uvm_pdaemon.c revision 1.76.2.1 1 1.72 yamt /* $NetBSD: uvm_pdaemon.c,v 1.76.2.1 2006/03/05 12:51:09 yamt Exp $ */
2 1.1 mrg
3 1.34 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.34 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.34 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.34 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.34 chs *
54 1.34 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.34 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.34 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_pdaemon.c: the page daemon
71 1.1 mrg */
72 1.42 lukem
73 1.42 lukem #include <sys/cdefs.h>
74 1.72 yamt __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.76.2.1 2006/03/05 12:51:09 yamt Exp $");
75 1.42 lukem
76 1.42 lukem #include "opt_uvmhist.h"
77 1.69 yamt #include "opt_readahead.h"
78 1.1 mrg
79 1.1 mrg #include <sys/param.h>
80 1.1 mrg #include <sys/proc.h>
81 1.1 mrg #include <sys/systm.h>
82 1.1 mrg #include <sys/kernel.h>
83 1.9 pk #include <sys/pool.h>
84 1.24 chs #include <sys/buf.h>
85 1.30 chs #include <sys/vnode.h>
86 1.1 mrg
87 1.1 mrg #include <uvm/uvm.h>
88 1.1 mrg
89 1.1 mrg /*
90 1.45 wiz * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
91 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
92 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
93 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
94 1.14 chs */
95 1.14 chs
96 1.14 chs #define UVMPD_NUMDIRTYREACTS 16
97 1.14 chs
98 1.14 chs
99 1.14 chs /*
100 1.1 mrg * local prototypes
101 1.1 mrg */
102 1.1 mrg
103 1.65 thorpej static void uvmpd_scan(void);
104 1.76.2.1 yamt static void uvmpd_scan_queue(void);
105 1.65 thorpej static void uvmpd_tune(void);
106 1.1 mrg
107 1.1 mrg /*
108 1.61 chs * XXX hack to avoid hangs when large processes fork.
109 1.61 chs */
110 1.61 chs int uvm_extrapages;
111 1.61 chs
112 1.61 chs /*
113 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
114 1.1 mrg *
115 1.1 mrg * => should be called with all locks released
116 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
117 1.1 mrg */
118 1.1 mrg
119 1.19 thorpej void
120 1.65 thorpej uvm_wait(const char *wmsg)
121 1.8 mrg {
122 1.8 mrg int timo = 0;
123 1.8 mrg int s = splbio();
124 1.1 mrg
125 1.8 mrg /*
126 1.8 mrg * check for page daemon going to sleep (waiting for itself)
127 1.8 mrg */
128 1.1 mrg
129 1.37 chs if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
130 1.8 mrg /*
131 1.8 mrg * now we have a problem: the pagedaemon wants to go to
132 1.8 mrg * sleep until it frees more memory. but how can it
133 1.8 mrg * free more memory if it is asleep? that is a deadlock.
134 1.8 mrg * we have two options:
135 1.8 mrg * [1] panic now
136 1.8 mrg * [2] put a timeout on the sleep, thus causing the
137 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
138 1.8 mrg *
139 1.8 mrg * note that option [2] will only help us if we get lucky
140 1.8 mrg * and some other process on the system breaks the deadlock
141 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
142 1.8 mrg * to continue). for now we panic if DEBUG is defined,
143 1.8 mrg * otherwise we hope for the best with option [2] (better
144 1.8 mrg * yet, this should never happen in the first place!).
145 1.8 mrg */
146 1.1 mrg
147 1.8 mrg printf("pagedaemon: deadlock detected!\n");
148 1.8 mrg timo = hz >> 3; /* set timeout */
149 1.1 mrg #if defined(DEBUG)
150 1.8 mrg /* DEBUG: panic so we can debug it */
151 1.8 mrg panic("pagedaemon deadlock");
152 1.1 mrg #endif
153 1.8 mrg }
154 1.1 mrg
155 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
156 1.17 thorpej wakeup(&uvm.pagedaemon); /* wake the daemon! */
157 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
158 1.8 mrg timo);
159 1.1 mrg
160 1.8 mrg splx(s);
161 1.1 mrg }
162 1.1 mrg
163 1.1 mrg
164 1.1 mrg /*
165 1.1 mrg * uvmpd_tune: tune paging parameters
166 1.1 mrg *
167 1.1 mrg * => called when ever memory is added (or removed?) to the system
168 1.1 mrg * => caller must call with page queues locked
169 1.1 mrg */
170 1.1 mrg
171 1.65 thorpej static void
172 1.37 chs uvmpd_tune(void)
173 1.8 mrg {
174 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
175 1.1 mrg
176 1.8 mrg uvmexp.freemin = uvmexp.npages / 20;
177 1.1 mrg
178 1.8 mrg /* between 16k and 256k */
179 1.8 mrg /* XXX: what are these values good for? */
180 1.37 chs uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
181 1.37 chs uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
182 1.23 bjh21
183 1.23 bjh21 /* Make sure there's always a user page free. */
184 1.23 bjh21 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
185 1.23 bjh21 uvmexp.freemin = uvmexp.reserve_kernel + 1;
186 1.1 mrg
187 1.8 mrg uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
188 1.8 mrg if (uvmexp.freetarg <= uvmexp.freemin)
189 1.8 mrg uvmexp.freetarg = uvmexp.freemin + 1;
190 1.1 mrg
191 1.61 chs uvmexp.freetarg += uvm_extrapages;
192 1.61 chs uvm_extrapages = 0;
193 1.61 chs
194 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
195 1.8 mrg UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
196 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
197 1.1 mrg }
198 1.1 mrg
199 1.1 mrg /*
200 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
201 1.1 mrg */
202 1.1 mrg
203 1.8 mrg void
204 1.22 thorpej uvm_pageout(void *arg)
205 1.8 mrg {
206 1.60 enami int bufcnt, npages = 0;
207 1.61 chs int extrapages = 0;
208 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
209 1.24 chs
210 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
211 1.8 mrg
212 1.8 mrg /*
213 1.8 mrg * ensure correct priority and set paging parameters...
214 1.8 mrg */
215 1.8 mrg
216 1.8 mrg uvm.pagedaemon_proc = curproc;
217 1.8 mrg uvm_lock_pageq();
218 1.8 mrg npages = uvmexp.npages;
219 1.8 mrg uvmpd_tune();
220 1.8 mrg uvm_unlock_pageq();
221 1.8 mrg
222 1.8 mrg /*
223 1.8 mrg * main loop
224 1.8 mrg */
225 1.24 chs
226 1.24 chs for (;;) {
227 1.24 chs simple_lock(&uvm.pagedaemon_lock);
228 1.24 chs
229 1.24 chs UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
230 1.24 chs UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
231 1.24 chs &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
232 1.24 chs uvmexp.pdwoke++;
233 1.24 chs UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
234 1.24 chs
235 1.8 mrg /*
236 1.24 chs * now lock page queues and recompute inactive count
237 1.8 mrg */
238 1.8 mrg
239 1.24 chs uvm_lock_pageq();
240 1.61 chs if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
241 1.24 chs npages = uvmexp.npages;
242 1.61 chs extrapages = uvm_extrapages;
243 1.24 chs uvmpd_tune();
244 1.24 chs }
245 1.24 chs
246 1.76.2.1 yamt uvmpdpol_tune();
247 1.24 chs
248 1.60 enami /*
249 1.60 enami * Estimate a hint. Note that bufmem are returned to
250 1.60 enami * system only when entire pool page is empty.
251 1.60 enami */
252 1.60 enami bufcnt = uvmexp.freetarg - uvmexp.free;
253 1.60 enami if (bufcnt < 0)
254 1.60 enami bufcnt = 0;
255 1.60 enami
256 1.76.2.1 yamt UVMHIST_LOG(pdhist," free/ftarg=%d/%d",
257 1.76.2.1 yamt uvmexp.free, uvmexp.freetarg, 0,0);
258 1.8 mrg
259 1.8 mrg /*
260 1.24 chs * scan if needed
261 1.8 mrg */
262 1.8 mrg
263 1.24 chs if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
264 1.76.2.1 yamt uvmpdpol_needsscan_p()) {
265 1.24 chs uvmpd_scan();
266 1.8 mrg }
267 1.8 mrg
268 1.8 mrg /*
269 1.24 chs * if there's any free memory to be had,
270 1.24 chs * wake up any waiters.
271 1.8 mrg */
272 1.8 mrg
273 1.24 chs if (uvmexp.free > uvmexp.reserve_kernel ||
274 1.24 chs uvmexp.paging == 0) {
275 1.24 chs wakeup(&uvmexp.free);
276 1.8 mrg }
277 1.1 mrg
278 1.8 mrg /*
279 1.24 chs * scan done. unlock page queues (the only lock we are holding)
280 1.8 mrg */
281 1.8 mrg
282 1.24 chs uvm_unlock_pageq();
283 1.38 chs
284 1.60 enami buf_drain(bufcnt << PAGE_SHIFT);
285 1.60 enami
286 1.38 chs /*
287 1.38 chs * drain pool resources now that we're not holding any locks
288 1.38 chs */
289 1.38 chs
290 1.38 chs pool_drain(0);
291 1.57 jdolecek
292 1.57 jdolecek /*
293 1.57 jdolecek * free any cached u-areas we don't need
294 1.57 jdolecek */
295 1.57 jdolecek uvm_uarea_drain(TRUE);
296 1.57 jdolecek
297 1.24 chs }
298 1.24 chs /*NOTREACHED*/
299 1.24 chs }
300 1.24 chs
301 1.8 mrg
302 1.24 chs /*
303 1.24 chs * uvm_aiodone_daemon: main loop for the aiodone daemon.
304 1.24 chs */
305 1.8 mrg
306 1.24 chs void
307 1.24 chs uvm_aiodone_daemon(void *arg)
308 1.24 chs {
309 1.24 chs int s, free;
310 1.24 chs struct buf *bp, *nbp;
311 1.24 chs UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
312 1.9 pk
313 1.24 chs for (;;) {
314 1.8 mrg
315 1.8 mrg /*
316 1.24 chs * carefully attempt to go to sleep (without losing "wakeups"!).
317 1.24 chs * we need splbio because we want to make sure the aio_done list
318 1.24 chs * is totally empty before we go to sleep.
319 1.8 mrg */
320 1.8 mrg
321 1.24 chs s = splbio();
322 1.24 chs simple_lock(&uvm.aiodoned_lock);
323 1.24 chs if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
324 1.24 chs UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
325 1.24 chs UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
326 1.24 chs &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
327 1.24 chs UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
328 1.24 chs
329 1.24 chs /* relock aiodoned_lock, still at splbio */
330 1.24 chs simple_lock(&uvm.aiodoned_lock);
331 1.8 mrg }
332 1.8 mrg
333 1.24 chs /*
334 1.24 chs * check for done aio structures
335 1.24 chs */
336 1.8 mrg
337 1.24 chs bp = TAILQ_FIRST(&uvm.aio_done);
338 1.24 chs if (bp) {
339 1.24 chs TAILQ_INIT(&uvm.aio_done);
340 1.24 chs }
341 1.8 mrg
342 1.24 chs simple_unlock(&uvm.aiodoned_lock);
343 1.24 chs splx(s);
344 1.8 mrg
345 1.8 mrg /*
346 1.24 chs * process each i/o that's done.
347 1.8 mrg */
348 1.8 mrg
349 1.24 chs free = uvmexp.free;
350 1.24 chs while (bp != NULL) {
351 1.24 chs nbp = TAILQ_NEXT(bp, b_freelist);
352 1.24 chs (*bp->b_iodone)(bp);
353 1.24 chs bp = nbp;
354 1.24 chs }
355 1.24 chs if (free <= uvmexp.reserve_kernel) {
356 1.24 chs s = uvm_lock_fpageq();
357 1.24 chs wakeup(&uvm.pagedaemon);
358 1.24 chs uvm_unlock_fpageq(s);
359 1.24 chs } else {
360 1.24 chs simple_lock(&uvm.pagedaemon_lock);
361 1.17 thorpej wakeup(&uvmexp.free);
362 1.24 chs simple_unlock(&uvm.pagedaemon_lock);
363 1.24 chs }
364 1.8 mrg }
365 1.1 mrg }
366 1.1 mrg
367 1.76 yamt /*
368 1.76 yamt * uvmpd_trylockowner: trylock the page's owner.
369 1.76 yamt *
370 1.76 yamt * => called with pageq locked.
371 1.76 yamt * => resolve orphaned O->A loaned page.
372 1.76 yamt * => return the locked simplelock on success. otherwise, return NULL.
373 1.76 yamt */
374 1.76 yamt
375 1.76.2.1 yamt struct simplelock *
376 1.76 yamt uvmpd_trylockowner(struct vm_page *pg)
377 1.76 yamt {
378 1.76 yamt struct uvm_object *uobj = pg->uobject;
379 1.76 yamt struct simplelock *slock;
380 1.76 yamt
381 1.76 yamt UVM_LOCK_ASSERT_PAGEQ();
382 1.76 yamt if (uobj != NULL) {
383 1.76 yamt slock = &uobj->vmobjlock;
384 1.76 yamt } else {
385 1.76 yamt struct vm_anon *anon = pg->uanon;
386 1.76 yamt
387 1.76 yamt KASSERT(anon != NULL);
388 1.76 yamt slock = &anon->an_lock;
389 1.76 yamt }
390 1.76 yamt
391 1.76 yamt if (!simple_lock_try(slock)) {
392 1.76 yamt return NULL;
393 1.76 yamt }
394 1.76 yamt
395 1.76 yamt if (uobj == NULL) {
396 1.76 yamt
397 1.76 yamt /*
398 1.76 yamt * set PQ_ANON if it isn't set already.
399 1.76 yamt */
400 1.76 yamt
401 1.76 yamt if ((pg->pqflags & PQ_ANON) == 0) {
402 1.76 yamt KASSERT(pg->loan_count > 0);
403 1.76 yamt pg->loan_count--;
404 1.76 yamt pg->pqflags |= PQ_ANON;
405 1.76 yamt /* anon now owns it */
406 1.76 yamt }
407 1.76 yamt }
408 1.76 yamt
409 1.76 yamt return slock;
410 1.76 yamt }
411 1.76 yamt
412 1.73 yamt #if defined(VMSWAP)
413 1.73 yamt struct swapcluster {
414 1.73 yamt int swc_slot;
415 1.73 yamt int swc_nallocated;
416 1.73 yamt int swc_nused;
417 1.75 yamt struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
418 1.73 yamt };
419 1.73 yamt
420 1.73 yamt static void
421 1.73 yamt swapcluster_init(struct swapcluster *swc)
422 1.73 yamt {
423 1.73 yamt
424 1.73 yamt swc->swc_slot = 0;
425 1.73 yamt }
426 1.73 yamt
427 1.73 yamt static int
428 1.73 yamt swapcluster_allocslots(struct swapcluster *swc)
429 1.73 yamt {
430 1.73 yamt int slot;
431 1.73 yamt int npages;
432 1.73 yamt
433 1.73 yamt if (swc->swc_slot != 0) {
434 1.73 yamt return 0;
435 1.73 yamt }
436 1.73 yamt
437 1.73 yamt /* Even with strange MAXPHYS, the shift
438 1.73 yamt implicitly rounds down to a page. */
439 1.73 yamt npages = MAXPHYS >> PAGE_SHIFT;
440 1.73 yamt slot = uvm_swap_alloc(&npages, TRUE);
441 1.73 yamt if (slot == 0) {
442 1.73 yamt return ENOMEM;
443 1.73 yamt }
444 1.73 yamt swc->swc_slot = slot;
445 1.73 yamt swc->swc_nallocated = npages;
446 1.73 yamt swc->swc_nused = 0;
447 1.73 yamt
448 1.73 yamt return 0;
449 1.73 yamt }
450 1.73 yamt
451 1.73 yamt static int
452 1.73 yamt swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
453 1.73 yamt {
454 1.73 yamt int slot;
455 1.73 yamt struct uvm_object *uobj;
456 1.73 yamt
457 1.73 yamt KASSERT(swc->swc_slot != 0);
458 1.73 yamt KASSERT(swc->swc_nused < swc->swc_nallocated);
459 1.73 yamt KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
460 1.73 yamt
461 1.73 yamt slot = swc->swc_slot + swc->swc_nused;
462 1.73 yamt uobj = pg->uobject;
463 1.73 yamt if (uobj == NULL) {
464 1.73 yamt LOCK_ASSERT(simple_lock_held(&pg->uanon->an_lock));
465 1.73 yamt pg->uanon->an_swslot = slot;
466 1.73 yamt } else {
467 1.73 yamt int result;
468 1.73 yamt
469 1.73 yamt LOCK_ASSERT(simple_lock_held(&uobj->vmobjlock));
470 1.73 yamt result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
471 1.73 yamt if (result == -1) {
472 1.73 yamt return ENOMEM;
473 1.73 yamt }
474 1.73 yamt }
475 1.73 yamt swc->swc_pages[swc->swc_nused] = pg;
476 1.73 yamt swc->swc_nused++;
477 1.73 yamt
478 1.73 yamt return 0;
479 1.73 yamt }
480 1.73 yamt
481 1.73 yamt static void
482 1.73 yamt swapcluster_flush(struct swapcluster *swc, boolean_t now)
483 1.73 yamt {
484 1.73 yamt int slot;
485 1.73 yamt int nused;
486 1.73 yamt int nallocated;
487 1.73 yamt int error;
488 1.73 yamt
489 1.73 yamt if (swc->swc_slot == 0) {
490 1.73 yamt return;
491 1.73 yamt }
492 1.73 yamt KASSERT(swc->swc_nused <= swc->swc_nallocated);
493 1.73 yamt
494 1.73 yamt slot = swc->swc_slot;
495 1.73 yamt nused = swc->swc_nused;
496 1.73 yamt nallocated = swc->swc_nallocated;
497 1.73 yamt
498 1.73 yamt /*
499 1.73 yamt * if this is the final pageout we could have a few
500 1.73 yamt * unused swap blocks. if so, free them now.
501 1.73 yamt */
502 1.73 yamt
503 1.73 yamt if (nused < nallocated) {
504 1.73 yamt if (!now) {
505 1.73 yamt return;
506 1.73 yamt }
507 1.73 yamt uvm_swap_free(slot + nused, nallocated - nused);
508 1.73 yamt }
509 1.73 yamt
510 1.73 yamt /*
511 1.73 yamt * now start the pageout.
512 1.73 yamt */
513 1.73 yamt
514 1.73 yamt uvmexp.pdpageouts++;
515 1.73 yamt error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
516 1.73 yamt KASSERT(error == 0);
517 1.73 yamt
518 1.73 yamt /*
519 1.73 yamt * zero swslot to indicate that we are
520 1.73 yamt * no longer building a swap-backed cluster.
521 1.73 yamt */
522 1.73 yamt
523 1.73 yamt swc->swc_slot = 0;
524 1.73 yamt }
525 1.76.2.1 yamt
526 1.76.2.1 yamt /*
527 1.76.2.1 yamt * uvmpd_dropswap: free any swap allocated to this page.
528 1.76.2.1 yamt *
529 1.76.2.1 yamt * => called with owner locked.
530 1.76.2.1 yamt * => return TRUE if a page had an associated slot.
531 1.76.2.1 yamt */
532 1.76.2.1 yamt
533 1.76.2.1 yamt static boolean_t
534 1.76.2.1 yamt uvmpd_dropswap(struct vm_page *pg)
535 1.76.2.1 yamt {
536 1.76.2.1 yamt boolean_t result = FALSE;
537 1.76.2.1 yamt struct vm_anon *anon = pg->uanon;
538 1.76.2.1 yamt
539 1.76.2.1 yamt if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
540 1.76.2.1 yamt uvm_swap_free(anon->an_swslot, 1);
541 1.76.2.1 yamt anon->an_swslot = 0;
542 1.76.2.1 yamt pg->flags &= ~PG_CLEAN;
543 1.76.2.1 yamt result = TRUE;
544 1.76.2.1 yamt } else if (pg->pqflags & PQ_AOBJ) {
545 1.76.2.1 yamt int slot = uao_set_swslot(pg->uobject,
546 1.76.2.1 yamt pg->offset >> PAGE_SHIFT, 0);
547 1.76.2.1 yamt if (slot) {
548 1.76.2.1 yamt uvm_swap_free(slot, 1);
549 1.76.2.1 yamt pg->flags &= ~PG_CLEAN;
550 1.76.2.1 yamt result = TRUE;
551 1.76.2.1 yamt }
552 1.76.2.1 yamt }
553 1.76.2.1 yamt
554 1.76.2.1 yamt return result;
555 1.76.2.1 yamt }
556 1.76.2.1 yamt
557 1.76.2.1 yamt /*
558 1.76.2.1 yamt * uvmpd_trydropswap: try to free any swap allocated to this page.
559 1.76.2.1 yamt *
560 1.76.2.1 yamt * => return TRUE if a slot is successfully freed.
561 1.76.2.1 yamt */
562 1.76.2.1 yamt
563 1.76.2.1 yamt boolean_t
564 1.76.2.1 yamt uvmpd_trydropswap(struct vm_page *pg)
565 1.76.2.1 yamt {
566 1.76.2.1 yamt struct simplelock *slock;
567 1.76.2.1 yamt boolean_t result;
568 1.76.2.1 yamt
569 1.76.2.1 yamt if ((pg->flags & PG_BUSY) != 0) {
570 1.76.2.1 yamt return FALSE;
571 1.76.2.1 yamt }
572 1.76.2.1 yamt
573 1.76.2.1 yamt /*
574 1.76.2.1 yamt * lock the page's owner.
575 1.76.2.1 yamt */
576 1.76.2.1 yamt
577 1.76.2.1 yamt slock = uvmpd_trylockowner(pg);
578 1.76.2.1 yamt if (slock == NULL) {
579 1.76.2.1 yamt return FALSE;
580 1.76.2.1 yamt }
581 1.76.2.1 yamt
582 1.76.2.1 yamt /*
583 1.76.2.1 yamt * skip this page if it's busy.
584 1.76.2.1 yamt */
585 1.76.2.1 yamt
586 1.76.2.1 yamt if ((pg->flags & PG_BUSY) != 0) {
587 1.76.2.1 yamt simple_unlock(slock);
588 1.76.2.1 yamt return FALSE;
589 1.76.2.1 yamt }
590 1.76.2.1 yamt
591 1.76.2.1 yamt result = uvmpd_dropswap(pg);
592 1.76.2.1 yamt
593 1.76.2.1 yamt simple_unlock(slock);
594 1.76.2.1 yamt
595 1.76.2.1 yamt return result;
596 1.76.2.1 yamt }
597 1.76.2.1 yamt
598 1.73 yamt #endif /* defined(VMSWAP) */
599 1.73 yamt
600 1.1 mrg /*
601 1.76.2.1 yamt * uvmpd_scan_queue: scan an replace candidate list for pages
602 1.76.2.1 yamt * to clean or free.
603 1.1 mrg *
604 1.1 mrg * => called with page queues locked
605 1.1 mrg * => we work on meeting our free target by converting inactive pages
606 1.1 mrg * into free pages.
607 1.1 mrg * => we handle the building of swap-backed clusters
608 1.1 mrg */
609 1.1 mrg
610 1.65 thorpej static void
611 1.76.2.1 yamt uvmpd_scan_queue(void)
612 1.8 mrg {
613 1.76.2.1 yamt struct vm_page *p;
614 1.8 mrg struct uvm_object *uobj;
615 1.37 chs struct vm_anon *anon;
616 1.68 yamt #if defined(VMSWAP)
617 1.73 yamt struct swapcluster swc;
618 1.68 yamt #endif /* defined(VMSWAP) */
619 1.76.2.1 yamt int dirtyreacts;
620 1.37 chs struct simplelock *slock;
621 1.76.2.1 yamt UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
622 1.1 mrg
623 1.8 mrg /*
624 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
625 1.24 chs * to stay in the loop while we have a page to scan or we have
626 1.8 mrg * a swap-cluster to build.
627 1.8 mrg */
628 1.24 chs
629 1.73 yamt #if defined(VMSWAP)
630 1.73 yamt swapcluster_init(&swc);
631 1.73 yamt #endif /* defined(VMSWAP) */
632 1.43 chs
633 1.76.2.1 yamt dirtyreacts = 0;
634 1.76.2.1 yamt uvmpdpol_scaninit();
635 1.43 chs
636 1.76.2.1 yamt while (/* CONSTCOND */ 1) {
637 1.24 chs
638 1.73 yamt /*
639 1.73 yamt * see if we've met the free target.
640 1.73 yamt */
641 1.73 yamt
642 1.73 yamt if (uvmexp.free + uvmexp.paging >= uvmexp.freetarg << 2 ||
643 1.73 yamt dirtyreacts == UVMPD_NUMDIRTYREACTS) {
644 1.73 yamt UVMHIST_LOG(pdhist," met free target: "
645 1.73 yamt "exit loop", 0, 0, 0, 0);
646 1.73 yamt break;
647 1.73 yamt }
648 1.24 chs
649 1.76.2.1 yamt p = uvmpdpol_selectvictim();
650 1.76.2.1 yamt if (p == NULL) {
651 1.76.2.1 yamt break;
652 1.76.2.1 yamt }
653 1.76.2.1 yamt KASSERT(uvmpdpol_pageisqueued_p(p));
654 1.76.2.1 yamt KASSERT(p->wire_count == 0);
655 1.30 chs
656 1.73 yamt /*
657 1.76.2.1 yamt * we are below target and have a new page to consider.
658 1.73 yamt */
659 1.37 chs
660 1.73 yamt anon = p->uanon;
661 1.73 yamt uobj = p->uobject;
662 1.8 mrg
663 1.73 yamt /*
664 1.73 yamt * first we attempt to lock the object that this page
665 1.73 yamt * belongs to. if our attempt fails we skip on to
666 1.73 yamt * the next page (no harm done). it is important to
667 1.73 yamt * "try" locking the object as we are locking in the
668 1.73 yamt * wrong order (pageq -> object) and we don't want to
669 1.73 yamt * deadlock.
670 1.73 yamt *
671 1.73 yamt * the only time we expect to see an ownerless page
672 1.73 yamt * (i.e. a page with no uobject and !PQ_ANON) is if an
673 1.73 yamt * anon has loaned a page from a uvm_object and the
674 1.73 yamt * uvm_object has dropped the ownership. in that
675 1.73 yamt * case, the anon can "take over" the loaned page
676 1.73 yamt * and make it its own.
677 1.73 yamt */
678 1.30 chs
679 1.76 yamt slock = uvmpd_trylockowner(p);
680 1.76 yamt if (slock == NULL) {
681 1.76 yamt continue;
682 1.76 yamt }
683 1.76 yamt if (p->flags & PG_BUSY) {
684 1.76 yamt simple_unlock(slock);
685 1.76 yamt uvmexp.pdbusy++;
686 1.76 yamt continue;
687 1.76 yamt }
688 1.76 yamt
689 1.73 yamt /* does the page belong to an object? */
690 1.73 yamt if (uobj != NULL) {
691 1.73 yamt uvmexp.pdobscan++;
692 1.73 yamt } else {
693 1.73 yamt #if defined(VMSWAP)
694 1.73 yamt KASSERT(anon != NULL);
695 1.73 yamt uvmexp.pdanscan++;
696 1.68 yamt #else /* defined(VMSWAP) */
697 1.73 yamt panic("%s: anon", __func__);
698 1.68 yamt #endif /* defined(VMSWAP) */
699 1.73 yamt }
700 1.8 mrg
701 1.37 chs
702 1.73 yamt /*
703 1.73 yamt * we now have the object and the page queues locked.
704 1.73 yamt * if the page is not swap-backed, call the object's
705 1.73 yamt * pager to flush and free the page.
706 1.73 yamt */
707 1.37 chs
708 1.69 yamt #if defined(READAHEAD_STATS)
709 1.73 yamt if ((p->flags & PG_SPECULATIVE) != 0) {
710 1.73 yamt p->flags &= ~PG_SPECULATIVE;
711 1.73 yamt uvm_ra_miss.ev_count++;
712 1.73 yamt }
713 1.69 yamt #endif /* defined(READAHEAD_STATS) */
714 1.69 yamt
715 1.73 yamt if ((p->pqflags & PQ_SWAPBACKED) == 0) {
716 1.73 yamt uvm_unlock_pageq();
717 1.73 yamt (void) (uobj->pgops->pgo_put)(uobj, p->offset,
718 1.73 yamt p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
719 1.73 yamt uvm_lock_pageq();
720 1.73 yamt continue;
721 1.73 yamt }
722 1.37 chs
723 1.73 yamt /*
724 1.73 yamt * the page is swap-backed. remove all the permissions
725 1.73 yamt * from the page so we can sync the modified info
726 1.73 yamt * without any race conditions. if the page is clean
727 1.73 yamt * we can free it now and continue.
728 1.73 yamt */
729 1.8 mrg
730 1.73 yamt pmap_page_protect(p, VM_PROT_NONE);
731 1.73 yamt if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
732 1.73 yamt p->flags &= ~(PG_CLEAN);
733 1.73 yamt }
734 1.73 yamt if (p->flags & PG_CLEAN) {
735 1.73 yamt int slot;
736 1.73 yamt int pageidx;
737 1.73 yamt
738 1.73 yamt pageidx = p->offset >> PAGE_SHIFT;
739 1.73 yamt uvm_pagefree(p);
740 1.73 yamt uvmexp.pdfreed++;
741 1.8 mrg
742 1.8 mrg /*
743 1.73 yamt * for anons, we need to remove the page
744 1.73 yamt * from the anon ourselves. for aobjs,
745 1.73 yamt * pagefree did that for us.
746 1.8 mrg */
747 1.24 chs
748 1.73 yamt if (anon) {
749 1.73 yamt KASSERT(anon->an_swslot != 0);
750 1.73 yamt anon->an_page = NULL;
751 1.73 yamt slot = anon->an_swslot;
752 1.73 yamt } else {
753 1.73 yamt slot = uao_find_swslot(uobj, pageidx);
754 1.8 mrg }
755 1.73 yamt simple_unlock(slock);
756 1.8 mrg
757 1.73 yamt if (slot > 0) {
758 1.73 yamt /* this page is now only in swap. */
759 1.73 yamt simple_lock(&uvm.swap_data_lock);
760 1.73 yamt KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
761 1.73 yamt uvmexp.swpgonly++;
762 1.73 yamt simple_unlock(&uvm.swap_data_lock);
763 1.37 chs }
764 1.73 yamt continue;
765 1.73 yamt }
766 1.37 chs
767 1.76.2.1 yamt #if defined(VMSWAP)
768 1.73 yamt /*
769 1.73 yamt * this page is dirty, skip it if we'll have met our
770 1.73 yamt * free target when all the current pageouts complete.
771 1.73 yamt */
772 1.24 chs
773 1.73 yamt if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
774 1.73 yamt simple_unlock(slock);
775 1.73 yamt continue;
776 1.73 yamt }
777 1.14 chs
778 1.73 yamt /*
779 1.73 yamt * free any swap space allocated to the page since
780 1.73 yamt * we'll have to write it again with its new data.
781 1.73 yamt */
782 1.24 chs
783 1.76.2.1 yamt uvmpd_dropswap(p);
784 1.14 chs
785 1.73 yamt /*
786 1.73 yamt * if all pages in swap are only in swap,
787 1.73 yamt * the swap space is full and we can't page out
788 1.73 yamt * any more swap-backed pages. reactivate this page
789 1.73 yamt * so that we eventually cycle all pages through
790 1.73 yamt * the inactive queue.
791 1.73 yamt */
792 1.68 yamt
793 1.73 yamt if (uvm_swapisfull()) {
794 1.73 yamt dirtyreacts++;
795 1.73 yamt uvm_pageactivate(p);
796 1.73 yamt simple_unlock(slock);
797 1.73 yamt continue;
798 1.8 mrg }
799 1.8 mrg
800 1.8 mrg /*
801 1.73 yamt * start new swap pageout cluster (if necessary).
802 1.8 mrg */
803 1.24 chs
804 1.73 yamt if (swapcluster_allocslots(&swc)) {
805 1.73 yamt simple_unlock(slock);
806 1.76.2.1 yamt dirtyreacts++; /* XXX */
807 1.73 yamt continue;
808 1.8 mrg }
809 1.8 mrg
810 1.8 mrg /*
811 1.73 yamt * at this point, we're definitely going reuse this
812 1.73 yamt * page. mark the page busy and delayed-free.
813 1.73 yamt * we should remove the page from the page queues
814 1.73 yamt * so we don't ever look at it again.
815 1.73 yamt * adjust counters and such.
816 1.8 mrg */
817 1.8 mrg
818 1.73 yamt p->flags |= PG_BUSY;
819 1.76.2.1 yamt UVM_PAGE_OWN(p, "scan_queue");
820 1.73 yamt
821 1.73 yamt p->flags |= PG_PAGEOUT;
822 1.73 yamt uvmexp.paging++;
823 1.73 yamt uvm_pagedequeue(p);
824 1.73 yamt
825 1.73 yamt uvmexp.pgswapout++;
826 1.37 chs uvm_unlock_pageq();
827 1.8 mrg
828 1.8 mrg /*
829 1.73 yamt * add the new page to the cluster.
830 1.8 mrg */
831 1.8 mrg
832 1.73 yamt if (swapcluster_add(&swc, p)) {
833 1.73 yamt p->flags &= ~(PG_BUSY|PG_PAGEOUT);
834 1.73 yamt UVM_PAGE_OWN(p, NULL);
835 1.73 yamt uvm_lock_pageq();
836 1.73 yamt uvmexp.paging--;
837 1.76.2.1 yamt dirtyreacts++;
838 1.73 yamt uvm_pageactivate(p);
839 1.73 yamt simple_unlock(slock);
840 1.73 yamt continue;
841 1.73 yamt }
842 1.73 yamt simple_unlock(slock);
843 1.73 yamt
844 1.73 yamt swapcluster_flush(&swc, FALSE);
845 1.73 yamt uvm_lock_pageq();
846 1.73 yamt
847 1.8 mrg /*
848 1.31 chs * the pageout is in progress. bump counters and set up
849 1.31 chs * for the next loop.
850 1.8 mrg */
851 1.8 mrg
852 1.31 chs uvmexp.pdpending++;
853 1.76.2.1 yamt
854 1.76.2.1 yamt #else /* defined(VMSWAP) */
855 1.76.2.1 yamt uvm_pageactivate(p);
856 1.76.2.1 yamt simple_unlock(slock);
857 1.76.2.1 yamt #endif /* defined(VMSWAP) */
858 1.73 yamt }
859 1.73 yamt
860 1.73 yamt #if defined(VMSWAP)
861 1.73 yamt uvm_unlock_pageq();
862 1.73 yamt swapcluster_flush(&swc, TRUE);
863 1.73 yamt uvm_lock_pageq();
864 1.68 yamt #endif /* defined(VMSWAP) */
865 1.1 mrg }
866 1.1 mrg
867 1.1 mrg /*
868 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
869 1.1 mrg *
870 1.1 mrg * => called with pageq's locked
871 1.1 mrg */
872 1.1 mrg
873 1.65 thorpej static void
874 1.37 chs uvmpd_scan(void)
875 1.1 mrg {
876 1.76.2.1 yamt int swap_shortage, pages_freed;
877 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
878 1.1 mrg
879 1.37 chs uvmexp.pdrevs++;
880 1.1 mrg
881 1.1 mrg #ifndef __SWAP_BROKEN
882 1.39 chs
883 1.8 mrg /*
884 1.8 mrg * swap out some processes if we are below our free target.
885 1.8 mrg * we need to unlock the page queues for this.
886 1.8 mrg */
887 1.39 chs
888 1.39 chs if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
889 1.8 mrg uvmexp.pdswout++;
890 1.37 chs UVMHIST_LOG(pdhist," free %d < target %d: swapout",
891 1.37 chs uvmexp.free, uvmexp.freetarg, 0, 0);
892 1.8 mrg uvm_unlock_pageq();
893 1.8 mrg uvm_swapout_threads();
894 1.8 mrg uvm_lock_pageq();
895 1.1 mrg
896 1.8 mrg }
897 1.1 mrg #endif
898 1.1 mrg
899 1.8 mrg /*
900 1.8 mrg * now we want to work on meeting our targets. first we work on our
901 1.8 mrg * free target by converting inactive pages into free pages. then
902 1.8 mrg * we work on meeting our inactive target by converting active pages
903 1.8 mrg * to inactive ones.
904 1.8 mrg */
905 1.8 mrg
906 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
907 1.8 mrg
908 1.14 chs pages_freed = uvmexp.pdfreed;
909 1.76.2.1 yamt uvmpd_scan_queue();
910 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
911 1.8 mrg
912 1.8 mrg /*
913 1.14 chs * detect if we're not going to be able to page anything out
914 1.14 chs * until we free some swap resources from active pages.
915 1.14 chs */
916 1.24 chs
917 1.14 chs swap_shortage = 0;
918 1.14 chs if (uvmexp.free < uvmexp.freetarg &&
919 1.52 pk uvmexp.swpginuse >= uvmexp.swpgavail &&
920 1.52 pk !uvm_swapisfull() &&
921 1.14 chs pages_freed == 0) {
922 1.14 chs swap_shortage = uvmexp.freetarg - uvmexp.free;
923 1.14 chs }
924 1.24 chs
925 1.76.2.1 yamt uvmpdpol_balancequeue(swap_shortage);
926 1.1 mrg }
927 1.62 yamt
928 1.62 yamt /*
929 1.62 yamt * uvm_reclaimable: decide whether to wait for pagedaemon.
930 1.62 yamt *
931 1.62 yamt * => return TRUE if it seems to be worth to do uvm_wait.
932 1.62 yamt *
933 1.62 yamt * XXX should be tunable.
934 1.62 yamt * XXX should consider pools, etc?
935 1.62 yamt */
936 1.62 yamt
937 1.62 yamt boolean_t
938 1.62 yamt uvm_reclaimable(void)
939 1.62 yamt {
940 1.62 yamt int filepages;
941 1.76.2.1 yamt int active, inactive;
942 1.62 yamt
943 1.62 yamt /*
944 1.62 yamt * if swap is not full, no problem.
945 1.62 yamt */
946 1.62 yamt
947 1.62 yamt if (!uvm_swapisfull()) {
948 1.62 yamt return TRUE;
949 1.62 yamt }
950 1.62 yamt
951 1.62 yamt /*
952 1.62 yamt * file-backed pages can be reclaimed even when swap is full.
953 1.62 yamt * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
954 1.62 yamt *
955 1.62 yamt * XXX assume the worst case, ie. all wired pages are file-backed.
956 1.63 yamt *
957 1.63 yamt * XXX should consider about other reclaimable memory.
958 1.63 yamt * XXX ie. pools, traditional buffer cache.
959 1.62 yamt */
960 1.62 yamt
961 1.62 yamt filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
962 1.76.2.1 yamt uvm_estimatepageable(&active, &inactive);
963 1.76.2.1 yamt if (filepages >= MIN((active + inactive) >> 4,
964 1.62 yamt 5 * 1024 * 1024 >> PAGE_SHIFT)) {
965 1.62 yamt return TRUE;
966 1.62 yamt }
967 1.62 yamt
968 1.62 yamt /*
969 1.62 yamt * kill the process, fail allocation, etc..
970 1.62 yamt */
971 1.62 yamt
972 1.62 yamt return FALSE;
973 1.62 yamt }
974 1.76.2.1 yamt
975 1.76.2.1 yamt void
976 1.76.2.1 yamt uvm_estimatepageable(int *active, int *inactive)
977 1.76.2.1 yamt {
978 1.76.2.1 yamt
979 1.76.2.1 yamt uvmpdpol_estimatepageable(active, inactive);
980 1.76.2.1 yamt }
981