24 chs
905 1.68 yamt #if defined(VMSWAP)
906 1.14 chs /*
907 1.14 chs * if there's a shortage of swap, free any swap allocated
908 1.14 chs * to this page so that other pages can be paged out.
909 1.14 chs */
910 1.24 chs
911 1.14 chs if (swap_shortage > 0) {
912 1.37 chs if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
913 1.37 chs uvm_swap_free(anon->an_swslot, 1);
914 1.37 chs anon->an_swslot = 0;
915 1.14 chs p->flags &= ~PG_CLEAN;
916 1.14 chs swap_shortage--;
917 1.37 chs } else if (p->pqflags & PQ_AOBJ) {
918 1.37 chs int slot = uao_set_swslot(uobj,
919 1.14 chs p->offset >> PAGE_SHIFT, 0);
920 1.14 chs if (slot) {
921 1.14 chs uvm_swap_free(slot, 1);
922 1.14 chs p->flags &= ~PG_CLEAN;
923 1.14 chs swap_shortage--;
924 1.14 chs }
925 1.14 chs }
926 1.14 chs }
927 1.68 yamt #endif /* defined(VMSWAP) */
928 1.24 chs
929 1.14 chs /*
930 1.37 chs * if there's a shortage of inactive pages, deactivate.
931 1.14 chs */
932 1.24 chs
933 1.32 thorpej if (inactive_shortage > 0) {
934 1.8 mrg /* no need to check wire_count as pg is "active" */
935 1.71 yamt pmap_clear_reference(p);
936 1.8 mrg uvm_pagedeactivate(p);
937 1.8 mrg uvmexp.pddeact++;
938 1.14 chs inactive_shortage--;
939 1.8 mrg }
940 1.37 chs
941 1.37 chs /*
942 1.37 chs * we're done with this page.
943 1.37 chs */
944 1.37 chs
945 1.44 chs simple_unlock(slock);
946 1.8 mrg }
947 1.1 mrg }
948 1.62 yamt
949 1.62 yamt /*
950 1.62 yamt * uvm_reclaimable: decide whether to wait for pagedaemon.
951 1.62 yamt *
952 1.62 yamt * => return TRUE if it seems to be worth to do uvm_wait.
953 1.62 yamt *
954 1.62 yamt * XXX should be tunable.
955 1.62 yamt * XXX should consider pools, etc?
956 1.62 yamt */
957 1.62 yamt
958 1.62 yamt boolean_t
959 1.62 yamt uvm_reclaimable(void)
960 1.62 yamt {
961 1.62 yamt int filepages;
962 1.62 yamt
963 1.62 yamt /*
964 1.62 yamt * if swap is not full, no problem.
965 1.62 yamt */
966 1.62 yamt
967 1.62 yamt if (!uvm_swapisfull()) {
968 1.62 yamt return TRUE;
969 1.62 yamt }
970 1.62 yamt
971 1.62 yamt /*
972 1.62 yamt * file-backed pages can be reclaimed even when swap is full.
973 1.62 yamt * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
974 1.62 yamt *
975 1.62 yamt * XXX assume the worst case, ie. all wired pages are file-backed.
976 1.63 yamt *
977 1.63 yamt * XXX should consider about other reclaimable memory.
978 1.63 yamt * XXX ie. pools, traditional buffer cache.
979 1.62 yamt */
980 1.62 yamt
981 1.62 yamt filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
982 1.62 yamt if (filepages >= MIN((uvmexp.active + uvmexp.inactive) >> 4,
983 1.62 yamt 5 * 1024 * 1024 >> PAGE_SHIFT)) {
984 1.62 yamt return TRUE;
985 1.62 yamt }
986 1.62 yamt
987 1.62 yamt /*
988 1.62 yamt * kill the process, fail allocation, etc..
989 1.62 yamt */
990 1.62 yamt
991 1.62 yamt return FALSE;
992 1.62 yamt }
993