uvm_pdaemon.c revision 1.93 1 1.93 ad /* $NetBSD: uvm_pdaemon.c,v 1.93 2008/09/23 08:55:52 ad Exp $ */
2 1.1 mrg
3 1.34 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.34 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.34 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.34 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.34 chs *
54 1.34 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.34 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.34 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_pdaemon.c: the page daemon
71 1.1 mrg */
72 1.42 lukem
73 1.42 lukem #include <sys/cdefs.h>
74 1.93 ad __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.93 2008/09/23 08:55:52 ad Exp $");
75 1.42 lukem
76 1.42 lukem #include "opt_uvmhist.h"
77 1.69 yamt #include "opt_readahead.h"
78 1.1 mrg
79 1.1 mrg #include <sys/param.h>
80 1.1 mrg #include <sys/proc.h>
81 1.1 mrg #include <sys/systm.h>
82 1.1 mrg #include <sys/kernel.h>
83 1.9 pk #include <sys/pool.h>
84 1.24 chs #include <sys/buf.h>
85 1.1 mrg
86 1.1 mrg #include <uvm/uvm.h>
87 1.77 yamt #include <uvm/uvm_pdpolicy.h>
88 1.1 mrg
89 1.1 mrg /*
90 1.45 wiz * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
91 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
92 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
93 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
94 1.14 chs */
95 1.14 chs
96 1.89 ad #define UVMPD_NUMDIRTYREACTS 16
97 1.14 chs
98 1.89 ad #define UVMPD_NUMTRYLOCKOWNER 16
99 1.14 chs
100 1.14 chs /*
101 1.1 mrg * local prototypes
102 1.1 mrg */
103 1.1 mrg
104 1.65 thorpej static void uvmpd_scan(void);
105 1.77 yamt static void uvmpd_scan_queue(void);
106 1.65 thorpej static void uvmpd_tune(void);
107 1.1 mrg
108 1.89 ad unsigned int uvm_pagedaemon_waiters;
109 1.89 ad
110 1.1 mrg /*
111 1.61 chs * XXX hack to avoid hangs when large processes fork.
112 1.61 chs */
113 1.61 chs int uvm_extrapages;
114 1.61 chs
115 1.61 chs /*
116 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
117 1.1 mrg *
118 1.1 mrg * => should be called with all locks released
119 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
120 1.1 mrg */
121 1.1 mrg
122 1.19 thorpej void
123 1.65 thorpej uvm_wait(const char *wmsg)
124 1.8 mrg {
125 1.8 mrg int timo = 0;
126 1.89 ad
127 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
128 1.1 mrg
129 1.8 mrg /*
130 1.8 mrg * check for page daemon going to sleep (waiting for itself)
131 1.8 mrg */
132 1.1 mrg
133 1.86 ad if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
134 1.8 mrg /*
135 1.8 mrg * now we have a problem: the pagedaemon wants to go to
136 1.8 mrg * sleep until it frees more memory. but how can it
137 1.8 mrg * free more memory if it is asleep? that is a deadlock.
138 1.8 mrg * we have two options:
139 1.8 mrg * [1] panic now
140 1.8 mrg * [2] put a timeout on the sleep, thus causing the
141 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
142 1.8 mrg *
143 1.8 mrg * note that option [2] will only help us if we get lucky
144 1.8 mrg * and some other process on the system breaks the deadlock
145 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
146 1.8 mrg * to continue). for now we panic if DEBUG is defined,
147 1.8 mrg * otherwise we hope for the best with option [2] (better
148 1.8 mrg * yet, this should never happen in the first place!).
149 1.8 mrg */
150 1.1 mrg
151 1.8 mrg printf("pagedaemon: deadlock detected!\n");
152 1.8 mrg timo = hz >> 3; /* set timeout */
153 1.1 mrg #if defined(DEBUG)
154 1.8 mrg /* DEBUG: panic so we can debug it */
155 1.8 mrg panic("pagedaemon deadlock");
156 1.1 mrg #endif
157 1.8 mrg }
158 1.1 mrg
159 1.89 ad uvm_pagedaemon_waiters++;
160 1.17 thorpej wakeup(&uvm.pagedaemon); /* wake the daemon! */
161 1.89 ad UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
162 1.1 mrg }
163 1.1 mrg
164 1.77 yamt /*
165 1.77 yamt * uvm_kick_pdaemon: perform checks to determine if we need to
166 1.77 yamt * give the pagedaemon a nudge, and do so if necessary.
167 1.89 ad *
168 1.89 ad * => called with uvm_fpageqlock held.
169 1.77 yamt */
170 1.77 yamt
171 1.77 yamt void
172 1.77 yamt uvm_kick_pdaemon(void)
173 1.77 yamt {
174 1.77 yamt
175 1.89 ad KASSERT(mutex_owned(&uvm_fpageqlock));
176 1.89 ad
177 1.77 yamt if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
178 1.77 yamt (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
179 1.77 yamt uvmpdpol_needsscan_p())) {
180 1.77 yamt wakeup(&uvm.pagedaemon);
181 1.77 yamt }
182 1.77 yamt }
183 1.1 mrg
184 1.1 mrg /*
185 1.1 mrg * uvmpd_tune: tune paging parameters
186 1.1 mrg *
187 1.1 mrg * => called when ever memory is added (or removed?) to the system
188 1.1 mrg * => caller must call with page queues locked
189 1.1 mrg */
190 1.1 mrg
191 1.65 thorpej static void
192 1.37 chs uvmpd_tune(void)
193 1.8 mrg {
194 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
195 1.1 mrg
196 1.93 ad /*
197 1.93 ad * try to keep 0.5% of available RAM free, but limit to between
198 1.93 ad * 128k and 1024k per-CPU. XXX: what are these values good for?
199 1.93 ad */
200 1.93 ad uvmexp.freemin = uvmexp.npages / 200;
201 1.93 ad uvmexp.freemin = MAX(uvmexp.freemin, (128*1024) >> PAGE_SHIFT);
202 1.93 ad uvmexp.freemin = MIN(uvmexp.freemin, (1024*1024) >> PAGE_SHIFT);
203 1.93 ad uvmexp.freemin *= ncpu;
204 1.23 bjh21
205 1.23 bjh21 /* Make sure there's always a user page free. */
206 1.23 bjh21 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
207 1.23 bjh21 uvmexp.freemin = uvmexp.reserve_kernel + 1;
208 1.1 mrg
209 1.8 mrg uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
210 1.8 mrg if (uvmexp.freetarg <= uvmexp.freemin)
211 1.8 mrg uvmexp.freetarg = uvmexp.freemin + 1;
212 1.1 mrg
213 1.61 chs uvmexp.freetarg += uvm_extrapages;
214 1.61 chs uvm_extrapages = 0;
215 1.61 chs
216 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
217 1.8 mrg UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
218 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
219 1.1 mrg }
220 1.1 mrg
221 1.1 mrg /*
222 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
223 1.1 mrg */
224 1.1 mrg
225 1.8 mrg void
226 1.80 yamt uvm_pageout(void *arg)
227 1.8 mrg {
228 1.60 enami int bufcnt, npages = 0;
229 1.61 chs int extrapages = 0;
230 1.88 ad struct pool *pp;
231 1.88 ad uint64_t where;
232 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
233 1.24 chs
234 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
235 1.8 mrg
236 1.8 mrg /*
237 1.8 mrg * ensure correct priority and set paging parameters...
238 1.8 mrg */
239 1.8 mrg
240 1.86 ad uvm.pagedaemon_lwp = curlwp;
241 1.89 ad mutex_enter(&uvm_pageqlock);
242 1.8 mrg npages = uvmexp.npages;
243 1.8 mrg uvmpd_tune();
244 1.89 ad mutex_exit(&uvm_pageqlock);
245 1.8 mrg
246 1.8 mrg /*
247 1.8 mrg * main loop
248 1.8 mrg */
249 1.24 chs
250 1.24 chs for (;;) {
251 1.93 ad bool needsscan, needsfree;
252 1.24 chs
253 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
254 1.89 ad if (uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) {
255 1.89 ad UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
256 1.89 ad UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
257 1.89 ad &uvm_fpageqlock, false, "pgdaemon", 0);
258 1.89 ad uvmexp.pdwoke++;
259 1.89 ad UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
260 1.89 ad } else {
261 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
262 1.89 ad }
263 1.24 chs
264 1.8 mrg /*
265 1.24 chs * now lock page queues and recompute inactive count
266 1.8 mrg */
267 1.8 mrg
268 1.89 ad mutex_enter(&uvm_pageqlock);
269 1.61 chs if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
270 1.24 chs npages = uvmexp.npages;
271 1.61 chs extrapages = uvm_extrapages;
272 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
273 1.24 chs uvmpd_tune();
274 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
275 1.24 chs }
276 1.24 chs
277 1.77 yamt uvmpdpol_tune();
278 1.24 chs
279 1.60 enami /*
280 1.60 enami * Estimate a hint. Note that bufmem are returned to
281 1.60 enami * system only when entire pool page is empty.
282 1.60 enami */
283 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
284 1.60 enami bufcnt = uvmexp.freetarg - uvmexp.free;
285 1.60 enami if (bufcnt < 0)
286 1.60 enami bufcnt = 0;
287 1.60 enami
288 1.77 yamt UVMHIST_LOG(pdhist," free/ftarg=%d/%d",
289 1.77 yamt uvmexp.free, uvmexp.freetarg, 0,0);
290 1.8 mrg
291 1.93 ad needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
292 1.93 ad needsscan = needsfree || uvmpdpol_needsscan_p();
293 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
294 1.89 ad
295 1.8 mrg /*
296 1.24 chs * scan if needed
297 1.8 mrg */
298 1.89 ad if (needsscan)
299 1.24 chs uvmpd_scan();
300 1.8 mrg
301 1.8 mrg /*
302 1.24 chs * if there's any free memory to be had,
303 1.24 chs * wake up any waiters.
304 1.8 mrg */
305 1.8 mrg
306 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
307 1.24 chs if (uvmexp.free > uvmexp.reserve_kernel ||
308 1.24 chs uvmexp.paging == 0) {
309 1.24 chs wakeup(&uvmexp.free);
310 1.89 ad uvm_pagedaemon_waiters = 0;
311 1.8 mrg }
312 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
313 1.1 mrg
314 1.8 mrg /*
315 1.24 chs * scan done. unlock page queues (the only lock we are holding)
316 1.8 mrg */
317 1.89 ad mutex_exit(&uvm_pageqlock);
318 1.38 chs
319 1.88 ad /*
320 1.93 ad * if we don't need free memory, we're done.
321 1.93 ad */
322 1.93 ad
323 1.93 ad if (!needsfree)
324 1.93 ad continue;
325 1.93 ad
326 1.93 ad /*
327 1.88 ad * start draining pool resources now that we're not
328 1.88 ad * holding any locks.
329 1.88 ad */
330 1.88 ad pool_drain_start(&pp, &where);
331 1.60 enami
332 1.38 chs /*
333 1.88 ad * kill unused metadata buffers.
334 1.38 chs */
335 1.89 ad mutex_enter(&bufcache_lock);
336 1.88 ad buf_drain(bufcnt << PAGE_SHIFT);
337 1.89 ad mutex_exit(&bufcache_lock);
338 1.57 jdolecek
339 1.57 jdolecek /*
340 1.88 ad * complete draining the pools.
341 1.88 ad */
342 1.88 ad pool_drain_end(pp, where);
343 1.24 chs }
344 1.24 chs /*NOTREACHED*/
345 1.24 chs }
346 1.24 chs
347 1.8 mrg
348 1.24 chs /*
349 1.81 yamt * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
350 1.24 chs */
351 1.8 mrg
352 1.24 chs void
353 1.81 yamt uvm_aiodone_worker(struct work *wk, void *dummy)
354 1.24 chs {
355 1.81 yamt struct buf *bp = (void *)wk;
356 1.9 pk
357 1.81 yamt KASSERT(&bp->b_work == wk);
358 1.8 mrg
359 1.81 yamt /*
360 1.81 yamt * process an i/o that's done.
361 1.81 yamt */
362 1.8 mrg
363 1.81 yamt (*bp->b_iodone)(bp);
364 1.89 ad }
365 1.89 ad
366 1.89 ad void
367 1.89 ad uvm_pageout_start(int npages)
368 1.89 ad {
369 1.89 ad
370 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
371 1.89 ad uvmexp.paging += npages;
372 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
373 1.89 ad }
374 1.89 ad
375 1.89 ad void
376 1.89 ad uvm_pageout_done(int npages)
377 1.89 ad {
378 1.89 ad
379 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
380 1.89 ad KASSERT(uvmexp.paging >= npages);
381 1.89 ad uvmexp.paging -= npages;
382 1.89 ad
383 1.89 ad /*
384 1.89 ad * wake up either of pagedaemon or LWPs waiting for it.
385 1.89 ad */
386 1.89 ad
387 1.89 ad if (uvmexp.free <= uvmexp.reserve_kernel) {
388 1.81 yamt wakeup(&uvm.pagedaemon);
389 1.81 yamt } else {
390 1.81 yamt wakeup(&uvmexp.free);
391 1.89 ad uvm_pagedaemon_waiters = 0;
392 1.8 mrg }
393 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
394 1.1 mrg }
395 1.1 mrg
396 1.76 yamt /*
397 1.76 yamt * uvmpd_trylockowner: trylock the page's owner.
398 1.76 yamt *
399 1.76 yamt * => called with pageq locked.
400 1.76 yamt * => resolve orphaned O->A loaned page.
401 1.89 ad * => return the locked mutex on success. otherwise, return NULL.
402 1.76 yamt */
403 1.76 yamt
404 1.89 ad kmutex_t *
405 1.76 yamt uvmpd_trylockowner(struct vm_page *pg)
406 1.76 yamt {
407 1.76 yamt struct uvm_object *uobj = pg->uobject;
408 1.89 ad kmutex_t *slock;
409 1.89 ad
410 1.89 ad KASSERT(mutex_owned(&uvm_pageqlock));
411 1.76 yamt
412 1.76 yamt if (uobj != NULL) {
413 1.76 yamt slock = &uobj->vmobjlock;
414 1.76 yamt } else {
415 1.76 yamt struct vm_anon *anon = pg->uanon;
416 1.76 yamt
417 1.76 yamt KASSERT(anon != NULL);
418 1.76 yamt slock = &anon->an_lock;
419 1.76 yamt }
420 1.76 yamt
421 1.89 ad if (!mutex_tryenter(slock)) {
422 1.76 yamt return NULL;
423 1.76 yamt }
424 1.76 yamt
425 1.76 yamt if (uobj == NULL) {
426 1.76 yamt
427 1.76 yamt /*
428 1.76 yamt * set PQ_ANON if it isn't set already.
429 1.76 yamt */
430 1.76 yamt
431 1.76 yamt if ((pg->pqflags & PQ_ANON) == 0) {
432 1.76 yamt KASSERT(pg->loan_count > 0);
433 1.76 yamt pg->loan_count--;
434 1.76 yamt pg->pqflags |= PQ_ANON;
435 1.76 yamt /* anon now owns it */
436 1.76 yamt }
437 1.76 yamt }
438 1.76 yamt
439 1.76 yamt return slock;
440 1.76 yamt }
441 1.76 yamt
442 1.73 yamt #if defined(VMSWAP)
443 1.73 yamt struct swapcluster {
444 1.73 yamt int swc_slot;
445 1.73 yamt int swc_nallocated;
446 1.73 yamt int swc_nused;
447 1.75 yamt struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
448 1.73 yamt };
449 1.73 yamt
450 1.73 yamt static void
451 1.73 yamt swapcluster_init(struct swapcluster *swc)
452 1.73 yamt {
453 1.73 yamt
454 1.73 yamt swc->swc_slot = 0;
455 1.89 ad swc->swc_nused = 0;
456 1.73 yamt }
457 1.73 yamt
458 1.73 yamt static int
459 1.73 yamt swapcluster_allocslots(struct swapcluster *swc)
460 1.73 yamt {
461 1.73 yamt int slot;
462 1.73 yamt int npages;
463 1.73 yamt
464 1.73 yamt if (swc->swc_slot != 0) {
465 1.73 yamt return 0;
466 1.73 yamt }
467 1.73 yamt
468 1.73 yamt /* Even with strange MAXPHYS, the shift
469 1.73 yamt implicitly rounds down to a page. */
470 1.73 yamt npages = MAXPHYS >> PAGE_SHIFT;
471 1.84 thorpej slot = uvm_swap_alloc(&npages, true);
472 1.73 yamt if (slot == 0) {
473 1.73 yamt return ENOMEM;
474 1.73 yamt }
475 1.73 yamt swc->swc_slot = slot;
476 1.73 yamt swc->swc_nallocated = npages;
477 1.73 yamt swc->swc_nused = 0;
478 1.73 yamt
479 1.73 yamt return 0;
480 1.73 yamt }
481 1.73 yamt
482 1.73 yamt static int
483 1.73 yamt swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
484 1.73 yamt {
485 1.73 yamt int slot;
486 1.73 yamt struct uvm_object *uobj;
487 1.73 yamt
488 1.73 yamt KASSERT(swc->swc_slot != 0);
489 1.73 yamt KASSERT(swc->swc_nused < swc->swc_nallocated);
490 1.73 yamt KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
491 1.73 yamt
492 1.73 yamt slot = swc->swc_slot + swc->swc_nused;
493 1.73 yamt uobj = pg->uobject;
494 1.73 yamt if (uobj == NULL) {
495 1.89 ad KASSERT(mutex_owned(&pg->uanon->an_lock));
496 1.73 yamt pg->uanon->an_swslot = slot;
497 1.73 yamt } else {
498 1.73 yamt int result;
499 1.73 yamt
500 1.89 ad KASSERT(mutex_owned(&uobj->vmobjlock));
501 1.73 yamt result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
502 1.73 yamt if (result == -1) {
503 1.73 yamt return ENOMEM;
504 1.73 yamt }
505 1.73 yamt }
506 1.73 yamt swc->swc_pages[swc->swc_nused] = pg;
507 1.73 yamt swc->swc_nused++;
508 1.73 yamt
509 1.73 yamt return 0;
510 1.73 yamt }
511 1.73 yamt
512 1.73 yamt static void
513 1.83 thorpej swapcluster_flush(struct swapcluster *swc, bool now)
514 1.73 yamt {
515 1.73 yamt int slot;
516 1.73 yamt int nused;
517 1.73 yamt int nallocated;
518 1.73 yamt int error;
519 1.73 yamt
520 1.73 yamt if (swc->swc_slot == 0) {
521 1.73 yamt return;
522 1.73 yamt }
523 1.73 yamt KASSERT(swc->swc_nused <= swc->swc_nallocated);
524 1.73 yamt
525 1.73 yamt slot = swc->swc_slot;
526 1.73 yamt nused = swc->swc_nused;
527 1.73 yamt nallocated = swc->swc_nallocated;
528 1.73 yamt
529 1.73 yamt /*
530 1.73 yamt * if this is the final pageout we could have a few
531 1.73 yamt * unused swap blocks. if so, free them now.
532 1.73 yamt */
533 1.73 yamt
534 1.73 yamt if (nused < nallocated) {
535 1.73 yamt if (!now) {
536 1.73 yamt return;
537 1.73 yamt }
538 1.73 yamt uvm_swap_free(slot + nused, nallocated - nused);
539 1.73 yamt }
540 1.73 yamt
541 1.73 yamt /*
542 1.73 yamt * now start the pageout.
543 1.73 yamt */
544 1.73 yamt
545 1.91 yamt if (nused > 0) {
546 1.91 yamt uvmexp.pdpageouts++;
547 1.91 yamt uvm_pageout_start(nused);
548 1.91 yamt error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
549 1.92 yamt KASSERT(error == 0 || error == ENOMEM);
550 1.91 yamt }
551 1.73 yamt
552 1.73 yamt /*
553 1.73 yamt * zero swslot to indicate that we are
554 1.73 yamt * no longer building a swap-backed cluster.
555 1.73 yamt */
556 1.73 yamt
557 1.73 yamt swc->swc_slot = 0;
558 1.89 ad swc->swc_nused = 0;
559 1.89 ad }
560 1.89 ad
561 1.89 ad static int
562 1.89 ad swapcluster_nused(struct swapcluster *swc)
563 1.89 ad {
564 1.89 ad
565 1.89 ad return swc->swc_nused;
566 1.73 yamt }
567 1.77 yamt
568 1.77 yamt /*
569 1.77 yamt * uvmpd_dropswap: free any swap allocated to this page.
570 1.77 yamt *
571 1.77 yamt * => called with owner locked.
572 1.84 thorpej * => return true if a page had an associated slot.
573 1.77 yamt */
574 1.77 yamt
575 1.83 thorpej static bool
576 1.77 yamt uvmpd_dropswap(struct vm_page *pg)
577 1.77 yamt {
578 1.84 thorpej bool result = false;
579 1.77 yamt struct vm_anon *anon = pg->uanon;
580 1.77 yamt
581 1.77 yamt if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
582 1.77 yamt uvm_swap_free(anon->an_swslot, 1);
583 1.77 yamt anon->an_swslot = 0;
584 1.77 yamt pg->flags &= ~PG_CLEAN;
585 1.84 thorpej result = true;
586 1.77 yamt } else if (pg->pqflags & PQ_AOBJ) {
587 1.77 yamt int slot = uao_set_swslot(pg->uobject,
588 1.77 yamt pg->offset >> PAGE_SHIFT, 0);
589 1.77 yamt if (slot) {
590 1.77 yamt uvm_swap_free(slot, 1);
591 1.77 yamt pg->flags &= ~PG_CLEAN;
592 1.84 thorpej result = true;
593 1.77 yamt }
594 1.77 yamt }
595 1.77 yamt
596 1.77 yamt return result;
597 1.77 yamt }
598 1.77 yamt
599 1.77 yamt /*
600 1.77 yamt * uvmpd_trydropswap: try to free any swap allocated to this page.
601 1.77 yamt *
602 1.84 thorpej * => return true if a slot is successfully freed.
603 1.77 yamt */
604 1.77 yamt
605 1.83 thorpej bool
606 1.77 yamt uvmpd_trydropswap(struct vm_page *pg)
607 1.77 yamt {
608 1.89 ad kmutex_t *slock;
609 1.83 thorpej bool result;
610 1.77 yamt
611 1.77 yamt if ((pg->flags & PG_BUSY) != 0) {
612 1.84 thorpej return false;
613 1.77 yamt }
614 1.77 yamt
615 1.77 yamt /*
616 1.77 yamt * lock the page's owner.
617 1.77 yamt */
618 1.77 yamt
619 1.77 yamt slock = uvmpd_trylockowner(pg);
620 1.77 yamt if (slock == NULL) {
621 1.84 thorpej return false;
622 1.77 yamt }
623 1.77 yamt
624 1.77 yamt /*
625 1.77 yamt * skip this page if it's busy.
626 1.77 yamt */
627 1.77 yamt
628 1.77 yamt if ((pg->flags & PG_BUSY) != 0) {
629 1.89 ad mutex_exit(slock);
630 1.84 thorpej return false;
631 1.77 yamt }
632 1.77 yamt
633 1.77 yamt result = uvmpd_dropswap(pg);
634 1.77 yamt
635 1.89 ad mutex_exit(slock);
636 1.77 yamt
637 1.77 yamt return result;
638 1.77 yamt }
639 1.77 yamt
640 1.73 yamt #endif /* defined(VMSWAP) */
641 1.73 yamt
642 1.1 mrg /*
643 1.77 yamt * uvmpd_scan_queue: scan an replace candidate list for pages
644 1.77 yamt * to clean or free.
645 1.1 mrg *
646 1.1 mrg * => called with page queues locked
647 1.1 mrg * => we work on meeting our free target by converting inactive pages
648 1.1 mrg * into free pages.
649 1.1 mrg * => we handle the building of swap-backed clusters
650 1.1 mrg */
651 1.1 mrg
652 1.65 thorpej static void
653 1.77 yamt uvmpd_scan_queue(void)
654 1.8 mrg {
655 1.77 yamt struct vm_page *p;
656 1.8 mrg struct uvm_object *uobj;
657 1.37 chs struct vm_anon *anon;
658 1.68 yamt #if defined(VMSWAP)
659 1.73 yamt struct swapcluster swc;
660 1.68 yamt #endif /* defined(VMSWAP) */
661 1.77 yamt int dirtyreacts;
662 1.89 ad int lockownerfail;
663 1.89 ad kmutex_t *slock;
664 1.77 yamt UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
665 1.1 mrg
666 1.8 mrg /*
667 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
668 1.24 chs * to stay in the loop while we have a page to scan or we have
669 1.8 mrg * a swap-cluster to build.
670 1.8 mrg */
671 1.24 chs
672 1.73 yamt #if defined(VMSWAP)
673 1.73 yamt swapcluster_init(&swc);
674 1.73 yamt #endif /* defined(VMSWAP) */
675 1.77 yamt
676 1.14 chs dirtyreacts = 0;
677 1.89 ad lockownerfail = 0;
678 1.77 yamt uvmpdpol_scaninit();
679 1.43 chs
680 1.77 yamt while (/* CONSTCOND */ 1) {
681 1.24 chs
682 1.73 yamt /*
683 1.73 yamt * see if we've met the free target.
684 1.73 yamt */
685 1.73 yamt
686 1.89 ad if (uvmexp.free + uvmexp.paging
687 1.89 ad #if defined(VMSWAP)
688 1.89 ad + swapcluster_nused(&swc)
689 1.89 ad #endif /* defined(VMSWAP) */
690 1.89 ad >= uvmexp.freetarg << 2 ||
691 1.73 yamt dirtyreacts == UVMPD_NUMDIRTYREACTS) {
692 1.73 yamt UVMHIST_LOG(pdhist," met free target: "
693 1.73 yamt "exit loop", 0, 0, 0, 0);
694 1.73 yamt break;
695 1.73 yamt }
696 1.24 chs
697 1.77 yamt p = uvmpdpol_selectvictim();
698 1.77 yamt if (p == NULL) {
699 1.77 yamt break;
700 1.77 yamt }
701 1.77 yamt KASSERT(uvmpdpol_pageisqueued_p(p));
702 1.77 yamt KASSERT(p->wire_count == 0);
703 1.77 yamt
704 1.73 yamt /*
705 1.73 yamt * we are below target and have a new page to consider.
706 1.73 yamt */
707 1.30 chs
708 1.73 yamt anon = p->uanon;
709 1.73 yamt uobj = p->uobject;
710 1.8 mrg
711 1.73 yamt /*
712 1.73 yamt * first we attempt to lock the object that this page
713 1.73 yamt * belongs to. if our attempt fails we skip on to
714 1.73 yamt * the next page (no harm done). it is important to
715 1.73 yamt * "try" locking the object as we are locking in the
716 1.73 yamt * wrong order (pageq -> object) and we don't want to
717 1.73 yamt * deadlock.
718 1.73 yamt *
719 1.73 yamt * the only time we expect to see an ownerless page
720 1.73 yamt * (i.e. a page with no uobject and !PQ_ANON) is if an
721 1.73 yamt * anon has loaned a page from a uvm_object and the
722 1.73 yamt * uvm_object has dropped the ownership. in that
723 1.73 yamt * case, the anon can "take over" the loaned page
724 1.73 yamt * and make it its own.
725 1.73 yamt */
726 1.30 chs
727 1.76 yamt slock = uvmpd_trylockowner(p);
728 1.76 yamt if (slock == NULL) {
729 1.89 ad /*
730 1.89 ad * yield cpu to make a chance for an LWP holding
731 1.89 ad * the lock run. otherwise we can busy-loop too long
732 1.89 ad * if the page queue is filled with a lot of pages
733 1.89 ad * from few objects.
734 1.89 ad */
735 1.89 ad lockownerfail++;
736 1.89 ad if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
737 1.89 ad mutex_exit(&uvm_pageqlock);
738 1.89 ad /* XXX Better than yielding but inadequate. */
739 1.89 ad kpause("livelock", false, 1, NULL);
740 1.89 ad mutex_enter(&uvm_pageqlock);
741 1.89 ad lockownerfail = 0;
742 1.89 ad }
743 1.76 yamt continue;
744 1.76 yamt }
745 1.76 yamt if (p->flags & PG_BUSY) {
746 1.89 ad mutex_exit(slock);
747 1.76 yamt uvmexp.pdbusy++;
748 1.76 yamt continue;
749 1.76 yamt }
750 1.76 yamt
751 1.73 yamt /* does the page belong to an object? */
752 1.73 yamt if (uobj != NULL) {
753 1.73 yamt uvmexp.pdobscan++;
754 1.73 yamt } else {
755 1.73 yamt #if defined(VMSWAP)
756 1.73 yamt KASSERT(anon != NULL);
757 1.73 yamt uvmexp.pdanscan++;
758 1.68 yamt #else /* defined(VMSWAP) */
759 1.73 yamt panic("%s: anon", __func__);
760 1.68 yamt #endif /* defined(VMSWAP) */
761 1.73 yamt }
762 1.8 mrg
763 1.37 chs
764 1.73 yamt /*
765 1.73 yamt * we now have the object and the page queues locked.
766 1.73 yamt * if the page is not swap-backed, call the object's
767 1.73 yamt * pager to flush and free the page.
768 1.73 yamt */
769 1.37 chs
770 1.69 yamt #if defined(READAHEAD_STATS)
771 1.77 yamt if ((p->pqflags & PQ_READAHEAD) != 0) {
772 1.77 yamt p->pqflags &= ~PQ_READAHEAD;
773 1.73 yamt uvm_ra_miss.ev_count++;
774 1.73 yamt }
775 1.69 yamt #endif /* defined(READAHEAD_STATS) */
776 1.69 yamt
777 1.73 yamt if ((p->pqflags & PQ_SWAPBACKED) == 0) {
778 1.82 alc KASSERT(uobj != NULL);
779 1.89 ad mutex_exit(&uvm_pageqlock);
780 1.73 yamt (void) (uobj->pgops->pgo_put)(uobj, p->offset,
781 1.73 yamt p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
782 1.89 ad mutex_enter(&uvm_pageqlock);
783 1.73 yamt continue;
784 1.73 yamt }
785 1.37 chs
786 1.73 yamt /*
787 1.73 yamt * the page is swap-backed. remove all the permissions
788 1.73 yamt * from the page so we can sync the modified info
789 1.73 yamt * without any race conditions. if the page is clean
790 1.73 yamt * we can free it now and continue.
791 1.73 yamt */
792 1.8 mrg
793 1.73 yamt pmap_page_protect(p, VM_PROT_NONE);
794 1.73 yamt if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
795 1.73 yamt p->flags &= ~(PG_CLEAN);
796 1.73 yamt }
797 1.73 yamt if (p->flags & PG_CLEAN) {
798 1.73 yamt int slot;
799 1.73 yamt int pageidx;
800 1.73 yamt
801 1.73 yamt pageidx = p->offset >> PAGE_SHIFT;
802 1.73 yamt uvm_pagefree(p);
803 1.73 yamt uvmexp.pdfreed++;
804 1.8 mrg
805 1.8 mrg /*
806 1.73 yamt * for anons, we need to remove the page
807 1.73 yamt * from the anon ourselves. for aobjs,
808 1.73 yamt * pagefree did that for us.
809 1.8 mrg */
810 1.24 chs
811 1.73 yamt if (anon) {
812 1.73 yamt KASSERT(anon->an_swslot != 0);
813 1.73 yamt anon->an_page = NULL;
814 1.73 yamt slot = anon->an_swslot;
815 1.73 yamt } else {
816 1.73 yamt slot = uao_find_swslot(uobj, pageidx);
817 1.8 mrg }
818 1.89 ad mutex_exit(slock);
819 1.8 mrg
820 1.73 yamt if (slot > 0) {
821 1.73 yamt /* this page is now only in swap. */
822 1.87 ad mutex_enter(&uvm_swap_data_lock);
823 1.73 yamt KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
824 1.73 yamt uvmexp.swpgonly++;
825 1.87 ad mutex_exit(&uvm_swap_data_lock);
826 1.37 chs }
827 1.73 yamt continue;
828 1.73 yamt }
829 1.37 chs
830 1.77 yamt #if defined(VMSWAP)
831 1.73 yamt /*
832 1.73 yamt * this page is dirty, skip it if we'll have met our
833 1.73 yamt * free target when all the current pageouts complete.
834 1.73 yamt */
835 1.24 chs
836 1.73 yamt if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
837 1.89 ad mutex_exit(slock);
838 1.73 yamt continue;
839 1.73 yamt }
840 1.14 chs
841 1.73 yamt /*
842 1.73 yamt * free any swap space allocated to the page since
843 1.73 yamt * we'll have to write it again with its new data.
844 1.73 yamt */
845 1.24 chs
846 1.77 yamt uvmpd_dropswap(p);
847 1.14 chs
848 1.73 yamt /*
849 1.73 yamt * if all pages in swap are only in swap,
850 1.73 yamt * the swap space is full and we can't page out
851 1.73 yamt * any more swap-backed pages. reactivate this page
852 1.73 yamt * so that we eventually cycle all pages through
853 1.73 yamt * the inactive queue.
854 1.73 yamt */
855 1.68 yamt
856 1.73 yamt if (uvm_swapisfull()) {
857 1.73 yamt dirtyreacts++;
858 1.73 yamt uvm_pageactivate(p);
859 1.89 ad mutex_exit(slock);
860 1.73 yamt continue;
861 1.8 mrg }
862 1.8 mrg
863 1.8 mrg /*
864 1.73 yamt * start new swap pageout cluster (if necessary).
865 1.8 mrg */
866 1.24 chs
867 1.73 yamt if (swapcluster_allocslots(&swc)) {
868 1.89 ad mutex_exit(slock);
869 1.77 yamt dirtyreacts++; /* XXX */
870 1.73 yamt continue;
871 1.8 mrg }
872 1.8 mrg
873 1.8 mrg /*
874 1.73 yamt * at this point, we're definitely going reuse this
875 1.73 yamt * page. mark the page busy and delayed-free.
876 1.73 yamt * we should remove the page from the page queues
877 1.73 yamt * so we don't ever look at it again.
878 1.73 yamt * adjust counters and such.
879 1.8 mrg */
880 1.8 mrg
881 1.73 yamt p->flags |= PG_BUSY;
882 1.77 yamt UVM_PAGE_OWN(p, "scan_queue");
883 1.73 yamt
884 1.73 yamt p->flags |= PG_PAGEOUT;
885 1.73 yamt uvm_pagedequeue(p);
886 1.73 yamt
887 1.73 yamt uvmexp.pgswapout++;
888 1.89 ad mutex_exit(&uvm_pageqlock);
889 1.8 mrg
890 1.8 mrg /*
891 1.73 yamt * add the new page to the cluster.
892 1.8 mrg */
893 1.8 mrg
894 1.73 yamt if (swapcluster_add(&swc, p)) {
895 1.73 yamt p->flags &= ~(PG_BUSY|PG_PAGEOUT);
896 1.73 yamt UVM_PAGE_OWN(p, NULL);
897 1.89 ad mutex_enter(&uvm_pageqlock);
898 1.77 yamt dirtyreacts++;
899 1.73 yamt uvm_pageactivate(p);
900 1.89 ad mutex_exit(slock);
901 1.73 yamt continue;
902 1.73 yamt }
903 1.89 ad mutex_exit(slock);
904 1.73 yamt
905 1.84 thorpej swapcluster_flush(&swc, false);
906 1.89 ad mutex_enter(&uvm_pageqlock);
907 1.73 yamt
908 1.8 mrg /*
909 1.31 chs * the pageout is in progress. bump counters and set up
910 1.31 chs * for the next loop.
911 1.8 mrg */
912 1.8 mrg
913 1.31 chs uvmexp.pdpending++;
914 1.77 yamt
915 1.77 yamt #else /* defined(VMSWAP) */
916 1.77 yamt uvm_pageactivate(p);
917 1.89 ad mutex_exit(slock);
918 1.77 yamt #endif /* defined(VMSWAP) */
919 1.73 yamt }
920 1.73 yamt
921 1.73 yamt #if defined(VMSWAP)
922 1.89 ad mutex_exit(&uvm_pageqlock);
923 1.84 thorpej swapcluster_flush(&swc, true);
924 1.89 ad mutex_enter(&uvm_pageqlock);
925 1.68 yamt #endif /* defined(VMSWAP) */
926 1.1 mrg }
927 1.1 mrg
928 1.1 mrg /*
929 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
930 1.1 mrg *
931 1.1 mrg * => called with pageq's locked
932 1.1 mrg */
933 1.1 mrg
934 1.65 thorpej static void
935 1.37 chs uvmpd_scan(void)
936 1.1 mrg {
937 1.77 yamt int swap_shortage, pages_freed;
938 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
939 1.1 mrg
940 1.37 chs uvmexp.pdrevs++;
941 1.1 mrg
942 1.8 mrg /*
943 1.93 ad * work on meeting our targets. first we work on our free target
944 1.93 ad * by converting inactive pages into free pages. then we work on
945 1.93 ad * meeting our inactive target by converting active pages to
946 1.93 ad * inactive ones.
947 1.8 mrg */
948 1.8 mrg
949 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
950 1.8 mrg
951 1.14 chs pages_freed = uvmexp.pdfreed;
952 1.77 yamt uvmpd_scan_queue();
953 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
954 1.8 mrg
955 1.8 mrg /*
956 1.14 chs * detect if we're not going to be able to page anything out
957 1.14 chs * until we free some swap resources from active pages.
958 1.14 chs */
959 1.24 chs
960 1.14 chs swap_shortage = 0;
961 1.14 chs if (uvmexp.free < uvmexp.freetarg &&
962 1.52 pk uvmexp.swpginuse >= uvmexp.swpgavail &&
963 1.52 pk !uvm_swapisfull() &&
964 1.14 chs pages_freed == 0) {
965 1.14 chs swap_shortage = uvmexp.freetarg - uvmexp.free;
966 1.14 chs }
967 1.24 chs
968 1.77 yamt uvmpdpol_balancequeue(swap_shortage);
969 1.93 ad
970 1.93 ad /*
971 1.93 ad * swap out some processes if we are still below the minimum
972 1.93 ad * free target. we need to unlock the page queues for this.
973 1.93 ad */
974 1.93 ad
975 1.93 ad if (uvmexp.free < uvmexp.freemin && uvmexp.nswapdev != 0 &&
976 1.93 ad uvm.swapout_enabled) {
977 1.93 ad uvmexp.pdswout++;
978 1.93 ad UVMHIST_LOG(pdhist," free %d < min %d: swapout",
979 1.93 ad uvmexp.free, uvmexp.freemin, 0, 0);
980 1.93 ad mutex_exit(&uvm_pageqlock);
981 1.93 ad uvm_swapout_threads();
982 1.93 ad mutex_enter(&uvm_pageqlock);
983 1.93 ad
984 1.93 ad }
985 1.1 mrg }
986 1.62 yamt
987 1.62 yamt /*
988 1.62 yamt * uvm_reclaimable: decide whether to wait for pagedaemon.
989 1.62 yamt *
990 1.84 thorpej * => return true if it seems to be worth to do uvm_wait.
991 1.62 yamt *
992 1.62 yamt * XXX should be tunable.
993 1.62 yamt * XXX should consider pools, etc?
994 1.62 yamt */
995 1.62 yamt
996 1.83 thorpej bool
997 1.62 yamt uvm_reclaimable(void)
998 1.62 yamt {
999 1.62 yamt int filepages;
1000 1.77 yamt int active, inactive;
1001 1.62 yamt
1002 1.62 yamt /*
1003 1.62 yamt * if swap is not full, no problem.
1004 1.62 yamt */
1005 1.62 yamt
1006 1.62 yamt if (!uvm_swapisfull()) {
1007 1.84 thorpej return true;
1008 1.62 yamt }
1009 1.62 yamt
1010 1.62 yamt /*
1011 1.62 yamt * file-backed pages can be reclaimed even when swap is full.
1012 1.62 yamt * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
1013 1.62 yamt *
1014 1.62 yamt * XXX assume the worst case, ie. all wired pages are file-backed.
1015 1.63 yamt *
1016 1.63 yamt * XXX should consider about other reclaimable memory.
1017 1.63 yamt * XXX ie. pools, traditional buffer cache.
1018 1.62 yamt */
1019 1.62 yamt
1020 1.62 yamt filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
1021 1.77 yamt uvm_estimatepageable(&active, &inactive);
1022 1.77 yamt if (filepages >= MIN((active + inactive) >> 4,
1023 1.62 yamt 5 * 1024 * 1024 >> PAGE_SHIFT)) {
1024 1.84 thorpej return true;
1025 1.62 yamt }
1026 1.62 yamt
1027 1.62 yamt /*
1028 1.62 yamt * kill the process, fail allocation, etc..
1029 1.62 yamt */
1030 1.62 yamt
1031 1.84 thorpej return false;
1032 1.62 yamt }
1033 1.77 yamt
1034 1.77 yamt void
1035 1.77 yamt uvm_estimatepageable(int *active, int *inactive)
1036 1.77 yamt {
1037 1.77 yamt
1038 1.77 yamt uvmpdpol_estimatepageable(active, inactive);
1039 1.77 yamt }
1040