Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.8
      1  1.8  mrg /*	$NetBSD: uvm_pdaemon.c,v 1.8 1998/03/09 00:58:59 mrg Exp $	*/
      2  1.1  mrg 
      3  1.1  mrg /*
      4  1.1  mrg  * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
      5  1.1  mrg  *         >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
      6  1.1  mrg  */
      7  1.1  mrg /*
      8  1.1  mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      9  1.1  mrg  * Copyright (c) 1991, 1993, The Regents of the University of California.
     10  1.1  mrg  *
     11  1.1  mrg  * All rights reserved.
     12  1.1  mrg  *
     13  1.1  mrg  * This code is derived from software contributed to Berkeley by
     14  1.1  mrg  * The Mach Operating System project at Carnegie-Mellon University.
     15  1.1  mrg  *
     16  1.1  mrg  * Redistribution and use in source and binary forms, with or without
     17  1.1  mrg  * modification, are permitted provided that the following conditions
     18  1.1  mrg  * are met:
     19  1.1  mrg  * 1. Redistributions of source code must retain the above copyright
     20  1.1  mrg  *    notice, this list of conditions and the following disclaimer.
     21  1.1  mrg  * 2. Redistributions in binary form must reproduce the above copyright
     22  1.1  mrg  *    notice, this list of conditions and the following disclaimer in the
     23  1.1  mrg  *    documentation and/or other materials provided with the distribution.
     24  1.1  mrg  * 3. All advertising materials mentioning features or use of this software
     25  1.1  mrg  *    must display the following acknowledgement:
     26  1.1  mrg  *	This product includes software developed by Charles D. Cranor,
     27  1.1  mrg  *      Washington University, the University of California, Berkeley and
     28  1.1  mrg  *      its contributors.
     29  1.1  mrg  * 4. Neither the name of the University nor the names of its contributors
     30  1.1  mrg  *    may be used to endorse or promote products derived from this software
     31  1.1  mrg  *    without specific prior written permission.
     32  1.1  mrg  *
     33  1.1  mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     34  1.1  mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     35  1.1  mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     36  1.1  mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     37  1.1  mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     38  1.1  mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     39  1.1  mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     40  1.1  mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     41  1.1  mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     42  1.1  mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     43  1.1  mrg  * SUCH DAMAGE.
     44  1.1  mrg  *
     45  1.1  mrg  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     46  1.4  mrg  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     47  1.1  mrg  *
     48  1.1  mrg  *
     49  1.1  mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     50  1.1  mrg  * All rights reserved.
     51  1.1  mrg  *
     52  1.1  mrg  * Permission to use, copy, modify and distribute this software and
     53  1.1  mrg  * its documentation is hereby granted, provided that both the copyright
     54  1.1  mrg  * notice and this permission notice appear in all copies of the
     55  1.1  mrg  * software, derivative works or modified versions, and any portions
     56  1.1  mrg  * thereof, and that both notices appear in supporting documentation.
     57  1.1  mrg  *
     58  1.1  mrg  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     59  1.1  mrg  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     60  1.1  mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     61  1.1  mrg  *
     62  1.1  mrg  * Carnegie Mellon requests users of this software to return to
     63  1.1  mrg  *
     64  1.1  mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     65  1.1  mrg  *  School of Computer Science
     66  1.1  mrg  *  Carnegie Mellon University
     67  1.1  mrg  *  Pittsburgh PA 15213-3890
     68  1.1  mrg  *
     69  1.1  mrg  * any improvements or extensions that they make and grant Carnegie the
     70  1.1  mrg  * rights to redistribute these changes.
     71  1.1  mrg  */
     72  1.1  mrg 
     73  1.7  mrg #include "opt_uvmhist.h"
     74  1.7  mrg 
     75  1.1  mrg /*
     76  1.1  mrg  * uvm_pdaemon.c: the page daemon
     77  1.1  mrg  */
     78  1.1  mrg 
     79  1.1  mrg #include <sys/param.h>
     80  1.1  mrg #include <sys/proc.h>
     81  1.1  mrg #include <sys/systm.h>
     82  1.1  mrg #include <sys/kernel.h>
     83  1.1  mrg 
     84  1.1  mrg #include <vm/vm.h>
     85  1.1  mrg #include <vm/vm_page.h>
     86  1.1  mrg #include <vm/vm_kern.h>
     87  1.1  mrg 
     88  1.1  mrg #include <uvm/uvm.h>
     89  1.1  mrg 
     90  1.1  mrg /*
     91  1.1  mrg  * local prototypes
     92  1.1  mrg  */
     93  1.1  mrg 
     94  1.1  mrg static void		uvmpd_scan __P((void));
     95  1.1  mrg static boolean_t	uvmpd_scan_inactive __P((struct pglist *));
     96  1.1  mrg static void		uvmpd_tune __P((void));
     97  1.1  mrg 
     98  1.1  mrg 
     99  1.1  mrg /*
    100  1.1  mrg  * uvm_wait: wait (sleep) for the page daemon to free some pages
    101  1.1  mrg  *
    102  1.1  mrg  * => should be called with all locks released
    103  1.1  mrg  * => should _not_ be called by the page daemon (to avoid deadlock)
    104  1.1  mrg  */
    105  1.1  mrg 
    106  1.1  mrg void uvm_wait(wmsg)
    107  1.8  mrg 	char *wmsg;
    108  1.8  mrg {
    109  1.8  mrg 	int timo = 0;
    110  1.8  mrg 	int s = splbio();
    111  1.1  mrg 
    112  1.8  mrg 	/*
    113  1.8  mrg 	 * check for page daemon going to sleep (waiting for itself)
    114  1.8  mrg 	 */
    115  1.1  mrg 
    116  1.8  mrg 	if (curproc == uvm.pagedaemon_proc) {
    117  1.8  mrg 		/*
    118  1.8  mrg 		 * now we have a problem: the pagedaemon wants to go to
    119  1.8  mrg 		 * sleep until it frees more memory.   but how can it
    120  1.8  mrg 		 * free more memory if it is asleep?  that is a deadlock.
    121  1.8  mrg 		 * we have two options:
    122  1.8  mrg 		 *  [1] panic now
    123  1.8  mrg 		 *  [2] put a timeout on the sleep, thus causing the
    124  1.8  mrg 		 *      pagedaemon to only pause (rather than sleep forever)
    125  1.8  mrg 		 *
    126  1.8  mrg 		 * note that option [2] will only help us if we get lucky
    127  1.8  mrg 		 * and some other process on the system breaks the deadlock
    128  1.8  mrg 		 * by exiting or freeing memory (thus allowing the pagedaemon
    129  1.8  mrg 		 * to continue).  for now we panic if DEBUG is defined,
    130  1.8  mrg 		 * otherwise we hope for the best with option [2] (better
    131  1.8  mrg 		 * yet, this should never happen in the first place!).
    132  1.8  mrg 		 */
    133  1.1  mrg 
    134  1.8  mrg 		printf("pagedaemon: deadlock detected!\n");
    135  1.8  mrg 		timo = hz >> 3;		/* set timeout */
    136  1.1  mrg #if defined(DEBUG)
    137  1.8  mrg 		/* DEBUG: panic so we can debug it */
    138  1.8  mrg 		panic("pagedaemon deadlock");
    139  1.1  mrg #endif
    140  1.8  mrg 	}
    141  1.1  mrg 
    142  1.8  mrg 	simple_lock(&uvm.pagedaemon_lock);
    143  1.8  mrg 	thread_wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    144  1.8  mrg 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    145  1.8  mrg 	    timo);
    146  1.1  mrg 
    147  1.8  mrg 	splx(s);
    148  1.1  mrg }
    149  1.1  mrg 
    150  1.1  mrg 
    151  1.1  mrg /*
    152  1.1  mrg  * uvmpd_tune: tune paging parameters
    153  1.1  mrg  *
    154  1.1  mrg  * => called when ever memory is added (or removed?) to the system
    155  1.1  mrg  * => caller must call with page queues locked
    156  1.1  mrg  */
    157  1.1  mrg 
    158  1.8  mrg static void
    159  1.8  mrg uvmpd_tune()
    160  1.8  mrg {
    161  1.8  mrg 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    162  1.1  mrg 
    163  1.8  mrg 	uvmexp.freemin = uvmexp.npages / 20;
    164  1.1  mrg 
    165  1.8  mrg 	/* between 16k and 256k */
    166  1.8  mrg 	/* XXX:  what are these values good for? */
    167  1.8  mrg 	uvmexp.freemin = max(uvmexp.freemin, (16*1024)/PAGE_SIZE);
    168  1.8  mrg 	uvmexp.freemin = min(uvmexp.freemin, (256*1024)/PAGE_SIZE);
    169  1.1  mrg 
    170  1.8  mrg 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    171  1.8  mrg 	if (uvmexp.freetarg <= uvmexp.freemin)
    172  1.8  mrg 		uvmexp.freetarg = uvmexp.freemin + 1;
    173  1.1  mrg 
    174  1.8  mrg 	/* uvmexp.inactarg: computed in main daemon loop */
    175  1.1  mrg 
    176  1.8  mrg 	uvmexp.wiredmax = uvmexp.npages / 3;
    177  1.8  mrg 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    178  1.1  mrg 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    179  1.1  mrg }
    180  1.1  mrg 
    181  1.1  mrg /*
    182  1.1  mrg  * uvm_pageout: the main loop for the pagedaemon
    183  1.1  mrg  */
    184  1.1  mrg 
    185  1.8  mrg void
    186  1.8  mrg uvm_pageout()
    187  1.8  mrg {
    188  1.8  mrg 	int npages = 0;
    189  1.8  mrg 	int s;
    190  1.8  mrg 	struct uvm_aiodesc *aio, *nextaio;
    191  1.8  mrg 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    192  1.8  mrg 
    193  1.8  mrg 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    194  1.8  mrg 
    195  1.8  mrg 	/*
    196  1.8  mrg 	 * ensure correct priority and set paging parameters...
    197  1.8  mrg 	 */
    198  1.8  mrg 
    199  1.8  mrg 	uvm.pagedaemon_proc = curproc;
    200  1.8  mrg 	(void) spl0();
    201  1.8  mrg 	uvm_lock_pageq();
    202  1.8  mrg 	npages = uvmexp.npages;
    203  1.8  mrg 	uvmpd_tune();
    204  1.8  mrg 	uvm_unlock_pageq();
    205  1.8  mrg 
    206  1.8  mrg 	/*
    207  1.8  mrg 	 * main loop
    208  1.8  mrg 	 */
    209  1.8  mrg 	while (TRUE) {
    210  1.1  mrg 
    211  1.8  mrg 		/*
    212  1.8  mrg 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    213  1.8  mrg 		 * we need splbio because we want to make sure the aio_done list
    214  1.8  mrg 		 * is totally empty before we go to sleep.
    215  1.8  mrg 		 */
    216  1.8  mrg 
    217  1.8  mrg 		s = splbio();
    218  1.8  mrg 		simple_lock(&uvm.pagedaemon_lock);
    219  1.8  mrg 
    220  1.8  mrg 		/*
    221  1.8  mrg 		 * if we've got done aio's, then bypass the sleep
    222  1.8  mrg 		 */
    223  1.8  mrg 
    224  1.8  mrg 		if (uvm.aio_done.tqh_first == NULL) {
    225  1.8  mrg 			UVMHIST_LOG(maphist,"  <<SLEEPING>>",0,0,0,0);
    226  1.8  mrg 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    227  1.8  mrg 			    &uvm.pagedaemon_lock, FALSE, "daemon_slp", 0);
    228  1.8  mrg 			uvmexp.pdwoke++;
    229  1.8  mrg 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    230  1.8  mrg 
    231  1.8  mrg 			/* relock pagedaemon_lock, still at splbio */
    232  1.8  mrg 			simple_lock(&uvm.pagedaemon_lock);
    233  1.8  mrg 		}
    234  1.8  mrg 
    235  1.8  mrg 		/*
    236  1.8  mrg 		 * check for done aio structures
    237  1.8  mrg 		 */
    238  1.8  mrg 
    239  1.8  mrg 		aio = uvm.aio_done.tqh_first;	/* save current list (if any)*/
    240  1.8  mrg 		if (aio) {
    241  1.8  mrg 			TAILQ_INIT(&uvm.aio_done);	/* zero global list */
    242  1.8  mrg 		}
    243  1.1  mrg 
    244  1.8  mrg 		simple_unlock(&uvm.pagedaemon_lock);	/* unlock */
    245  1.8  mrg 		splx(s);				/* drop splbio */
    246  1.1  mrg 
    247  1.8  mrg 		/*
    248  1.8  mrg 		 * first clear out any pending aios (to free space in case we
    249  1.8  mrg 		 * want to pageout more stuff).
    250  1.8  mrg 		 */
    251  1.8  mrg 
    252  1.8  mrg 		for (/*null*/; aio != NULL ; aio = nextaio) {
    253  1.8  mrg 
    254  1.8  mrg 			uvmexp.paging -= aio->npages;
    255  1.8  mrg 			nextaio = aio->aioq.tqe_next;
    256  1.8  mrg 			aio->aiodone(aio);
    257  1.8  mrg 
    258  1.8  mrg 		}
    259  1.8  mrg 
    260  1.8  mrg 		/*
    261  1.8  mrg 		 * now lock page queues and recompute inactive count
    262  1.8  mrg 		 */
    263  1.8  mrg 		uvm_lock_pageq();
    264  1.8  mrg 
    265  1.8  mrg 		if (npages != uvmexp.npages) {	/* check for new pages? */
    266  1.8  mrg 			npages = uvmexp.npages;
    267  1.8  mrg 			uvmpd_tune();
    268  1.8  mrg 		}
    269  1.8  mrg 
    270  1.8  mrg 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    271  1.8  mrg 		if (uvmexp.inactarg <= uvmexp.freetarg)
    272  1.8  mrg 			uvmexp.inactarg = uvmexp.freetarg + 1;
    273  1.8  mrg 
    274  1.8  mrg 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    275  1.8  mrg 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    276  1.8  mrg 		    uvmexp.inactarg);
    277  1.8  mrg 
    278  1.8  mrg 		/*
    279  1.8  mrg 		 * scan if needed
    280  1.8  mrg 		 * [XXX: note we are reading uvm.free without locking]
    281  1.8  mrg 		 */
    282  1.8  mrg 		if (uvmexp.free < uvmexp.freetarg ||
    283  1.8  mrg 		    uvmexp.inactive < uvmexp.inactarg)
    284  1.8  mrg 			uvmpd_scan();
    285  1.8  mrg 
    286  1.8  mrg 		/*
    287  1.8  mrg 		 * done scan.  unlock page queues (the only lock we are holding)
    288  1.8  mrg 		 */
    289  1.8  mrg 		uvm_unlock_pageq();
    290  1.8  mrg 
    291  1.8  mrg 		/*
    292  1.8  mrg 		 * done!    restart loop.
    293  1.8  mrg 		 */
    294  1.8  mrg 		thread_wakeup(&uvmexp.free);
    295  1.8  mrg 	}
    296  1.8  mrg 	/*NOTREACHED*/
    297  1.1  mrg }
    298  1.1  mrg 
    299  1.1  mrg /*
    300  1.1  mrg  * uvmpd_scan_inactive: the first loop of uvmpd_scan broken out into
    301  1.1  mrg  * 	its own function for ease of reading.
    302  1.1  mrg  *
    303  1.1  mrg  * => called with page queues locked
    304  1.1  mrg  * => we work on meeting our free target by converting inactive pages
    305  1.1  mrg  *    into free pages.
    306  1.1  mrg  * => we handle the building of swap-backed clusters
    307  1.1  mrg  * => we return TRUE if we are exiting because we met our target
    308  1.1  mrg  */
    309  1.1  mrg 
    310  1.8  mrg static boolean_t
    311  1.8  mrg uvmpd_scan_inactive(pglst)
    312  1.8  mrg 	struct pglist *pglst;
    313  1.8  mrg {
    314  1.8  mrg 	boolean_t retval = FALSE;	/* assume we haven't hit target */
    315  1.8  mrg 	int s, free, result;
    316  1.8  mrg 	struct vm_page *p, *nextpg;
    317  1.8  mrg 	struct uvm_object *uobj;
    318  1.8  mrg 	struct vm_page *pps[MAXBSIZE/PAGE_SIZE], **ppsp;
    319  1.8  mrg 	int npages;
    320  1.8  mrg 	struct vm_page *swpps[MAXBSIZE/PAGE_SIZE]; 	/* XXX: see below */
    321  1.8  mrg 	int swnpages, swcpages;				/* XXX: see below */
    322  1.8  mrg 	int swslot, oldslot;
    323  1.8  mrg 	struct vm_anon *anon;
    324  1.8  mrg 	boolean_t swap_backed;
    325  1.8  mrg 	vm_offset_t start;
    326  1.8  mrg 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    327  1.1  mrg 
    328  1.8  mrg 	/*
    329  1.8  mrg 	 * note: we currently keep swap-backed pages on a seperate inactive
    330  1.8  mrg 	 * list from object-backed pages.   however, merging the two lists
    331  1.8  mrg 	 * back together again hasn't been ruled out.   thus, we keep our
    332  1.8  mrg 	 * swap cluster in "swpps" rather than in pps (allows us to mix
    333  1.8  mrg 	 * clustering types in the event of a mixed inactive queue).
    334  1.8  mrg 	 */
    335  1.1  mrg 
    336  1.8  mrg 	/*
    337  1.8  mrg 	 * swslot is non-zero if we are building a swap cluster.  we want
    338  1.8  mrg 	 * to stay in the loop while we have a page to scan or we have
    339  1.8  mrg 	 * a swap-cluster to build.
    340  1.8  mrg 	 */
    341  1.8  mrg 	swslot = 0;
    342  1.8  mrg 	swnpages = swcpages = 0;
    343  1.8  mrg 	free = 0;
    344  1.8  mrg 
    345  1.8  mrg 	for (p = pglst->tqh_first ; p != NULL || swslot != 0 ; p = nextpg) {
    346  1.8  mrg 
    347  1.8  mrg 		/*
    348  1.8  mrg 		 * note that p can be NULL iff we have traversed the whole
    349  1.8  mrg 		 * list and need to do one final swap-backed clustered pageout.
    350  1.8  mrg 		 */
    351  1.8  mrg 		if (p) {
    352  1.8  mrg 			/*
    353  1.8  mrg 			 * update our copy of "free" and see if we've met
    354  1.8  mrg 			 * our target
    355  1.8  mrg 			 */
    356  1.8  mrg 			s = splimp();
    357  1.8  mrg 			uvm_lock_fpageq();
    358  1.8  mrg 			free = uvmexp.free;
    359  1.8  mrg 			uvm_unlock_fpageq();
    360  1.8  mrg 			splx(s);
    361  1.8  mrg 
    362  1.8  mrg 			if (free >= uvmexp.freetarg) {
    363  1.8  mrg 				UVMHIST_LOG(pdhist,"  met free target: "
    364  1.8  mrg 				    "exit loop", 0, 0, 0, 0);
    365  1.8  mrg 				retval = TRUE;		/* hit the target! */
    366  1.8  mrg 
    367  1.8  mrg 				if (swslot == 0)
    368  1.8  mrg 					/* exit now if no swap-i/o pending */
    369  1.8  mrg 					break;
    370  1.8  mrg 
    371  1.8  mrg 				/* set p to null to signal final swap i/o */
    372  1.8  mrg 				p = NULL;
    373  1.8  mrg 			}
    374  1.8  mrg 		}
    375  1.8  mrg 
    376  1.8  mrg 		uobj = NULL;	/* be safe and shut gcc up */
    377  1.8  mrg 		anon = NULL;	/* be safe and shut gcc up */
    378  1.8  mrg 
    379  1.8  mrg 		if (p) {	/* if (we have a new page to consider) */
    380  1.8  mrg 			/*
    381  1.8  mrg 			 * we are below target and have a new page to consider.
    382  1.8  mrg 			 */
    383  1.8  mrg 			uvmexp.pdscans++;
    384  1.8  mrg 			nextpg = p->pageq.tqe_next;
    385  1.8  mrg 
    386  1.8  mrg 			/*
    387  1.8  mrg 			 * move referenced pages back to active queue and
    388  1.8  mrg 			 * skip to next page (unlikely to happen since
    389  1.8  mrg 			 * inactive pages shouldn't have any valid mappings
    390  1.8  mrg 			 * and we cleared reference before deactivating).
    391  1.8  mrg 			 */
    392  1.8  mrg 			if (pmap_is_referenced(PMAP_PGARG(p))) {
    393  1.8  mrg 				uvm_pageactivate(p);
    394  1.8  mrg 				uvmexp.pdreact++;
    395  1.8  mrg 				continue;
    396  1.8  mrg 			}
    397  1.8  mrg 
    398  1.8  mrg 			/*
    399  1.8  mrg 			 * first we attempt to lock the object that this page
    400  1.8  mrg 			 * belongs to.  if our attempt fails we skip on to
    401  1.8  mrg 			 * the next page (no harm done).  it is important to
    402  1.8  mrg 			 * "try" locking the object as we are locking in the
    403  1.8  mrg 			 * wrong order (pageq -> object) and we don't want to
    404  1.8  mrg 			 * get deadlocked.
    405  1.8  mrg 			 *
    406  1.8  mrg 			 * the only time we exepct to see an ownerless page
    407  1.8  mrg 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    408  1.8  mrg 			 * anon has loaned a page from a uvm_object and the
    409  1.8  mrg 			 * uvm_object has dropped the ownership.  in that
    410  1.8  mrg 			 * case, the anon can "take over" the loaned page
    411  1.8  mrg 			 * and make it its own.
    412  1.8  mrg 			 */
    413  1.8  mrg 
    414  1.8  mrg 			/* is page part of an anon or ownerless ? */
    415  1.8  mrg 			if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
    416  1.1  mrg 
    417  1.8  mrg 				anon = p->uanon;
    418  1.1  mrg 
    419  1.1  mrg #ifdef DIAGNOSTIC
    420  1.8  mrg 				/* to be on inactive q, page must be part
    421  1.8  mrg 				 * of _something_ */
    422  1.8  mrg 				if (anon == NULL)
    423  1.8  mrg 					panic("pagedaemon: page with no anon "
    424  1.8  mrg 					    "or object detected - loop 1");
    425  1.1  mrg #endif
    426  1.1  mrg 
    427  1.8  mrg 				if (!simple_lock_try(&anon->an_lock))
    428  1.8  mrg 					/* lock failed, skip this page */
    429  1.8  mrg 					continue;
    430  1.8  mrg 
    431  1.8  mrg 				/*
    432  1.8  mrg 				 * if the page is ownerless, claim it in the
    433  1.8  mrg 				 * name of "anon"!
    434  1.8  mrg 				 */
    435  1.8  mrg 				if ((p->pqflags & PQ_ANON) == 0) {
    436  1.1  mrg #ifdef DIAGNOSTIC
    437  1.8  mrg 					if (p->loan_count < 1)
    438  1.8  mrg 						panic("pagedaemon: non-loaned "
    439  1.8  mrg 						    "ownerless page detected -"
    440  1.8  mrg 						    " loop 1");
    441  1.1  mrg #endif
    442  1.8  mrg 					p->loan_count--;
    443  1.8  mrg 					p->pqflags |= PQ_ANON;      /* anon now owns it */
    444  1.8  mrg 				}
    445  1.8  mrg 
    446  1.8  mrg 				if (p->flags & PG_BUSY) {
    447  1.8  mrg 					simple_unlock(&anon->an_lock);
    448  1.8  mrg 					uvmexp.pdbusy++;
    449  1.8  mrg 					/* someone else owns page, skip it */
    450  1.8  mrg 					continue;
    451  1.8  mrg 				}
    452  1.8  mrg 
    453  1.8  mrg 				uvmexp.pdanscan++;
    454  1.8  mrg 
    455  1.8  mrg 			} else {
    456  1.8  mrg 
    457  1.8  mrg 				uobj = p->uobject;
    458  1.8  mrg 
    459  1.8  mrg 				if (!simple_lock_try(&uobj->vmobjlock))
    460  1.8  mrg 					/* lock failed, skip this page */
    461  1.8  mrg 					continue;
    462  1.8  mrg 
    463  1.8  mrg 				if (p->flags & PG_BUSY) {
    464  1.8  mrg 					simple_unlock(&uobj->vmobjlock);
    465  1.8  mrg 					uvmexp.pdbusy++;
    466  1.8  mrg 					/* someone else owns page, skip it */
    467  1.8  mrg 					continue;
    468  1.8  mrg 				}
    469  1.8  mrg 
    470  1.8  mrg 				uvmexp.pdobscan++;
    471  1.8  mrg 			}
    472  1.8  mrg 
    473  1.8  mrg 			/*
    474  1.8  mrg 			 * we now have the object and the page queues locked.
    475  1.8  mrg 			 * the page is not busy.   if the page is clean we
    476  1.8  mrg 			 * can free it now and continue.
    477  1.8  mrg 			 */
    478  1.8  mrg 
    479  1.8  mrg 			if (p->flags & PG_CLEAN) {
    480  1.8  mrg 				/* zap all mappings with pmap_page_protect... */
    481  1.8  mrg 				pmap_page_protect(PMAP_PGARG(p), VM_PROT_NONE);
    482  1.8  mrg 				uvm_pagefree(p);
    483  1.8  mrg 				uvmexp.pdfreed++;
    484  1.8  mrg 
    485  1.8  mrg 				if (anon) {
    486  1.1  mrg #ifdef DIAGNOSTIC
    487  1.8  mrg 					/*
    488  1.8  mrg 					 * an anonymous page can only be clean
    489  1.8  mrg 					 * if it has valid backing store.
    490  1.8  mrg 					 */
    491  1.8  mrg 					if (anon->an_swslot == 0)
    492  1.8  mrg 						panic("pagedaemon: clean anon "
    493  1.8  mrg 						 "page without backing store?");
    494  1.1  mrg #endif
    495  1.8  mrg 					/* remove from object */
    496  1.8  mrg 					anon->u.an_page = NULL;
    497  1.8  mrg 					simple_unlock(&anon->an_lock);
    498  1.8  mrg 				} else {
    499  1.8  mrg 					/* pagefree has already removed the
    500  1.8  mrg 					 * page from the object */
    501  1.8  mrg 					simple_unlock(&uobj->vmobjlock);
    502  1.8  mrg 				}
    503  1.8  mrg 				continue;
    504  1.8  mrg 			}
    505  1.8  mrg 
    506  1.8  mrg 			/*
    507  1.8  mrg 			 * this page is dirty, skip it if we'll have met our
    508  1.8  mrg 			 * free target when all the current pageouts complete.
    509  1.8  mrg 			 */
    510  1.8  mrg 			if (free + uvmexp.paging > uvmexp.freetarg)
    511  1.8  mrg 			{
    512  1.8  mrg 				if (anon) {
    513  1.8  mrg 					simple_unlock(&anon->an_lock);
    514  1.8  mrg 				} else {
    515  1.8  mrg 					simple_unlock(&uobj->vmobjlock);
    516  1.8  mrg 				}
    517  1.8  mrg 				continue;
    518  1.8  mrg 			}
    519  1.8  mrg 
    520  1.8  mrg 			/*
    521  1.8  mrg 			 * the page we are looking at is dirty.   we must
    522  1.8  mrg 			 * clean it before it can be freed.  to do this we
    523  1.8  mrg 			 * first mark the page busy so that no one else will
    524  1.8  mrg 			 * touch the page.   we write protect all the mappings
    525  1.8  mrg 			 * of the page so that no one touches it while it is
    526  1.8  mrg 			 * in I/O.
    527  1.8  mrg 			 */
    528  1.8  mrg 
    529  1.8  mrg 			swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
    530  1.8  mrg 			p->flags |= PG_BUSY;		/* now we own it */
    531  1.8  mrg 			UVM_PAGE_OWN(p, "scan_inactive");
    532  1.8  mrg 			pmap_page_protect(PMAP_PGARG(p), VM_PROT_READ);
    533  1.8  mrg 			uvmexp.pgswapout++;
    534  1.8  mrg 
    535  1.8  mrg 			/*
    536  1.8  mrg 			 * for swap-backed pages we need to (re)allocate
    537  1.8  mrg 			 * swap space.
    538  1.8  mrg 			 */
    539  1.8  mrg 			if (swap_backed) {
    540  1.8  mrg 
    541  1.8  mrg 				/*
    542  1.8  mrg 				 * free old swap slot (if any)
    543  1.8  mrg 				 */
    544  1.8  mrg 				if (anon) {
    545  1.8  mrg 					if (anon->an_swslot) {
    546  1.8  mrg 						uvm_swap_free(anon->an_swslot,
    547  1.8  mrg 						    1);
    548  1.8  mrg 						anon->an_swslot = 0;
    549  1.8  mrg 					}
    550  1.8  mrg 				} else {
    551  1.8  mrg 					oldslot = uao_set_swslot(uobj,
    552  1.8  mrg 					    p->offset/PAGE_SIZE, 0);
    553  1.8  mrg 
    554  1.8  mrg 					if (oldslot)
    555  1.8  mrg 						uvm_swap_free(oldslot, 1);
    556  1.8  mrg 				}
    557  1.8  mrg 
    558  1.8  mrg 				/*
    559  1.8  mrg 				 * start new cluster (if necessary)
    560  1.8  mrg 				 */
    561  1.8  mrg 				if (swslot == 0) {
    562  1.8  mrg 					/* want this much */
    563  1.8  mrg 					swnpages = MAXBSIZE/PAGE_SIZE;
    564  1.8  mrg 
    565  1.8  mrg 					swslot = uvm_swap_alloc(&swnpages,
    566  1.8  mrg 					    TRUE);
    567  1.8  mrg 
    568  1.8  mrg 					if (swslot == 0) {
    569  1.8  mrg 						/* no swap?  give up! */
    570  1.8  mrg 						p->flags &= ~PG_BUSY;
    571  1.8  mrg 						UVM_PAGE_OWN(p, NULL);
    572  1.8  mrg 						if (anon)
    573  1.8  mrg 							simple_unlock(
    574  1.8  mrg 							    &anon->an_lock);
    575  1.8  mrg 						else
    576  1.8  mrg 							simple_unlock(
    577  1.8  mrg 							    &uobj->vmobjlock);
    578  1.8  mrg 						continue;
    579  1.8  mrg 					}
    580  1.8  mrg 					swcpages = 0;	/* cluster is empty */
    581  1.8  mrg 				}
    582  1.8  mrg 
    583  1.8  mrg 				/*
    584  1.8  mrg 				 * add block to cluster
    585  1.8  mrg 				 */
    586  1.8  mrg 				swpps[swcpages] = p;
    587  1.8  mrg 				uvmexp.pgswapout++;
    588  1.8  mrg 				if (anon)
    589  1.8  mrg 					anon->an_swslot = swslot + swcpages;
    590  1.8  mrg 				else
    591  1.8  mrg 					uao_set_swslot(uobj,
    592  1.8  mrg 					    p->offset/PAGE_SIZE,
    593  1.8  mrg 					    swslot + swcpages);
    594  1.8  mrg 				swcpages++;
    595  1.8  mrg 
    596  1.8  mrg 				/* done (swap-backed) */
    597  1.8  mrg 			}
    598  1.8  mrg 
    599  1.8  mrg 			/* end: if (p) ["if we have new page to consider"] */
    600  1.8  mrg 		} else {
    601  1.8  mrg 
    602  1.8  mrg 			/* if p == NULL we must be doing a last swap i/o */
    603  1.8  mrg 			swap_backed = TRUE;
    604  1.8  mrg 		}
    605  1.8  mrg 
    606  1.8  mrg 		/*
    607  1.8  mrg 		 * now consider doing the pageout.
    608  1.8  mrg 		 *
    609  1.8  mrg 		 * for swap-backed pages, we do the pageout if we have either
    610  1.8  mrg 		 * filled the cluster (in which case (swnpages == swcpages) or
    611  1.8  mrg 		 * run out of pages (p == NULL).
    612  1.8  mrg 		 *
    613  1.8  mrg 		 * for object pages, we always do the pageout.
    614  1.8  mrg 		 */
    615  1.8  mrg 		if (swap_backed) {
    616  1.8  mrg 
    617  1.8  mrg 			if (p) {	/* if we just added a page to cluster */
    618  1.8  mrg 				if (anon)
    619  1.8  mrg 					simple_unlock(&anon->an_lock);
    620  1.8  mrg 				else
    621  1.8  mrg 					simple_unlock(&uobj->vmobjlock);
    622  1.8  mrg 
    623  1.8  mrg 				/* cluster not full yet? */
    624  1.8  mrg 				if (swcpages < swnpages)
    625  1.8  mrg 					continue;
    626  1.8  mrg 			}
    627  1.8  mrg 
    628  1.8  mrg 			/* starting I/O now... set up for it */
    629  1.8  mrg 			npages = swcpages;
    630  1.8  mrg 			ppsp = swpps;
    631  1.8  mrg 			/* for swap-backed pages only */
    632  1.8  mrg 			start = (vm_offset_t) swslot;
    633  1.8  mrg 
    634  1.8  mrg 			/* if this is final pageout we could have a few
    635  1.8  mrg 			 * extra swap blocks */
    636  1.8  mrg 			if (swcpages < swnpages) {
    637  1.8  mrg 				uvm_swap_free(swslot + swcpages,
    638  1.8  mrg 				    (swnpages - swcpages));
    639  1.8  mrg 			}
    640  1.1  mrg 
    641  1.8  mrg 		} else {
    642  1.1  mrg 
    643  1.8  mrg 			/* normal object pageout */
    644  1.8  mrg 			ppsp = pps;
    645  1.8  mrg 			npages = sizeof(pps) / sizeof(struct vm_page *);
    646  1.8  mrg 			/* not looked at because PGO_ALLPAGES is set */
    647  1.8  mrg 			start = 0;
    648  1.8  mrg 
    649  1.8  mrg 		}
    650  1.8  mrg 
    651  1.8  mrg 		/*
    652  1.8  mrg 		 * now do the pageout.
    653  1.8  mrg 		 *
    654  1.8  mrg 		 * for swap_backed pages we have already built the cluster.
    655  1.8  mrg 		 * for !swap_backed pages, uvm_pager_put will call the object's
    656  1.8  mrg 		 * "make put cluster" function to build a cluster on our behalf.
    657  1.8  mrg 		 *
    658  1.8  mrg 		 * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
    659  1.8  mrg 		 * it to free the cluster pages for us on a successful I/O (it
    660  1.8  mrg 		 * always does this for un-successful I/O requests).  this
    661  1.8  mrg 		 * allows us to do clustered pageout without having to deal
    662  1.8  mrg 		 * with cluster pages at this level.
    663  1.8  mrg 		 *
    664  1.8  mrg 		 * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
    665  1.8  mrg 		 *  IN: locked: uobj (if !swap_backed), page queues
    666  1.8  mrg 		 * OUT: locked: uobj (if !swap_backed && result !=VM_PAGER_PEND)
    667  1.8  mrg 		 *     !locked: pageqs, uobj (if swap_backed || VM_PAGER_PEND)
    668  1.8  mrg 		 *
    669  1.8  mrg 		 * [the bit about VM_PAGER_PEND saves us one lock-unlock pair]
    670  1.8  mrg 		 */
    671  1.8  mrg 
    672  1.8  mrg 		/* locked: uobj (if !swap_backed), page queues */
    673  1.8  mrg 		uvmexp.pdpageouts++;
    674  1.8  mrg 		result = uvm_pager_put((swap_backed) ? NULL : uobj, p,
    675  1.8  mrg 		    &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
    676  1.8  mrg 		/* locked: uobj (if !swap_backed && result != PEND) */
    677  1.8  mrg 		/* unlocked: pageqs, object (if swap_backed ||result == PEND) */
    678  1.8  mrg 
    679  1.8  mrg 		/*
    680  1.8  mrg 		 * if we did i/o to swap, zero swslot to indicate that we are
    681  1.8  mrg 		 * no longer building a swap-backed cluster.
    682  1.8  mrg 		 */
    683  1.8  mrg 
    684  1.8  mrg 		if (swap_backed)
    685  1.8  mrg 			swslot = 0;		/* done with this cluster */
    686  1.8  mrg 
    687  1.8  mrg 		/*
    688  1.8  mrg 		 * first, we check for VM_PAGER_PEND which means that the
    689  1.8  mrg 		 * async I/O is in progress and the async I/O done routine
    690  1.8  mrg 		 * will clean up after us.   in this case we move on to the
    691  1.8  mrg 		 * next page.
    692  1.8  mrg 		 *
    693  1.8  mrg 		 * there is a very remote chance that the pending async i/o can
    694  1.8  mrg 		 * finish _before_ we get here.   if that happens, our page "p"
    695  1.8  mrg 		 * may no longer be on the inactive queue.   so we verify this
    696  1.8  mrg 		 * when determining the next page (starting over at the head if
    697  1.8  mrg 		 * we've lost our inactive page).
    698  1.8  mrg 		 */
    699  1.8  mrg 
    700  1.8  mrg 		if (result == VM_PAGER_PEND) {
    701  1.8  mrg 			uvmexp.paging += npages;
    702  1.8  mrg 			uvm_lock_pageq();		/* relock page queues */
    703  1.8  mrg 			uvmexp.pdpending++;
    704  1.8  mrg 			if (p) {
    705  1.8  mrg 				if (p->pqflags & PQ_INACTIVE)
    706  1.8  mrg 					/* reload! */
    707  1.8  mrg 					nextpg = p->pageq.tqe_next;
    708  1.8  mrg 				else
    709  1.8  mrg 					/* reload! */
    710  1.8  mrg 					nextpg = pglst->tqh_first;
    711  1.8  mrg 				} else {
    712  1.8  mrg 					nextpg = NULL;		/* done list */
    713  1.8  mrg 			}
    714  1.8  mrg 			continue;
    715  1.8  mrg 		}
    716  1.8  mrg 
    717  1.8  mrg 		/*
    718  1.8  mrg 		 * clean up "p" if we have one
    719  1.8  mrg 		 */
    720  1.8  mrg 
    721  1.8  mrg 		if (p) {
    722  1.8  mrg 			/*
    723  1.8  mrg 			 * the I/O request to "p" is done and uvm_pager_put
    724  1.8  mrg 			 * has freed any cluster pages it may have allocated
    725  1.8  mrg 			 * during I/O.  all that is left for us to do is
    726  1.8  mrg 			 * clean up page "p" (which is still PG_BUSY).
    727  1.8  mrg 			 *
    728  1.8  mrg 			 * our result could be one of the following:
    729  1.8  mrg 			 *   VM_PAGER_OK: successful pageout
    730  1.8  mrg 			 *
    731  1.8  mrg 			 *   VM_PAGER_AGAIN: tmp resource shortage, we skip
    732  1.8  mrg 			 *     to next page
    733  1.8  mrg 			 *   VM_PAGER_{FAIL,ERROR,BAD}: an error.   we
    734  1.8  mrg 			 *     "reactivate" page to get it out of the way (it
    735  1.8  mrg 			 *     will eventually drift back into the inactive
    736  1.8  mrg 			 *     queue for a retry).
    737  1.8  mrg 			 *   VM_PAGER_UNLOCK: should never see this as it is
    738  1.8  mrg 			 *     only valid for "get" operations
    739  1.8  mrg 			 */
    740  1.8  mrg 
    741  1.8  mrg 			/* relock p's object: page queues not lock yet, so
    742  1.8  mrg 			 * no need for "try" */
    743  1.8  mrg 
    744  1.8  mrg 			/* !swap_backed case: already locked... */
    745  1.8  mrg 			if (swap_backed) {
    746  1.8  mrg 				if (anon)
    747  1.8  mrg 					simple_lock(&anon->an_lock);
    748  1.8  mrg 				else
    749  1.8  mrg 					simple_lock(&uobj->vmobjlock);
    750  1.8  mrg 			}
    751  1.1  mrg 
    752  1.1  mrg #ifdef DIAGNOSTIC
    753  1.8  mrg 			if (result == VM_PAGER_UNLOCK)
    754  1.8  mrg 				panic("pagedaemon: pageout returned "
    755  1.8  mrg 				    "invalid 'unlock' code");
    756  1.1  mrg #endif
    757  1.1  mrg 
    758  1.8  mrg 			/* handle PG_WANTED now */
    759  1.8  mrg 			if (p->flags & PG_WANTED)
    760  1.8  mrg 				/* still holding object lock */
    761  1.8  mrg 				thread_wakeup(p);
    762  1.8  mrg 
    763  1.8  mrg 			p->flags &= ~(PG_BUSY|PG_WANTED);
    764  1.8  mrg 			UVM_PAGE_OWN(p, NULL);
    765  1.8  mrg 
    766  1.8  mrg 			/* released during I/O? */
    767  1.8  mrg 			if (p->flags & PG_RELEASED) {
    768  1.8  mrg 				if (anon) {
    769  1.8  mrg 					/* remove page so we can get nextpg */
    770  1.8  mrg 					anon->u.an_page = NULL;
    771  1.8  mrg 
    772  1.8  mrg 					/* XXX needed? */
    773  1.8  mrg 					simple_unlock(&anon->an_lock);
    774  1.8  mrg 					uvm_anfree(anon);	/* kills anon */
    775  1.8  mrg 					pmap_page_protect(PMAP_PGARG(p),
    776  1.8  mrg 					    VM_PROT_NONE);
    777  1.8  mrg 					anon = NULL;
    778  1.8  mrg 					uvm_lock_pageq();
    779  1.8  mrg 					nextpg = p->pageq.tqe_next;
    780  1.8  mrg 					/* free released page */
    781  1.8  mrg 					uvm_pagefree(p);
    782  1.1  mrg 
    783  1.8  mrg 				} else {
    784  1.1  mrg 
    785  1.1  mrg #ifdef DIAGNOSTIC
    786  1.8  mrg 					if (uobj->pgops->pgo_releasepg == NULL)
    787  1.8  mrg 						panic("pagedaemon: no "
    788  1.8  mrg 						   "pgo_releasepg function");
    789  1.1  mrg #endif
    790  1.1  mrg 
    791  1.8  mrg 					/*
    792  1.8  mrg 					 * pgo_releasepg nukes the page and
    793  1.8  mrg 					 * gets "nextpg" for us.  it returns
    794  1.8  mrg 					 * with the page queues locked (when
    795  1.8  mrg 					 * given nextpg ptr).
    796  1.8  mrg 					 */
    797  1.8  mrg 					if (!uobj->pgops->pgo_releasepg(p,
    798  1.8  mrg 					    &nextpg))
    799  1.8  mrg 						/* uobj died after release */
    800  1.8  mrg 						uobj = NULL;
    801  1.8  mrg 
    802  1.8  mrg 					/*
    803  1.8  mrg 					 * lock page queues here so that they're
    804  1.8  mrg 					 * always locked at the end of the loop.
    805  1.8  mrg 					 */
    806  1.8  mrg 					uvm_lock_pageq();
    807  1.8  mrg 				}
    808  1.8  mrg 
    809  1.8  mrg 			} else {	/* page was not released during I/O */
    810  1.8  mrg 
    811  1.8  mrg 				uvm_lock_pageq();
    812  1.8  mrg 				nextpg = p->pageq.tqe_next;
    813  1.8  mrg 
    814  1.8  mrg 				if (result != VM_PAGER_OK) {
    815  1.8  mrg 
    816  1.8  mrg 					/* pageout was a failure... */
    817  1.8  mrg 					if (result != VM_PAGER_AGAIN)
    818  1.8  mrg 						uvm_pageactivate(p);
    819  1.8  mrg 					pmap_clear_reference(PMAP_PGARG(p));
    820  1.8  mrg 					/* XXXCDC: if (swap_backed) FREE p's
    821  1.8  mrg 					 * swap block? */
    822  1.8  mrg 
    823  1.8  mrg 				} else {
    824  1.8  mrg 
    825  1.8  mrg 					/* pageout was a success... */
    826  1.8  mrg 					pmap_clear_reference(PMAP_PGARG(p));
    827  1.8  mrg 					pmap_clear_modify(PMAP_PGARG(p));
    828  1.8  mrg 					p->flags |= PG_CLEAN;
    829  1.8  mrg 					/* XXX: could free page here, but old
    830  1.8  mrg 					 * pagedaemon does not */
    831  1.8  mrg 
    832  1.8  mrg 				}
    833  1.8  mrg 			}
    834  1.8  mrg 
    835  1.8  mrg 			/*
    836  1.8  mrg 			 * drop object lock (if there is an object left).   do
    837  1.8  mrg 			 * a safety check of nextpg to make sure it is on the
    838  1.8  mrg 			 * inactive queue (it should be since PG_BUSY pages on
    839  1.8  mrg 			 * the inactive queue can't be re-queued [note: not
    840  1.8  mrg 			 * true for active queue]).
    841  1.8  mrg 			 */
    842  1.8  mrg 
    843  1.8  mrg 			if (anon)
    844  1.8  mrg 				simple_unlock(&anon->an_lock);
    845  1.8  mrg 			else if (uobj)
    846  1.8  mrg 				simple_unlock(&uobj->vmobjlock);
    847  1.8  mrg 
    848  1.8  mrg 		} /* if (p) */ else {
    849  1.8  mrg 
    850  1.8  mrg 			/* if p is null in this loop, make sure it stays null
    851  1.8  mrg 			 * in next loop */
    852  1.8  mrg 			nextpg = NULL;
    853  1.8  mrg 
    854  1.8  mrg 			/*
    855  1.8  mrg 			 * lock page queues here just so they're always locked
    856  1.8  mrg 			 * at the end of the loop.
    857  1.8  mrg 			 */
    858  1.8  mrg 			uvm_lock_pageq();
    859  1.8  mrg 		}
    860  1.8  mrg 
    861  1.8  mrg 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    862  1.8  mrg 			printf("pagedaemon: invalid nextpg!   reverting to "
    863  1.8  mrg 			    "queue head\n");
    864  1.8  mrg 			nextpg = pglst->tqh_first;	/* reload! */
    865  1.8  mrg 		}
    866  1.1  mrg 
    867  1.8  mrg 	}	/* end of "inactive" 'for' loop */
    868  1.8  mrg 	return (retval);
    869  1.1  mrg }
    870  1.1  mrg 
    871  1.1  mrg /*
    872  1.1  mrg  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    873  1.1  mrg  *
    874  1.1  mrg  * => called with pageq's locked
    875  1.1  mrg  */
    876  1.1  mrg 
    877  1.8  mrg void
    878  1.8  mrg uvmpd_scan()
    879  1.1  mrg {
    880  1.8  mrg 	int s, free, pages_freed, page_shortage;
    881  1.8  mrg 	struct vm_page *p, *nextpg;
    882  1.8  mrg 	struct uvm_object *uobj;
    883  1.8  mrg 	boolean_t got_it;
    884  1.8  mrg 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    885  1.1  mrg 
    886  1.8  mrg 	uvmexp.pdrevs++;		/* counter */
    887  1.1  mrg 
    888  1.1  mrg #ifdef __GNUC__
    889  1.8  mrg 	uobj = NULL;	/* XXX gcc */
    890  1.1  mrg #endif
    891  1.8  mrg 	/*
    892  1.8  mrg 	 * get current "free" page count
    893  1.8  mrg 	 */
    894  1.8  mrg 	s = splimp();
    895  1.8  mrg 	uvm_lock_fpageq();
    896  1.8  mrg 	free = uvmexp.free;
    897  1.8  mrg 	uvm_unlock_fpageq();
    898  1.8  mrg 	splx(s);
    899  1.1  mrg 
    900  1.1  mrg #ifndef __SWAP_BROKEN
    901  1.8  mrg 	/*
    902  1.8  mrg 	 * swap out some processes if we are below our free target.
    903  1.8  mrg 	 * we need to unlock the page queues for this.
    904  1.8  mrg 	 */
    905  1.8  mrg 	if (free < uvmexp.freetarg) {
    906  1.8  mrg 
    907  1.8  mrg 		uvmexp.pdswout++;
    908  1.8  mrg 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout", free,
    909  1.8  mrg 		    uvmexp.freetarg, 0, 0);
    910  1.8  mrg 		uvm_unlock_pageq();
    911  1.8  mrg 		uvm_swapout_threads();
    912  1.8  mrg 		pmap_update();		/* update so we can scan inactive q */
    913  1.8  mrg 		uvm_lock_pageq();
    914  1.1  mrg 
    915  1.8  mrg 	}
    916  1.1  mrg #endif
    917  1.1  mrg 
    918  1.8  mrg 	/*
    919  1.8  mrg 	 * now we want to work on meeting our targets.   first we work on our
    920  1.8  mrg 	 * free target by converting inactive pages into free pages.  then
    921  1.8  mrg 	 * we work on meeting our inactive target by converting active pages
    922  1.8  mrg 	 * to inactive ones.
    923  1.8  mrg 	 */
    924  1.8  mrg 
    925  1.8  mrg 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    926  1.8  mrg 	pages_freed = uvmexp.pdfreed;	/* so far... */
    927  1.8  mrg 
    928  1.8  mrg 	/*
    929  1.8  mrg 	 * do loop #1!   alternate starting queue between swap and object based
    930  1.8  mrg 	 * on the low bit of uvmexp.pdrevs (which we bump by one each call).
    931  1.8  mrg 	 */
    932  1.8  mrg 
    933  1.8  mrg 	got_it = FALSE;
    934  1.8  mrg 	if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
    935  1.8  mrg 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
    936  1.8  mrg 	if (!got_it)
    937  1.8  mrg 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
    938  1.8  mrg 	if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
    939  1.8  mrg 		(void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
    940  1.8  mrg 
    941  1.8  mrg 	/*
    942  1.8  mrg 	 * we have done the scan to get free pages.   now we work on meeting
    943  1.8  mrg 	 * our inactive target.
    944  1.8  mrg 	 */
    945  1.8  mrg 
    946  1.8  mrg 	page_shortage = uvmexp.inactarg - uvmexp.inactive;
    947  1.8  mrg 	pages_freed = uvmexp.pdfreed - pages_freed; /* # pages freed in loop */
    948  1.8  mrg 	if (page_shortage <= 0 && pages_freed == 0)
    949  1.8  mrg 		page_shortage = 1;
    950  1.8  mrg 
    951  1.8  mrg 	UVMHIST_LOG(pdhist, "  second loop: page_shortage=%d", page_shortage,
    952  1.8  mrg 	    0, 0, 0);
    953  1.8  mrg 	for (p = uvm.page_active.tqh_first ;
    954  1.8  mrg 	    p != NULL && page_shortage > 0 ; p = nextpg) {
    955  1.8  mrg 		nextpg = p->pageq.tqe_next;
    956  1.8  mrg 		if (p->flags & PG_BUSY)
    957  1.8  mrg 			continue;	/* quick check before trying to lock */
    958  1.8  mrg 
    959  1.8  mrg 		/*
    960  1.8  mrg 		 * lock owner
    961  1.8  mrg 		 */
    962  1.8  mrg 		/* is page anon owned or ownerless? */
    963  1.8  mrg 		if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
    964  1.1  mrg 
    965  1.1  mrg #ifdef DIAGNOSTIC
    966  1.8  mrg 			if (p->uanon == NULL)
    967  1.8  mrg 				panic("pagedaemon: page with no anon or "
    968  1.8  mrg 				    "object detected - loop 2");
    969  1.1  mrg #endif
    970  1.1  mrg 
    971  1.8  mrg 			if (!simple_lock_try(&p->uanon->an_lock))
    972  1.8  mrg 				continue;
    973  1.1  mrg 
    974  1.8  mrg 			/* take over the page? */
    975  1.8  mrg 			if ((p->pqflags & PQ_ANON) == 0) {
    976  1.1  mrg 
    977  1.1  mrg #ifdef DIAGNOSTIC
    978  1.8  mrg 				if (p->loan_count < 1)
    979  1.8  mrg 					panic("pagedaemon: non-loaned "
    980  1.8  mrg 					    "ownerless page detected - loop 2");
    981  1.1  mrg #endif
    982  1.1  mrg 
    983  1.8  mrg 				p->loan_count--;
    984  1.8  mrg 				p->pqflags |= PQ_ANON;
    985  1.8  mrg 			}
    986  1.8  mrg 
    987  1.8  mrg 		} else {
    988  1.8  mrg 
    989  1.8  mrg 			if (!simple_lock_try(&p->uobject->vmobjlock))
    990  1.8  mrg 				continue;
    991  1.8  mrg 
    992  1.8  mrg 		}
    993  1.8  mrg 
    994  1.8  mrg 		if ((p->flags & PG_BUSY) == 0) {
    995  1.8  mrg 			pmap_page_protect(PMAP_PGARG(p), VM_PROT_NONE);
    996  1.8  mrg 			/* no need to check wire_count as pg is "active" */
    997  1.8  mrg 			uvm_pagedeactivate(p);
    998  1.8  mrg 			uvmexp.pddeact++;
    999  1.8  mrg 			page_shortage--;
   1000  1.8  mrg 		}
   1001  1.8  mrg 
   1002  1.8  mrg 		if (p->pqflags & PQ_ANON)
   1003  1.8  mrg 			simple_unlock(&p->uanon->an_lock);
   1004  1.8  mrg 		else
   1005  1.8  mrg 			simple_unlock(&p->uobject->vmobjlock);
   1006  1.8  mrg 	}
   1007  1.8  mrg 
   1008  1.8  mrg 	/*
   1009  1.8  mrg 	 * done scan
   1010  1.8  mrg 	 */
   1011  1.1  mrg }
   1012