Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.71
      1  1.71      yamt /*	$NetBSD: uvm_pdaemon.c,v 1.71 2005/12/21 12:24:47 yamt Exp $	*/
      2   1.1       mrg 
      3  1.34       chs /*
      4   1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  1.34       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1       mrg  *
      7   1.1       mrg  * All rights reserved.
      8   1.1       mrg  *
      9   1.1       mrg  * This code is derived from software contributed to Berkeley by
     10   1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1       mrg  *
     12   1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1       mrg  * modification, are permitted provided that the following conditions
     14   1.1       mrg  * are met:
     15   1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1       mrg  *    must display the following acknowledgement:
     22   1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23  1.34       chs  *      Washington University, the University of California, Berkeley and
     24   1.1       mrg  *      its contributors.
     25   1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1       mrg  *    may be used to endorse or promote products derived from this software
     27   1.1       mrg  *    without specific prior written permission.
     28   1.1       mrg  *
     29   1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1       mrg  * SUCH DAMAGE.
     40   1.1       mrg  *
     41   1.1       mrg  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42   1.4       mrg  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43   1.1       mrg  *
     44   1.1       mrg  *
     45   1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1       mrg  * All rights reserved.
     47  1.34       chs  *
     48   1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1       mrg  * notice and this permission notice appear in all copies of the
     51   1.1       mrg  * software, derivative works or modified versions, and any portions
     52   1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53  1.34       chs  *
     54  1.34       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  1.34       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  1.34       chs  *
     58   1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1       mrg  *
     60   1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1       mrg  *  School of Computer Science
     62   1.1       mrg  *  Carnegie Mellon University
     63   1.1       mrg  *  Pittsburgh PA 15213-3890
     64   1.1       mrg  *
     65   1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1       mrg  * rights to redistribute these changes.
     67   1.1       mrg  */
     68   1.1       mrg 
     69   1.1       mrg /*
     70   1.1       mrg  * uvm_pdaemon.c: the page daemon
     71   1.1       mrg  */
     72  1.42     lukem 
     73  1.42     lukem #include <sys/cdefs.h>
     74  1.71      yamt __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.71 2005/12/21 12:24:47 yamt Exp $");
     75  1.42     lukem 
     76  1.42     lukem #include "opt_uvmhist.h"
     77  1.69      yamt #include "opt_readahead.h"
     78   1.1       mrg 
     79   1.1       mrg #include <sys/param.h>
     80   1.1       mrg #include <sys/proc.h>
     81   1.1       mrg #include <sys/systm.h>
     82   1.1       mrg #include <sys/kernel.h>
     83   1.9        pk #include <sys/pool.h>
     84  1.24       chs #include <sys/buf.h>
     85  1.30       chs #include <sys/vnode.h>
     86   1.1       mrg 
     87   1.1       mrg #include <uvm/uvm.h>
     88   1.1       mrg 
     89   1.1       mrg /*
     90  1.45       wiz  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     91  1.14       chs  * in a pass thru the inactive list when swap is full.  the value should be
     92  1.14       chs  * "small"... if it's too large we'll cycle the active pages thru the inactive
     93  1.14       chs  * queue too quickly to for them to be referenced and avoid being freed.
     94  1.14       chs  */
     95  1.14       chs 
     96  1.14       chs #define UVMPD_NUMDIRTYREACTS 16
     97  1.14       chs 
     98  1.14       chs 
     99  1.14       chs /*
    100   1.1       mrg  * local prototypes
    101   1.1       mrg  */
    102   1.1       mrg 
    103  1.65   thorpej static void	uvmpd_scan(void);
    104  1.65   thorpej static void	uvmpd_scan_inactive(struct pglist *);
    105  1.65   thorpej static void	uvmpd_tune(void);
    106   1.1       mrg 
    107   1.1       mrg /*
    108  1.61       chs  * XXX hack to avoid hangs when large processes fork.
    109  1.61       chs  */
    110  1.61       chs int uvm_extrapages;
    111  1.61       chs 
    112  1.61       chs /*
    113   1.1       mrg  * uvm_wait: wait (sleep) for the page daemon to free some pages
    114   1.1       mrg  *
    115   1.1       mrg  * => should be called with all locks released
    116   1.1       mrg  * => should _not_ be called by the page daemon (to avoid deadlock)
    117   1.1       mrg  */
    118   1.1       mrg 
    119  1.19   thorpej void
    120  1.65   thorpej uvm_wait(const char *wmsg)
    121   1.8       mrg {
    122   1.8       mrg 	int timo = 0;
    123   1.8       mrg 	int s = splbio();
    124   1.1       mrg 
    125   1.8       mrg 	/*
    126   1.8       mrg 	 * check for page daemon going to sleep (waiting for itself)
    127   1.8       mrg 	 */
    128   1.1       mrg 
    129  1.37       chs 	if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
    130   1.8       mrg 		/*
    131   1.8       mrg 		 * now we have a problem: the pagedaemon wants to go to
    132   1.8       mrg 		 * sleep until it frees more memory.   but how can it
    133   1.8       mrg 		 * free more memory if it is asleep?  that is a deadlock.
    134   1.8       mrg 		 * we have two options:
    135   1.8       mrg 		 *  [1] panic now
    136   1.8       mrg 		 *  [2] put a timeout on the sleep, thus causing the
    137   1.8       mrg 		 *      pagedaemon to only pause (rather than sleep forever)
    138   1.8       mrg 		 *
    139   1.8       mrg 		 * note that option [2] will only help us if we get lucky
    140   1.8       mrg 		 * and some other process on the system breaks the deadlock
    141   1.8       mrg 		 * by exiting or freeing memory (thus allowing the pagedaemon
    142   1.8       mrg 		 * to continue).  for now we panic if DEBUG is defined,
    143   1.8       mrg 		 * otherwise we hope for the best with option [2] (better
    144   1.8       mrg 		 * yet, this should never happen in the first place!).
    145   1.8       mrg 		 */
    146   1.1       mrg 
    147   1.8       mrg 		printf("pagedaemon: deadlock detected!\n");
    148   1.8       mrg 		timo = hz >> 3;		/* set timeout */
    149   1.1       mrg #if defined(DEBUG)
    150   1.8       mrg 		/* DEBUG: panic so we can debug it */
    151   1.8       mrg 		panic("pagedaemon deadlock");
    152   1.1       mrg #endif
    153   1.8       mrg 	}
    154   1.1       mrg 
    155   1.8       mrg 	simple_lock(&uvm.pagedaemon_lock);
    156  1.17   thorpej 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    157   1.8       mrg 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    158   1.8       mrg 	    timo);
    159   1.1       mrg 
    160   1.8       mrg 	splx(s);
    161   1.1       mrg }
    162   1.1       mrg 
    163   1.1       mrg 
    164   1.1       mrg /*
    165   1.1       mrg  * uvmpd_tune: tune paging parameters
    166   1.1       mrg  *
    167   1.1       mrg  * => called when ever memory is added (or removed?) to the system
    168   1.1       mrg  * => caller must call with page queues locked
    169   1.1       mrg  */
    170   1.1       mrg 
    171  1.65   thorpej static void
    172  1.37       chs uvmpd_tune(void)
    173   1.8       mrg {
    174   1.8       mrg 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    175   1.1       mrg 
    176   1.8       mrg 	uvmexp.freemin = uvmexp.npages / 20;
    177   1.1       mrg 
    178   1.8       mrg 	/* between 16k and 256k */
    179   1.8       mrg 	/* XXX:  what are these values good for? */
    180  1.37       chs 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    181  1.37       chs 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    182  1.23     bjh21 
    183  1.23     bjh21 	/* Make sure there's always a user page free. */
    184  1.23     bjh21 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    185  1.23     bjh21 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    186   1.1       mrg 
    187   1.8       mrg 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    188   1.8       mrg 	if (uvmexp.freetarg <= uvmexp.freemin)
    189   1.8       mrg 		uvmexp.freetarg = uvmexp.freemin + 1;
    190   1.1       mrg 
    191  1.61       chs 	uvmexp.freetarg += uvm_extrapages;
    192  1.61       chs 	uvm_extrapages = 0;
    193  1.61       chs 
    194   1.8       mrg 	/* uvmexp.inactarg: computed in main daemon loop */
    195   1.1       mrg 
    196   1.8       mrg 	uvmexp.wiredmax = uvmexp.npages / 3;
    197   1.8       mrg 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    198   1.1       mrg 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    199   1.1       mrg }
    200   1.1       mrg 
    201   1.1       mrg /*
    202   1.1       mrg  * uvm_pageout: the main loop for the pagedaemon
    203   1.1       mrg  */
    204   1.1       mrg 
    205   1.8       mrg void
    206  1.22   thorpej uvm_pageout(void *arg)
    207   1.8       mrg {
    208  1.60     enami 	int bufcnt, npages = 0;
    209  1.61       chs 	int extrapages = 0;
    210   1.8       mrg 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    211  1.24       chs 
    212   1.8       mrg 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    213   1.8       mrg 
    214   1.8       mrg 	/*
    215   1.8       mrg 	 * ensure correct priority and set paging parameters...
    216   1.8       mrg 	 */
    217   1.8       mrg 
    218   1.8       mrg 	uvm.pagedaemon_proc = curproc;
    219   1.8       mrg 	uvm_lock_pageq();
    220   1.8       mrg 	npages = uvmexp.npages;
    221   1.8       mrg 	uvmpd_tune();
    222   1.8       mrg 	uvm_unlock_pageq();
    223   1.8       mrg 
    224   1.8       mrg 	/*
    225   1.8       mrg 	 * main loop
    226   1.8       mrg 	 */
    227  1.24       chs 
    228  1.24       chs 	for (;;) {
    229  1.24       chs 		simple_lock(&uvm.pagedaemon_lock);
    230  1.24       chs 
    231  1.24       chs 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    232  1.24       chs 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    233  1.24       chs 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    234  1.24       chs 		uvmexp.pdwoke++;
    235  1.24       chs 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    236  1.24       chs 
    237   1.8       mrg 		/*
    238  1.24       chs 		 * now lock page queues and recompute inactive count
    239   1.8       mrg 		 */
    240   1.8       mrg 
    241  1.24       chs 		uvm_lock_pageq();
    242  1.61       chs 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    243  1.24       chs 			npages = uvmexp.npages;
    244  1.61       chs 			extrapages = uvm_extrapages;
    245  1.24       chs 			uvmpd_tune();
    246  1.24       chs 		}
    247  1.24       chs 
    248  1.70      yamt 		uvmexp.inactarg = UVM_PCTPARAM_APPLY(&uvmexp.inactivepct,
    249  1.70      yamt 		    uvmexp.active + uvmexp.inactive);
    250  1.24       chs 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    251  1.24       chs 			uvmexp.inactarg = uvmexp.freetarg + 1;
    252  1.24       chs 		}
    253  1.24       chs 
    254  1.60     enami 		/*
    255  1.60     enami 		 * Estimate a hint.  Note that bufmem are returned to
    256  1.60     enami 		 * system only when entire pool page is empty.
    257  1.60     enami 		 */
    258  1.60     enami 		bufcnt = uvmexp.freetarg - uvmexp.free;
    259  1.60     enami 		if (bufcnt < 0)
    260  1.60     enami 			bufcnt = 0;
    261  1.60     enami 
    262  1.24       chs 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    263  1.24       chs 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    264  1.24       chs 		    uvmexp.inactarg);
    265   1.8       mrg 
    266   1.8       mrg 		/*
    267  1.24       chs 		 * scan if needed
    268   1.8       mrg 		 */
    269   1.8       mrg 
    270  1.24       chs 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    271  1.30       chs 		    uvmexp.inactive < uvmexp.inactarg) {
    272  1.24       chs 			uvmpd_scan();
    273   1.8       mrg 		}
    274   1.8       mrg 
    275   1.8       mrg 		/*
    276  1.24       chs 		 * if there's any free memory to be had,
    277  1.24       chs 		 * wake up any waiters.
    278   1.8       mrg 		 */
    279   1.8       mrg 
    280  1.24       chs 		if (uvmexp.free > uvmexp.reserve_kernel ||
    281  1.24       chs 		    uvmexp.paging == 0) {
    282  1.24       chs 			wakeup(&uvmexp.free);
    283   1.8       mrg 		}
    284   1.1       mrg 
    285   1.8       mrg 		/*
    286  1.24       chs 		 * scan done.  unlock page queues (the only lock we are holding)
    287   1.8       mrg 		 */
    288   1.8       mrg 
    289  1.24       chs 		uvm_unlock_pageq();
    290  1.38       chs 
    291  1.60     enami 		buf_drain(bufcnt << PAGE_SHIFT);
    292  1.60     enami 
    293  1.38       chs 		/*
    294  1.38       chs 		 * drain pool resources now that we're not holding any locks
    295  1.38       chs 		 */
    296  1.38       chs 
    297  1.38       chs 		pool_drain(0);
    298  1.57  jdolecek 
    299  1.57  jdolecek 		/*
    300  1.57  jdolecek 		 * free any cached u-areas we don't need
    301  1.57  jdolecek 		 */
    302  1.57  jdolecek 		uvm_uarea_drain(TRUE);
    303  1.57  jdolecek 
    304  1.24       chs 	}
    305  1.24       chs 	/*NOTREACHED*/
    306  1.24       chs }
    307  1.24       chs 
    308   1.8       mrg 
    309  1.24       chs /*
    310  1.24       chs  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    311  1.24       chs  */
    312   1.8       mrg 
    313  1.24       chs void
    314  1.24       chs uvm_aiodone_daemon(void *arg)
    315  1.24       chs {
    316  1.24       chs 	int s, free;
    317  1.24       chs 	struct buf *bp, *nbp;
    318  1.24       chs 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    319   1.9        pk 
    320  1.24       chs 	for (;;) {
    321   1.8       mrg 
    322   1.8       mrg 		/*
    323  1.24       chs 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    324  1.24       chs 		 * we need splbio because we want to make sure the aio_done list
    325  1.24       chs 		 * is totally empty before we go to sleep.
    326   1.8       mrg 		 */
    327   1.8       mrg 
    328  1.24       chs 		s = splbio();
    329  1.24       chs 		simple_lock(&uvm.aiodoned_lock);
    330  1.24       chs 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    331  1.24       chs 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    332  1.24       chs 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    333  1.24       chs 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    334  1.24       chs 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    335  1.24       chs 
    336  1.24       chs 			/* relock aiodoned_lock, still at splbio */
    337  1.24       chs 			simple_lock(&uvm.aiodoned_lock);
    338   1.8       mrg 		}
    339   1.8       mrg 
    340  1.24       chs 		/*
    341  1.24       chs 		 * check for done aio structures
    342  1.24       chs 		 */
    343   1.8       mrg 
    344  1.24       chs 		bp = TAILQ_FIRST(&uvm.aio_done);
    345  1.24       chs 		if (bp) {
    346  1.24       chs 			TAILQ_INIT(&uvm.aio_done);
    347  1.24       chs 		}
    348   1.8       mrg 
    349  1.24       chs 		simple_unlock(&uvm.aiodoned_lock);
    350  1.24       chs 		splx(s);
    351   1.8       mrg 
    352   1.8       mrg 		/*
    353  1.24       chs 		 * process each i/o that's done.
    354   1.8       mrg 		 */
    355   1.8       mrg 
    356  1.24       chs 		free = uvmexp.free;
    357  1.24       chs 		while (bp != NULL) {
    358  1.24       chs 			nbp = TAILQ_NEXT(bp, b_freelist);
    359  1.24       chs 			(*bp->b_iodone)(bp);
    360  1.24       chs 			bp = nbp;
    361  1.24       chs 		}
    362  1.24       chs 		if (free <= uvmexp.reserve_kernel) {
    363  1.24       chs 			s = uvm_lock_fpageq();
    364  1.24       chs 			wakeup(&uvm.pagedaemon);
    365  1.24       chs 			uvm_unlock_fpageq(s);
    366  1.24       chs 		} else {
    367  1.24       chs 			simple_lock(&uvm.pagedaemon_lock);
    368  1.17   thorpej 			wakeup(&uvmexp.free);
    369  1.24       chs 			simple_unlock(&uvm.pagedaemon_lock);
    370  1.24       chs 		}
    371   1.8       mrg 	}
    372   1.1       mrg }
    373   1.1       mrg 
    374   1.1       mrg /*
    375  1.24       chs  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    376   1.1       mrg  *
    377   1.1       mrg  * => called with page queues locked
    378   1.1       mrg  * => we work on meeting our free target by converting inactive pages
    379   1.1       mrg  *    into free pages.
    380   1.1       mrg  * => we handle the building of swap-backed clusters
    381   1.1       mrg  * => we return TRUE if we are exiting because we met our target
    382   1.1       mrg  */
    383   1.1       mrg 
    384  1.65   thorpej static void
    385  1.65   thorpej uvmpd_scan_inactive(struct pglist *pglst)
    386   1.8       mrg {
    387  1.48       scw 	struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
    388   1.8       mrg 	struct uvm_object *uobj;
    389  1.37       chs 	struct vm_anon *anon;
    390  1.68      yamt #if defined(VMSWAP)
    391  1.51       tls 	struct vm_page *swpps[round_page(MAXPHYS) >> PAGE_SHIFT];
    392  1.68      yamt 	int error;
    393  1.68      yamt 	int result;
    394  1.68      yamt #endif /* defined(VMSWAP) */
    395  1.37       chs 	struct simplelock *slock;
    396  1.37       chs 	int swnpages, swcpages;
    397  1.14       chs 	int swslot;
    398  1.68      yamt 	int dirtyreacts, t;
    399  1.43       chs 	boolean_t anonunder, fileunder, execunder;
    400  1.43       chs 	boolean_t anonover, fileover, execover;
    401  1.43       chs 	boolean_t anonreact, filereact, execreact;
    402   1.8       mrg 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    403   1.1       mrg 
    404   1.8       mrg 	/*
    405   1.8       mrg 	 * swslot is non-zero if we are building a swap cluster.  we want
    406  1.24       chs 	 * to stay in the loop while we have a page to scan or we have
    407   1.8       mrg 	 * a swap-cluster to build.
    408   1.8       mrg 	 */
    409  1.24       chs 
    410   1.8       mrg 	swslot = 0;
    411   1.8       mrg 	swnpages = swcpages = 0;
    412  1.14       chs 	dirtyreacts = 0;
    413  1.43       chs 
    414  1.43       chs 	/*
    415  1.43       chs 	 * decide which types of pages we want to reactivate instead of freeing
    416  1.43       chs 	 * to keep usage within the minimum and maximum usage limits.
    417  1.43       chs 	 */
    418  1.43       chs 
    419  1.43       chs 	t = uvmexp.active + uvmexp.inactive + uvmexp.free;
    420  1.43       chs 	anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
    421  1.43       chs 	fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
    422  1.43       chs 	execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
    423  1.43       chs 	anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
    424  1.43       chs 	fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
    425  1.43       chs 	execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
    426  1.43       chs 	anonreact = anonunder || (!anonover && (fileover || execover));
    427  1.43       chs 	filereact = fileunder || (!fileover && (anonover || execover));
    428  1.43       chs 	execreact = execunder || (!execover && (anonover || fileover));
    429  1.62      yamt 	if (filereact && execreact && (anonreact || uvm_swapisfull())) {
    430  1.62      yamt 		anonreact = filereact = execreact = FALSE;
    431  1.62      yamt 	}
    432  1.68      yamt #if !defined(VMSWAP)
    433  1.68      yamt 	/*
    434  1.68      yamt 	 * XXX no point to put swap-backed pages on the page queue.
    435  1.68      yamt 	 */
    436  1.68      yamt 
    437  1.68      yamt 	anonreact = TRUE;
    438  1.68      yamt #endif /* !defined(VMSWAP) */
    439  1.24       chs 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
    440  1.24       chs 		uobj = NULL;
    441  1.24       chs 		anon = NULL;
    442   1.8       mrg 		if (p) {
    443  1.24       chs 
    444   1.8       mrg 			/*
    445  1.37       chs 			 * see if we've met the free target.
    446   1.8       mrg 			 */
    447  1.24       chs 
    448  1.37       chs 			if (uvmexp.free + uvmexp.paging >=
    449  1.37       chs 			    uvmexp.freetarg << 2 ||
    450  1.30       chs 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    451  1.30       chs 				UVMHIST_LOG(pdhist,"  met free target: "
    452  1.30       chs 					    "exit loop", 0, 0, 0, 0);
    453  1.24       chs 
    454  1.30       chs 				if (swslot == 0) {
    455  1.30       chs 					/* exit now if no swap-i/o pending */
    456  1.30       chs 					break;
    457  1.24       chs 				}
    458  1.30       chs 
    459  1.30       chs 				/* set p to null to signal final swap i/o */
    460  1.30       chs 				p = NULL;
    461  1.37       chs 				nextpg = NULL;
    462   1.8       mrg 			}
    463   1.8       mrg 		}
    464  1.24       chs 		if (p) {	/* if (we have a new page to consider) */
    465  1.30       chs 
    466   1.8       mrg 			/*
    467   1.8       mrg 			 * we are below target and have a new page to consider.
    468   1.8       mrg 			 */
    469  1.37       chs 
    470   1.8       mrg 			uvmexp.pdscans++;
    471  1.24       chs 			nextpg = TAILQ_NEXT(p, pageq);
    472   1.8       mrg 
    473  1.27   mycroft 			/*
    474  1.27   mycroft 			 * move referenced pages back to active queue and
    475  1.30       chs 			 * skip to next page.
    476  1.27   mycroft 			 */
    477  1.30       chs 
    478  1.37       chs 			if (pmap_clear_reference(p)) {
    479  1.27   mycroft 				uvm_pageactivate(p);
    480  1.27   mycroft 				uvmexp.pdreact++;
    481  1.27   mycroft 				continue;
    482  1.27   mycroft 			}
    483  1.37       chs 			anon = p->uanon;
    484  1.37       chs 			uobj = p->uobject;
    485  1.30       chs 
    486  1.30       chs 			/*
    487  1.30       chs 			 * enforce the minimum thresholds on different
    488  1.30       chs 			 * types of memory usage.  if reusing the current
    489  1.30       chs 			 * page would reduce that type of usage below its
    490  1.30       chs 			 * minimum, reactivate the page instead and move
    491  1.30       chs 			 * on to the next page.
    492  1.30       chs 			 */
    493  1.30       chs 
    494  1.43       chs 			if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
    495  1.30       chs 				uvm_pageactivate(p);
    496  1.43       chs 				uvmexp.pdreexec++;
    497  1.30       chs 				continue;
    498  1.30       chs 			}
    499  1.37       chs 			if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
    500  1.43       chs 			    !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
    501  1.30       chs 				uvm_pageactivate(p);
    502  1.43       chs 				uvmexp.pdrefile++;
    503  1.30       chs 				continue;
    504  1.30       chs 			}
    505  1.47       chs 			if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
    506  1.44       chs 				uvm_pageactivate(p);
    507  1.44       chs 				uvmexp.pdreanon++;
    508  1.44       chs 				continue;
    509  1.44       chs 			}
    510  1.30       chs 
    511   1.8       mrg 			/*
    512   1.8       mrg 			 * first we attempt to lock the object that this page
    513   1.8       mrg 			 * belongs to.  if our attempt fails we skip on to
    514   1.8       mrg 			 * the next page (no harm done).  it is important to
    515   1.8       mrg 			 * "try" locking the object as we are locking in the
    516   1.8       mrg 			 * wrong order (pageq -> object) and we don't want to
    517  1.24       chs 			 * deadlock.
    518   1.8       mrg 			 *
    519  1.24       chs 			 * the only time we expect to see an ownerless page
    520   1.8       mrg 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    521   1.8       mrg 			 * anon has loaned a page from a uvm_object and the
    522   1.8       mrg 			 * uvm_object has dropped the ownership.  in that
    523   1.8       mrg 			 * case, the anon can "take over" the loaned page
    524   1.8       mrg 			 * and make it its own.
    525   1.8       mrg 			 */
    526  1.30       chs 
    527  1.44       chs 			/* does the page belong to an object? */
    528  1.44       chs 			if (uobj != NULL) {
    529  1.44       chs 				slock = &uobj->vmobjlock;
    530  1.44       chs 				if (!simple_lock_try(slock)) {
    531  1.44       chs 					continue;
    532  1.44       chs 				}
    533  1.44       chs 				if (p->flags & PG_BUSY) {
    534  1.44       chs 					simple_unlock(slock);
    535  1.44       chs 					uvmexp.pdbusy++;
    536  1.44       chs 					continue;
    537  1.44       chs 				}
    538  1.44       chs 				uvmexp.pdobscan++;
    539  1.44       chs 			} else {
    540  1.68      yamt #if defined(VMSWAP)
    541  1.24       chs 				KASSERT(anon != NULL);
    542  1.37       chs 				slock = &anon->an_lock;
    543  1.37       chs 				if (!simple_lock_try(slock)) {
    544   1.8       mrg 					continue;
    545  1.30       chs 				}
    546   1.8       mrg 
    547   1.8       mrg 				/*
    548  1.44       chs 				 * set PQ_ANON if it isn't set already.
    549   1.8       mrg 				 */
    550  1.24       chs 
    551   1.8       mrg 				if ((p->pqflags & PQ_ANON) == 0) {
    552  1.24       chs 					KASSERT(p->loan_count > 0);
    553   1.8       mrg 					p->loan_count--;
    554  1.24       chs 					p->pqflags |= PQ_ANON;
    555  1.24       chs 					/* anon now owns it */
    556   1.8       mrg 				}
    557   1.8       mrg 				if (p->flags & PG_BUSY) {
    558  1.37       chs 					simple_unlock(slock);
    559   1.8       mrg 					uvmexp.pdbusy++;
    560   1.8       mrg 					continue;
    561   1.8       mrg 				}
    562   1.8       mrg 				uvmexp.pdanscan++;
    563  1.68      yamt #else /* defined(VMSWAP) */
    564  1.68      yamt 				panic("%s: anon", __func__);
    565  1.68      yamt #endif /* defined(VMSWAP) */
    566   1.8       mrg 			}
    567   1.8       mrg 
    568  1.37       chs 
    569   1.8       mrg 			/*
    570   1.8       mrg 			 * we now have the object and the page queues locked.
    571  1.37       chs 			 * if the page is not swap-backed, call the object's
    572  1.37       chs 			 * pager to flush and free the page.
    573  1.37       chs 			 */
    574  1.37       chs 
    575  1.69      yamt #if defined(READAHEAD_STATS)
    576  1.69      yamt 			if ((p->flags & PG_SPECULATIVE) != 0) {
    577  1.69      yamt 				p->flags &= ~PG_SPECULATIVE;
    578  1.69      yamt 				uvm_ra_miss.ev_count++;
    579  1.69      yamt 			}
    580  1.69      yamt #endif /* defined(READAHEAD_STATS) */
    581  1.69      yamt 
    582  1.37       chs 			if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    583  1.37       chs 				uvm_unlock_pageq();
    584  1.50    simonb 				(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    585  1.37       chs 				    p->offset + PAGE_SIZE,
    586  1.37       chs 				    PGO_CLEANIT|PGO_FREE);
    587  1.37       chs 				uvm_lock_pageq();
    588  1.37       chs 				if (nextpg &&
    589  1.46       chs 				    (nextpg->pqflags & PQ_INACTIVE) == 0) {
    590  1.37       chs 					nextpg = TAILQ_FIRST(pglst);
    591  1.37       chs 				}
    592  1.37       chs 				continue;
    593  1.37       chs 			}
    594  1.37       chs 
    595  1.68      yamt #if defined(VMSWAP)
    596  1.37       chs 			/*
    597  1.37       chs 			 * the page is swap-backed.  remove all the permissions
    598  1.29   thorpej 			 * from the page so we can sync the modified info
    599  1.29   thorpej 			 * without any race conditions.  if the page is clean
    600  1.29   thorpej 			 * we can free it now and continue.
    601   1.8       mrg 			 */
    602   1.8       mrg 
    603  1.29   thorpej 			pmap_page_protect(p, VM_PROT_NONE);
    604  1.37       chs 			if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    605  1.37       chs 				p->flags &= ~(PG_CLEAN);
    606  1.30       chs 			}
    607   1.8       mrg 			if (p->flags & PG_CLEAN) {
    608  1.53        pk 				int slot;
    609  1.55       chs 				int pageidx;
    610  1.55       chs 
    611  1.55       chs 				pageidx = p->offset >> PAGE_SHIFT;
    612   1.8       mrg 				uvm_pagefree(p);
    613   1.8       mrg 				uvmexp.pdfreed++;
    614  1.24       chs 
    615  1.37       chs 				/*
    616  1.37       chs 				 * for anons, we need to remove the page
    617  1.37       chs 				 * from the anon ourselves.  for aobjs,
    618  1.37       chs 				 * pagefree did that for us.
    619  1.37       chs 				 */
    620  1.37       chs 
    621   1.8       mrg 				if (anon) {
    622  1.24       chs 					KASSERT(anon->an_swslot != 0);
    623  1.64      yamt 					anon->an_page = NULL;
    624  1.53        pk 					slot = anon->an_swslot;
    625  1.53        pk 				} else {
    626  1.55       chs 					slot = uao_find_swslot(uobj, pageidx);
    627   1.8       mrg 				}
    628  1.37       chs 				simple_unlock(slock);
    629  1.41       chs 
    630  1.53        pk 				if (slot > 0) {
    631  1.53        pk 					/* this page is now only in swap. */
    632  1.53        pk 					simple_lock(&uvm.swap_data_lock);
    633  1.53        pk 					KASSERT(uvmexp.swpgonly <
    634  1.53        pk 						uvmexp.swpginuse);
    635  1.53        pk 					uvmexp.swpgonly++;
    636  1.53        pk 					simple_unlock(&uvm.swap_data_lock);
    637  1.53        pk 				}
    638   1.8       mrg 				continue;
    639   1.8       mrg 			}
    640   1.8       mrg 
    641   1.8       mrg 			/*
    642   1.8       mrg 			 * this page is dirty, skip it if we'll have met our
    643   1.8       mrg 			 * free target when all the current pageouts complete.
    644   1.8       mrg 			 */
    645  1.24       chs 
    646  1.37       chs 			if (uvmexp.free + uvmexp.paging >
    647  1.37       chs 			    uvmexp.freetarg << 2) {
    648  1.37       chs 				simple_unlock(slock);
    649   1.8       mrg 				continue;
    650   1.8       mrg 			}
    651   1.8       mrg 
    652   1.8       mrg 			/*
    653  1.37       chs 			 * free any swap space allocated to the page since
    654  1.37       chs 			 * we'll have to write it again with its new data.
    655  1.37       chs 			 */
    656  1.37       chs 
    657  1.37       chs 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    658  1.37       chs 				uvm_swap_free(anon->an_swslot, 1);
    659  1.37       chs 				anon->an_swslot = 0;
    660  1.37       chs 			} else if (p->pqflags & PQ_AOBJ) {
    661  1.37       chs 				uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
    662  1.37       chs 			}
    663  1.37       chs 
    664  1.37       chs 			/*
    665  1.37       chs 			 * if all pages in swap are only in swap,
    666  1.37       chs 			 * the swap space is full and we can't page out
    667  1.37       chs 			 * any more swap-backed pages.  reactivate this page
    668  1.37       chs 			 * so that we eventually cycle all pages through
    669  1.37       chs 			 * the inactive queue.
    670  1.14       chs 			 */
    671  1.24       chs 
    672  1.52        pk 			if (uvm_swapisfull()) {
    673  1.14       chs 				dirtyreacts++;
    674  1.14       chs 				uvm_pageactivate(p);
    675  1.37       chs 				simple_unlock(slock);
    676  1.14       chs 				continue;
    677  1.14       chs 			}
    678  1.14       chs 
    679  1.14       chs 			/*
    680  1.37       chs 			 * start new swap pageout cluster (if necessary).
    681  1.14       chs 			 */
    682  1.24       chs 
    683  1.37       chs 			if (swslot == 0) {
    684  1.51       tls 				/* Even with strange MAXPHYS, the shift
    685  1.51       tls 				   implicitly rounds down to a page. */
    686  1.51       tls 				swnpages = MAXPHYS >> PAGE_SHIFT;
    687  1.37       chs 				swslot = uvm_swap_alloc(&swnpages, TRUE);
    688  1.37       chs 				if (swslot == 0) {
    689  1.37       chs 					simple_unlock(slock);
    690  1.37       chs 					continue;
    691  1.14       chs 				}
    692  1.37       chs 				swcpages = 0;
    693  1.14       chs 			}
    694  1.14       chs 
    695  1.14       chs 			/*
    696  1.37       chs 			 * at this point, we're definitely going reuse this
    697  1.37       chs 			 * page.  mark the page busy and delayed-free.
    698  1.37       chs 			 * we should remove the page from the page queues
    699  1.37       chs 			 * so we don't ever look at it again.
    700  1.37       chs 			 * adjust counters and such.
    701   1.8       mrg 			 */
    702  1.30       chs 
    703  1.37       chs 			p->flags |= PG_BUSY;
    704   1.8       mrg 			UVM_PAGE_OWN(p, "scan_inactive");
    705  1.37       chs 
    706  1.37       chs 			p->flags |= PG_PAGEOUT;
    707  1.37       chs 			uvmexp.paging++;
    708  1.37       chs 			uvm_pagedequeue(p);
    709  1.37       chs 
    710   1.8       mrg 			uvmexp.pgswapout++;
    711   1.8       mrg 
    712   1.8       mrg 			/*
    713  1.37       chs 			 * add the new page to the cluster.
    714   1.8       mrg 			 */
    715  1.24       chs 
    716  1.37       chs 			if (anon) {
    717  1.37       chs 				anon->an_swslot = swslot + swcpages;
    718  1.37       chs 				simple_unlock(slock);
    719  1.37       chs 			} else {
    720  1.37       chs 				result = uao_set_swslot(uobj,
    721  1.37       chs 				    p->offset >> PAGE_SHIFT, swslot + swcpages);
    722  1.37       chs 				if (result == -1) {
    723  1.37       chs 					p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    724  1.37       chs 					UVM_PAGE_OWN(p, NULL);
    725  1.37       chs 					uvmexp.paging--;
    726  1.37       chs 					uvm_pageactivate(p);
    727  1.37       chs 					simple_unlock(slock);
    728  1.37       chs 					continue;
    729   1.8       mrg 				}
    730  1.37       chs 				simple_unlock(slock);
    731  1.37       chs 			}
    732  1.37       chs 			swpps[swcpages] = p;
    733  1.37       chs 			swcpages++;
    734   1.8       mrg 
    735  1.37       chs 			/*
    736  1.37       chs 			 * if the cluster isn't full, look for more pages
    737  1.37       chs 			 * before starting the i/o.
    738  1.37       chs 			 */
    739  1.24       chs 
    740  1.37       chs 			if (swcpages < swnpages) {
    741  1.37       chs 				continue;
    742   1.8       mrg 			}
    743  1.68      yamt #else /* defined(VMSWAP) */
    744  1.68      yamt 			panic("%s: swap-backed", __func__);
    745  1.68      yamt #endif /* defined(VMSWAP) */
    746  1.68      yamt 
    747   1.8       mrg 		}
    748   1.8       mrg 
    749  1.68      yamt #if defined(VMSWAP)
    750   1.8       mrg 		/*
    751  1.37       chs 		 * if this is the final pageout we could have a few
    752  1.37       chs 		 * unused swap blocks.  if so, free them now.
    753   1.8       mrg 		 */
    754  1.24       chs 
    755  1.37       chs 		if (swcpages < swnpages) {
    756  1.37       chs 			uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
    757   1.8       mrg 		}
    758   1.8       mrg 
    759   1.8       mrg 		/*
    760  1.37       chs 		 * now start the pageout.
    761   1.8       mrg 		 */
    762   1.8       mrg 
    763  1.37       chs 		uvm_unlock_pageq();
    764   1.8       mrg 		uvmexp.pdpageouts++;
    765  1.37       chs 		error = uvm_swap_put(swslot, swpps, swcpages, 0);
    766  1.37       chs 		KASSERT(error == 0);
    767  1.37       chs 		uvm_lock_pageq();
    768   1.8       mrg 
    769   1.8       mrg 		/*
    770  1.37       chs 		 * zero swslot to indicate that we are
    771   1.8       mrg 		 * no longer building a swap-backed cluster.
    772   1.8       mrg 		 */
    773   1.8       mrg 
    774  1.37       chs 		swslot = 0;
    775  1.24       chs 
    776   1.8       mrg 		/*
    777  1.31       chs 		 * the pageout is in progress.  bump counters and set up
    778  1.31       chs 		 * for the next loop.
    779   1.8       mrg 		 */
    780   1.8       mrg 
    781  1.31       chs 		uvmexp.pdpending++;
    782  1.37       chs 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    783  1.37       chs 			nextpg = TAILQ_FIRST(pglst);
    784   1.8       mrg 		}
    785  1.68      yamt #endif /* defined(VMSWAP) */
    786  1.24       chs 	}
    787   1.1       mrg }
    788   1.1       mrg 
    789   1.1       mrg /*
    790   1.1       mrg  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    791   1.1       mrg  *
    792   1.1       mrg  * => called with pageq's locked
    793   1.1       mrg  */
    794   1.1       mrg 
    795  1.65   thorpej static void
    796  1.37       chs uvmpd_scan(void)
    797   1.1       mrg {
    798  1.37       chs 	int inactive_shortage, swap_shortage, pages_freed;
    799   1.8       mrg 	struct vm_page *p, *nextpg;
    800   1.8       mrg 	struct uvm_object *uobj;
    801  1.37       chs 	struct vm_anon *anon;
    802  1.44       chs 	struct simplelock *slock;
    803   1.8       mrg 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    804   1.1       mrg 
    805  1.37       chs 	uvmexp.pdrevs++;
    806  1.24       chs 	uobj = NULL;
    807  1.37       chs 	anon = NULL;
    808   1.1       mrg 
    809   1.1       mrg #ifndef __SWAP_BROKEN
    810  1.39       chs 
    811   1.8       mrg 	/*
    812   1.8       mrg 	 * swap out some processes if we are below our free target.
    813   1.8       mrg 	 * we need to unlock the page queues for this.
    814   1.8       mrg 	 */
    815  1.39       chs 
    816  1.39       chs 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
    817   1.8       mrg 		uvmexp.pdswout++;
    818  1.37       chs 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
    819  1.37       chs 		    uvmexp.free, uvmexp.freetarg, 0, 0);
    820   1.8       mrg 		uvm_unlock_pageq();
    821   1.8       mrg 		uvm_swapout_threads();
    822   1.8       mrg 		uvm_lock_pageq();
    823   1.1       mrg 
    824   1.8       mrg 	}
    825   1.1       mrg #endif
    826   1.1       mrg 
    827   1.8       mrg 	/*
    828   1.8       mrg 	 * now we want to work on meeting our targets.   first we work on our
    829   1.8       mrg 	 * free target by converting inactive pages into free pages.  then
    830   1.8       mrg 	 * we work on meeting our inactive target by converting active pages
    831   1.8       mrg 	 * to inactive ones.
    832   1.8       mrg 	 */
    833   1.8       mrg 
    834   1.8       mrg 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    835   1.8       mrg 
    836  1.14       chs 	pages_freed = uvmexp.pdfreed;
    837  1.46       chs 	uvmpd_scan_inactive(&uvm.page_inactive);
    838  1.14       chs 	pages_freed = uvmexp.pdfreed - pages_freed;
    839   1.8       mrg 
    840   1.8       mrg 	/*
    841   1.8       mrg 	 * we have done the scan to get free pages.   now we work on meeting
    842   1.8       mrg 	 * our inactive target.
    843   1.8       mrg 	 */
    844   1.8       mrg 
    845  1.14       chs 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
    846  1.14       chs 
    847  1.14       chs 	/*
    848  1.14       chs 	 * detect if we're not going to be able to page anything out
    849  1.14       chs 	 * until we free some swap resources from active pages.
    850  1.14       chs 	 */
    851  1.24       chs 
    852  1.14       chs 	swap_shortage = 0;
    853  1.14       chs 	if (uvmexp.free < uvmexp.freetarg &&
    854  1.52        pk 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    855  1.52        pk 	    !uvm_swapisfull() &&
    856  1.14       chs 	    pages_freed == 0) {
    857  1.14       chs 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    858  1.14       chs 	}
    859  1.24       chs 
    860  1.14       chs 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
    861  1.14       chs 		    inactive_shortage, swap_shortage,0,0);
    862  1.24       chs 	for (p = TAILQ_FIRST(&uvm.page_active);
    863  1.14       chs 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
    864  1.14       chs 	     p = nextpg) {
    865  1.24       chs 		nextpg = TAILQ_NEXT(p, pageq);
    866  1.37       chs 		if (p->flags & PG_BUSY) {
    867  1.37       chs 			continue;
    868  1.37       chs 		}
    869   1.8       mrg 
    870   1.8       mrg 		/*
    871  1.14       chs 		 * lock the page's owner.
    872   1.8       mrg 		 */
    873  1.44       chs 
    874  1.44       chs 		if (p->uobject != NULL) {
    875  1.44       chs 			uobj = p->uobject;
    876  1.44       chs 			slock = &uobj->vmobjlock;
    877  1.44       chs 			if (!simple_lock_try(slock)) {
    878  1.44       chs 				continue;
    879  1.44       chs 			}
    880  1.44       chs 		} else {
    881  1.37       chs 			anon = p->uanon;
    882  1.37       chs 			KASSERT(anon != NULL);
    883  1.44       chs 			slock = &anon->an_lock;
    884  1.44       chs 			if (!simple_lock_try(slock)) {
    885   1.8       mrg 				continue;
    886  1.37       chs 			}
    887   1.1       mrg 
    888   1.8       mrg 			/* take over the page? */
    889   1.8       mrg 			if ((p->pqflags & PQ_ANON) == 0) {
    890  1.24       chs 				KASSERT(p->loan_count > 0);
    891   1.8       mrg 				p->loan_count--;
    892   1.8       mrg 				p->pqflags |= PQ_ANON;
    893   1.8       mrg 			}
    894   1.8       mrg 		}
    895  1.24       chs 
    896  1.14       chs 		/*
    897  1.14       chs 		 * skip this page if it's busy.
    898  1.14       chs 		 */
    899  1.24       chs 
    900  1.14       chs 		if ((p->flags & PG_BUSY) != 0) {
    901  1.44       chs 			simple_unlock(slock);
    902  1.14       chs 			continue;
    903  1.14       chs 		}
    904  1.24       chs 
    905  1.68      yamt #if defined(VMSWAP)
    906  1.14       chs 		/*
    907  1.14       chs 		 * if there's a shortage of swap, free any swap allocated
    908  1.14       chs 		 * to this page so that other pages can be paged out.
    909  1.14       chs 		 */
    910  1.24       chs 
    911  1.14       chs 		if (swap_shortage > 0) {
    912  1.37       chs 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
    913  1.37       chs 				uvm_swap_free(anon->an_swslot, 1);
    914  1.37       chs 				anon->an_swslot = 0;
    915  1.14       chs 				p->flags &= ~PG_CLEAN;
    916  1.14       chs 				swap_shortage--;
    917  1.37       chs 			} else if (p->pqflags & PQ_AOBJ) {
    918  1.37       chs 				int slot = uao_set_swslot(uobj,
    919  1.14       chs 					p->offset >> PAGE_SHIFT, 0);
    920  1.14       chs 				if (slot) {
    921  1.14       chs 					uvm_swap_free(slot, 1);
    922  1.14       chs 					p->flags &= ~PG_CLEAN;
    923  1.14       chs 					swap_shortage--;
    924  1.14       chs 				}
    925  1.14       chs 			}
    926  1.14       chs 		}
    927  1.68      yamt #endif /* defined(VMSWAP) */
    928  1.24       chs 
    929  1.14       chs 		/*
    930  1.37       chs 		 * if there's a shortage of inactive pages, deactivate.
    931  1.14       chs 		 */
    932  1.24       chs 
    933  1.32   thorpej 		if (inactive_shortage > 0) {
    934   1.8       mrg 			/* no need to check wire_count as pg is "active" */
    935  1.71      yamt 			pmap_clear_reference(p);
    936   1.8       mrg 			uvm_pagedeactivate(p);
    937   1.8       mrg 			uvmexp.pddeact++;
    938  1.14       chs 			inactive_shortage--;
    939   1.8       mrg 		}
    940  1.37       chs 
    941  1.37       chs 		/*
    942  1.37       chs 		 * we're done with this page.
    943  1.37       chs 		 */
    944  1.37       chs 
    945  1.44       chs 		simple_unlock(slock);
    946   1.8       mrg 	}
    947   1.1       mrg }
    948  1.62      yamt 
    949  1.62      yamt /*
    950  1.62      yamt  * uvm_reclaimable: decide whether to wait for pagedaemon.
    951  1.62      yamt  *
    952  1.62      yamt  * => return TRUE if it seems to be worth to do uvm_wait.
    953  1.62      yamt  *
    954  1.62      yamt  * XXX should be tunable.
    955  1.62      yamt  * XXX should consider pools, etc?
    956  1.62      yamt  */
    957  1.62      yamt 
    958  1.62      yamt boolean_t
    959  1.62      yamt uvm_reclaimable(void)
    960  1.62      yamt {
    961  1.62      yamt 	int filepages;
    962  1.62      yamt 
    963  1.62      yamt 	/*
    964  1.62      yamt 	 * if swap is not full, no problem.
    965  1.62      yamt 	 */
    966  1.62      yamt 
    967  1.62      yamt 	if (!uvm_swapisfull()) {
    968  1.62      yamt 		return TRUE;
    969  1.62      yamt 	}
    970  1.62      yamt 
    971  1.62      yamt 	/*
    972  1.62      yamt 	 * file-backed pages can be reclaimed even when swap is full.
    973  1.62      yamt 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    974  1.62      yamt 	 *
    975  1.62      yamt 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    976  1.63      yamt 	 *
    977  1.63      yamt 	 * XXX should consider about other reclaimable memory.
    978  1.63      yamt 	 * XXX ie. pools, traditional buffer cache.
    979  1.62      yamt 	 */
    980  1.62      yamt 
    981  1.62      yamt 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
    982  1.62      yamt 	if (filepages >= MIN((uvmexp.active + uvmexp.inactive) >> 4,
    983  1.62      yamt 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
    984  1.62      yamt 		return TRUE;
    985  1.62      yamt 	}
    986  1.62      yamt 
    987  1.62      yamt 	/*
    988  1.62      yamt 	 * kill the process, fail allocation, etc..
    989  1.62      yamt 	 */
    990  1.62      yamt 
    991  1.62      yamt 	return FALSE;
    992  1.62      yamt }
    993