uvm_pdaemon.c revision 1.93.4.2.4.2 1 1.93.4.2.4.2 matt /* $NetBSD: uvm_pdaemon.c,v 1.93.4.2.4.2 2011/06/03 07:59:58 matt Exp $ */
2 1.1 mrg
3 1.34 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.34 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.34 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.34 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.34 chs *
54 1.34 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.34 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.34 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_pdaemon.c: the page daemon
71 1.1 mrg */
72 1.42 lukem
73 1.42 lukem #include <sys/cdefs.h>
74 1.93.4.2.4.2 matt __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.93.4.2.4.2 2011/06/03 07:59:58 matt Exp $");
75 1.42 lukem
76 1.42 lukem #include "opt_uvmhist.h"
77 1.69 yamt #include "opt_readahead.h"
78 1.1 mrg
79 1.1 mrg #include <sys/param.h>
80 1.1 mrg #include <sys/proc.h>
81 1.1 mrg #include <sys/systm.h>
82 1.1 mrg #include <sys/kernel.h>
83 1.9 pk #include <sys/pool.h>
84 1.24 chs #include <sys/buf.h>
85 1.93.4.2 snj #include <sys/atomic.h>
86 1.1 mrg
87 1.1 mrg #include <uvm/uvm.h>
88 1.77 yamt #include <uvm/uvm_pdpolicy.h>
89 1.1 mrg
90 1.1 mrg /*
91 1.45 wiz * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
92 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
93 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
94 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
95 1.14 chs */
96 1.14 chs
97 1.89 ad #define UVMPD_NUMDIRTYREACTS 16
98 1.14 chs
99 1.89 ad #define UVMPD_NUMTRYLOCKOWNER 16
100 1.14 chs
101 1.14 chs /*
102 1.1 mrg * local prototypes
103 1.1 mrg */
104 1.1 mrg
105 1.65 thorpej static void uvmpd_scan(void);
106 1.77 yamt static void uvmpd_scan_queue(void);
107 1.65 thorpej static void uvmpd_tune(void);
108 1.1 mrg
109 1.89 ad unsigned int uvm_pagedaemon_waiters;
110 1.89 ad
111 1.1 mrg /*
112 1.61 chs * XXX hack to avoid hangs when large processes fork.
113 1.61 chs */
114 1.93.4.2 snj u_int uvm_extrapages;
115 1.61 chs
116 1.93.4.2.4.1 matt static bool
117 1.93.4.2.4.1 matt uvm_color_needsscan_p(void)
118 1.93.4.2.4.1 matt {
119 1.93.4.2.4.1 matt struct pgfreelist *pgfl = uvm.page_free;
120 1.93.4.2.4.1 matt for (int color = 0; color < uvmexp.ncolors; color++, pgfl++) {
121 1.93.4.2.4.1 matt u_long freepages =
122 1.93.4.2.4.1 matt pgfl->pgfl_pages[PGFL_UNKNOWN]
123 1.93.4.2.4.1 matt + pgfl->pgfl_pages[PGFL_ZEROS];
124 1.93.4.2.4.1 matt if (freepages * uvmexp.ncolors < uvmexp.freetarg)
125 1.93.4.2.4.1 matt return true;
126 1.93.4.2.4.1 matt }
127 1.93.4.2.4.1 matt return false;
128 1.93.4.2.4.1 matt }
129 1.93.4.2.4.1 matt
130 1.61 chs /*
131 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
132 1.1 mrg *
133 1.1 mrg * => should be called with all locks released
134 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
135 1.1 mrg */
136 1.1 mrg
137 1.19 thorpej void
138 1.65 thorpej uvm_wait(const char *wmsg)
139 1.8 mrg {
140 1.8 mrg int timo = 0;
141 1.89 ad
142 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
143 1.1 mrg
144 1.8 mrg /*
145 1.8 mrg * check for page daemon going to sleep (waiting for itself)
146 1.8 mrg */
147 1.1 mrg
148 1.86 ad if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
149 1.8 mrg /*
150 1.8 mrg * now we have a problem: the pagedaemon wants to go to
151 1.8 mrg * sleep until it frees more memory. but how can it
152 1.8 mrg * free more memory if it is asleep? that is a deadlock.
153 1.8 mrg * we have two options:
154 1.8 mrg * [1] panic now
155 1.8 mrg * [2] put a timeout on the sleep, thus causing the
156 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
157 1.8 mrg *
158 1.8 mrg * note that option [2] will only help us if we get lucky
159 1.8 mrg * and some other process on the system breaks the deadlock
160 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
161 1.8 mrg * to continue). for now we panic if DEBUG is defined,
162 1.8 mrg * otherwise we hope for the best with option [2] (better
163 1.8 mrg * yet, this should never happen in the first place!).
164 1.8 mrg */
165 1.1 mrg
166 1.8 mrg printf("pagedaemon: deadlock detected!\n");
167 1.8 mrg timo = hz >> 3; /* set timeout */
168 1.1 mrg #if defined(DEBUG)
169 1.8 mrg /* DEBUG: panic so we can debug it */
170 1.8 mrg panic("pagedaemon deadlock");
171 1.1 mrg #endif
172 1.8 mrg }
173 1.1 mrg
174 1.89 ad uvm_pagedaemon_waiters++;
175 1.17 thorpej wakeup(&uvm.pagedaemon); /* wake the daemon! */
176 1.89 ad UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
177 1.1 mrg }
178 1.1 mrg
179 1.77 yamt /*
180 1.77 yamt * uvm_kick_pdaemon: perform checks to determine if we need to
181 1.77 yamt * give the pagedaemon a nudge, and do so if necessary.
182 1.89 ad *
183 1.89 ad * => called with uvm_fpageqlock held.
184 1.77 yamt */
185 1.77 yamt
186 1.77 yamt void
187 1.77 yamt uvm_kick_pdaemon(void)
188 1.77 yamt {
189 1.77 yamt
190 1.89 ad KASSERT(mutex_owned(&uvm_fpageqlock));
191 1.89 ad
192 1.93.4.2.4.1 matt if (uvmexp.free + uvmexp.paging < uvmexp.freemin
193 1.93.4.2.4.1 matt || (uvmexp.free + uvmexp.paging < uvmexp.freetarg
194 1.93.4.2.4.1 matt && uvmpdpol_needsscan_p())
195 1.93.4.2.4.1 matt || uvm_color_needsscan_p()) {
196 1.77 yamt wakeup(&uvm.pagedaemon);
197 1.77 yamt }
198 1.77 yamt }
199 1.1 mrg
200 1.1 mrg /*
201 1.1 mrg * uvmpd_tune: tune paging parameters
202 1.1 mrg *
203 1.1 mrg * => called when ever memory is added (or removed?) to the system
204 1.1 mrg * => caller must call with page queues locked
205 1.1 mrg */
206 1.1 mrg
207 1.65 thorpej static void
208 1.37 chs uvmpd_tune(void)
209 1.8 mrg {
210 1.93.4.2 snj int val;
211 1.93.4.2 snj
212 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
213 1.1 mrg
214 1.93 ad /*
215 1.93 ad * try to keep 0.5% of available RAM free, but limit to between
216 1.93 ad * 128k and 1024k per-CPU. XXX: what are these values good for?
217 1.93 ad */
218 1.93.4.2 snj val = uvmexp.npages / 200;
219 1.93.4.2 snj val = MAX(val, (128*1024) >> PAGE_SHIFT);
220 1.93.4.2 snj val = MIN(val, (1024*1024) >> PAGE_SHIFT);
221 1.93.4.2 snj val *= ncpu;
222 1.23 bjh21
223 1.23 bjh21 /* Make sure there's always a user page free. */
224 1.93.4.2 snj if (val < uvmexp.reserve_kernel + 1)
225 1.93.4.2 snj val = uvmexp.reserve_kernel + 1;
226 1.93.4.2 snj uvmexp.freemin = val;
227 1.93.4.2 snj
228 1.93.4.2 snj /* Calculate free target. */
229 1.93.4.2 snj val = (uvmexp.freemin * 4) / 3;
230 1.93.4.2 snj if (val <= uvmexp.freemin)
231 1.93.4.2 snj val = uvmexp.freemin + 1;
232 1.93.4.2 snj uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
233 1.61 chs
234 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
235 1.8 mrg UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
236 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
237 1.1 mrg }
238 1.1 mrg
239 1.1 mrg /*
240 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
241 1.1 mrg */
242 1.1 mrg
243 1.8 mrg void
244 1.80 yamt uvm_pageout(void *arg)
245 1.8 mrg {
246 1.60 enami int bufcnt, npages = 0;
247 1.61 chs int extrapages = 0;
248 1.88 ad struct pool *pp;
249 1.88 ad uint64_t where;
250 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
251 1.24 chs
252 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
253 1.8 mrg
254 1.8 mrg /*
255 1.8 mrg * ensure correct priority and set paging parameters...
256 1.8 mrg */
257 1.8 mrg
258 1.86 ad uvm.pagedaemon_lwp = curlwp;
259 1.89 ad mutex_enter(&uvm_pageqlock);
260 1.8 mrg npages = uvmexp.npages;
261 1.8 mrg uvmpd_tune();
262 1.89 ad mutex_exit(&uvm_pageqlock);
263 1.8 mrg
264 1.8 mrg /*
265 1.8 mrg * main loop
266 1.8 mrg */
267 1.24 chs
268 1.24 chs for (;;) {
269 1.93 ad bool needsscan, needsfree;
270 1.24 chs
271 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
272 1.89 ad if (uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) {
273 1.89 ad UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
274 1.89 ad UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
275 1.89 ad &uvm_fpageqlock, false, "pgdaemon", 0);
276 1.89 ad uvmexp.pdwoke++;
277 1.89 ad UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
278 1.89 ad } else {
279 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
280 1.89 ad }
281 1.24 chs
282 1.8 mrg /*
283 1.24 chs * now lock page queues and recompute inactive count
284 1.8 mrg */
285 1.8 mrg
286 1.89 ad mutex_enter(&uvm_pageqlock);
287 1.61 chs if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
288 1.24 chs npages = uvmexp.npages;
289 1.61 chs extrapages = uvm_extrapages;
290 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
291 1.24 chs uvmpd_tune();
292 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
293 1.24 chs }
294 1.24 chs
295 1.77 yamt uvmpdpol_tune();
296 1.24 chs
297 1.60 enami /*
298 1.60 enami * Estimate a hint. Note that bufmem are returned to
299 1.60 enami * system only when entire pool page is empty.
300 1.60 enami */
301 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
302 1.60 enami bufcnt = uvmexp.freetarg - uvmexp.free;
303 1.60 enami if (bufcnt < 0)
304 1.60 enami bufcnt = 0;
305 1.60 enami
306 1.77 yamt UVMHIST_LOG(pdhist," free/ftarg=%d/%d",
307 1.77 yamt uvmexp.free, uvmexp.freetarg, 0,0);
308 1.8 mrg
309 1.93 ad needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
310 1.93 ad needsscan = needsfree || uvmpdpol_needsscan_p();
311 1.93.4.2.4.1 matt needsscan = needsscan || uvm_color_needsscan_p();
312 1.89 ad
313 1.8 mrg /*
314 1.24 chs * scan if needed
315 1.8 mrg */
316 1.93.4.1 snj if (needsscan) {
317 1.93.4.1 snj mutex_spin_exit(&uvm_fpageqlock);
318 1.24 chs uvmpd_scan();
319 1.93.4.1 snj mutex_spin_enter(&uvm_fpageqlock);
320 1.93.4.1 snj }
321 1.8 mrg
322 1.8 mrg /*
323 1.24 chs * if there's any free memory to be had,
324 1.24 chs * wake up any waiters.
325 1.8 mrg */
326 1.24 chs if (uvmexp.free > uvmexp.reserve_kernel ||
327 1.24 chs uvmexp.paging == 0) {
328 1.24 chs wakeup(&uvmexp.free);
329 1.89 ad uvm_pagedaemon_waiters = 0;
330 1.8 mrg }
331 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
332 1.1 mrg
333 1.8 mrg /*
334 1.24 chs * scan done. unlock page queues (the only lock we are holding)
335 1.8 mrg */
336 1.89 ad mutex_exit(&uvm_pageqlock);
337 1.38 chs
338 1.88 ad /*
339 1.93 ad * if we don't need free memory, we're done.
340 1.93 ad */
341 1.93 ad
342 1.93 ad if (!needsfree)
343 1.93 ad continue;
344 1.93 ad
345 1.93 ad /*
346 1.88 ad * start draining pool resources now that we're not
347 1.88 ad * holding any locks.
348 1.88 ad */
349 1.88 ad pool_drain_start(&pp, &where);
350 1.60 enami
351 1.38 chs /*
352 1.88 ad * kill unused metadata buffers.
353 1.38 chs */
354 1.89 ad mutex_enter(&bufcache_lock);
355 1.88 ad buf_drain(bufcnt << PAGE_SHIFT);
356 1.89 ad mutex_exit(&bufcache_lock);
357 1.57 jdolecek
358 1.57 jdolecek /*
359 1.88 ad * complete draining the pools.
360 1.88 ad */
361 1.88 ad pool_drain_end(pp, where);
362 1.24 chs }
363 1.24 chs /*NOTREACHED*/
364 1.24 chs }
365 1.24 chs
366 1.8 mrg
367 1.24 chs /*
368 1.81 yamt * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
369 1.24 chs */
370 1.8 mrg
371 1.24 chs void
372 1.81 yamt uvm_aiodone_worker(struct work *wk, void *dummy)
373 1.24 chs {
374 1.81 yamt struct buf *bp = (void *)wk;
375 1.9 pk
376 1.81 yamt KASSERT(&bp->b_work == wk);
377 1.8 mrg
378 1.81 yamt /*
379 1.81 yamt * process an i/o that's done.
380 1.81 yamt */
381 1.8 mrg
382 1.81 yamt (*bp->b_iodone)(bp);
383 1.89 ad }
384 1.89 ad
385 1.89 ad void
386 1.89 ad uvm_pageout_start(int npages)
387 1.89 ad {
388 1.89 ad
389 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
390 1.89 ad uvmexp.paging += npages;
391 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
392 1.89 ad }
393 1.89 ad
394 1.89 ad void
395 1.89 ad uvm_pageout_done(int npages)
396 1.89 ad {
397 1.89 ad
398 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
399 1.89 ad KASSERT(uvmexp.paging >= npages);
400 1.89 ad uvmexp.paging -= npages;
401 1.89 ad
402 1.89 ad /*
403 1.89 ad * wake up either of pagedaemon or LWPs waiting for it.
404 1.89 ad */
405 1.89 ad
406 1.89 ad if (uvmexp.free <= uvmexp.reserve_kernel) {
407 1.81 yamt wakeup(&uvm.pagedaemon);
408 1.81 yamt } else {
409 1.81 yamt wakeup(&uvmexp.free);
410 1.89 ad uvm_pagedaemon_waiters = 0;
411 1.8 mrg }
412 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
413 1.1 mrg }
414 1.1 mrg
415 1.76 yamt /*
416 1.76 yamt * uvmpd_trylockowner: trylock the page's owner.
417 1.76 yamt *
418 1.76 yamt * => called with pageq locked.
419 1.76 yamt * => resolve orphaned O->A loaned page.
420 1.89 ad * => return the locked mutex on success. otherwise, return NULL.
421 1.76 yamt */
422 1.76 yamt
423 1.89 ad kmutex_t *
424 1.76 yamt uvmpd_trylockowner(struct vm_page *pg)
425 1.76 yamt {
426 1.76 yamt struct uvm_object *uobj = pg->uobject;
427 1.89 ad kmutex_t *slock;
428 1.89 ad
429 1.89 ad KASSERT(mutex_owned(&uvm_pageqlock));
430 1.76 yamt
431 1.76 yamt if (uobj != NULL) {
432 1.76 yamt slock = &uobj->vmobjlock;
433 1.76 yamt } else {
434 1.76 yamt struct vm_anon *anon = pg->uanon;
435 1.76 yamt
436 1.76 yamt KASSERT(anon != NULL);
437 1.76 yamt slock = &anon->an_lock;
438 1.76 yamt }
439 1.76 yamt
440 1.89 ad if (!mutex_tryenter(slock)) {
441 1.76 yamt return NULL;
442 1.76 yamt }
443 1.76 yamt
444 1.76 yamt if (uobj == NULL) {
445 1.76 yamt
446 1.76 yamt /*
447 1.76 yamt * set PQ_ANON if it isn't set already.
448 1.76 yamt */
449 1.76 yamt
450 1.76 yamt if ((pg->pqflags & PQ_ANON) == 0) {
451 1.76 yamt KASSERT(pg->loan_count > 0);
452 1.76 yamt pg->loan_count--;
453 1.76 yamt pg->pqflags |= PQ_ANON;
454 1.76 yamt /* anon now owns it */
455 1.76 yamt }
456 1.76 yamt }
457 1.76 yamt
458 1.76 yamt return slock;
459 1.76 yamt }
460 1.76 yamt
461 1.73 yamt #if defined(VMSWAP)
462 1.73 yamt struct swapcluster {
463 1.73 yamt int swc_slot;
464 1.73 yamt int swc_nallocated;
465 1.73 yamt int swc_nused;
466 1.75 yamt struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
467 1.73 yamt };
468 1.73 yamt
469 1.73 yamt static void
470 1.73 yamt swapcluster_init(struct swapcluster *swc)
471 1.73 yamt {
472 1.73 yamt
473 1.73 yamt swc->swc_slot = 0;
474 1.89 ad swc->swc_nused = 0;
475 1.73 yamt }
476 1.73 yamt
477 1.73 yamt static int
478 1.73 yamt swapcluster_allocslots(struct swapcluster *swc)
479 1.73 yamt {
480 1.73 yamt int slot;
481 1.73 yamt int npages;
482 1.73 yamt
483 1.73 yamt if (swc->swc_slot != 0) {
484 1.73 yamt return 0;
485 1.73 yamt }
486 1.73 yamt
487 1.73 yamt /* Even with strange MAXPHYS, the shift
488 1.73 yamt implicitly rounds down to a page. */
489 1.73 yamt npages = MAXPHYS >> PAGE_SHIFT;
490 1.84 thorpej slot = uvm_swap_alloc(&npages, true);
491 1.73 yamt if (slot == 0) {
492 1.73 yamt return ENOMEM;
493 1.73 yamt }
494 1.73 yamt swc->swc_slot = slot;
495 1.73 yamt swc->swc_nallocated = npages;
496 1.73 yamt swc->swc_nused = 0;
497 1.73 yamt
498 1.73 yamt return 0;
499 1.73 yamt }
500 1.73 yamt
501 1.73 yamt static int
502 1.73 yamt swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
503 1.73 yamt {
504 1.73 yamt int slot;
505 1.73 yamt struct uvm_object *uobj;
506 1.73 yamt
507 1.73 yamt KASSERT(swc->swc_slot != 0);
508 1.73 yamt KASSERT(swc->swc_nused < swc->swc_nallocated);
509 1.73 yamt KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
510 1.73 yamt
511 1.73 yamt slot = swc->swc_slot + swc->swc_nused;
512 1.73 yamt uobj = pg->uobject;
513 1.73 yamt if (uobj == NULL) {
514 1.89 ad KASSERT(mutex_owned(&pg->uanon->an_lock));
515 1.73 yamt pg->uanon->an_swslot = slot;
516 1.73 yamt } else {
517 1.73 yamt int result;
518 1.73 yamt
519 1.89 ad KASSERT(mutex_owned(&uobj->vmobjlock));
520 1.73 yamt result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
521 1.73 yamt if (result == -1) {
522 1.73 yamt return ENOMEM;
523 1.73 yamt }
524 1.73 yamt }
525 1.73 yamt swc->swc_pages[swc->swc_nused] = pg;
526 1.73 yamt swc->swc_nused++;
527 1.73 yamt
528 1.73 yamt return 0;
529 1.73 yamt }
530 1.73 yamt
531 1.73 yamt static void
532 1.83 thorpej swapcluster_flush(struct swapcluster *swc, bool now)
533 1.73 yamt {
534 1.73 yamt int slot;
535 1.73 yamt int nused;
536 1.73 yamt int nallocated;
537 1.73 yamt int error;
538 1.73 yamt
539 1.73 yamt if (swc->swc_slot == 0) {
540 1.73 yamt return;
541 1.73 yamt }
542 1.73 yamt KASSERT(swc->swc_nused <= swc->swc_nallocated);
543 1.73 yamt
544 1.73 yamt slot = swc->swc_slot;
545 1.73 yamt nused = swc->swc_nused;
546 1.73 yamt nallocated = swc->swc_nallocated;
547 1.73 yamt
548 1.73 yamt /*
549 1.73 yamt * if this is the final pageout we could have a few
550 1.73 yamt * unused swap blocks. if so, free them now.
551 1.73 yamt */
552 1.73 yamt
553 1.73 yamt if (nused < nallocated) {
554 1.73 yamt if (!now) {
555 1.73 yamt return;
556 1.73 yamt }
557 1.73 yamt uvm_swap_free(slot + nused, nallocated - nused);
558 1.73 yamt }
559 1.73 yamt
560 1.73 yamt /*
561 1.73 yamt * now start the pageout.
562 1.73 yamt */
563 1.73 yamt
564 1.91 yamt if (nused > 0) {
565 1.91 yamt uvmexp.pdpageouts++;
566 1.91 yamt uvm_pageout_start(nused);
567 1.91 yamt error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
568 1.92 yamt KASSERT(error == 0 || error == ENOMEM);
569 1.91 yamt }
570 1.73 yamt
571 1.73 yamt /*
572 1.73 yamt * zero swslot to indicate that we are
573 1.73 yamt * no longer building a swap-backed cluster.
574 1.73 yamt */
575 1.73 yamt
576 1.73 yamt swc->swc_slot = 0;
577 1.89 ad swc->swc_nused = 0;
578 1.89 ad }
579 1.89 ad
580 1.89 ad static int
581 1.89 ad swapcluster_nused(struct swapcluster *swc)
582 1.89 ad {
583 1.89 ad
584 1.89 ad return swc->swc_nused;
585 1.73 yamt }
586 1.77 yamt
587 1.77 yamt /*
588 1.77 yamt * uvmpd_dropswap: free any swap allocated to this page.
589 1.77 yamt *
590 1.77 yamt * => called with owner locked.
591 1.84 thorpej * => return true if a page had an associated slot.
592 1.77 yamt */
593 1.77 yamt
594 1.83 thorpej static bool
595 1.77 yamt uvmpd_dropswap(struct vm_page *pg)
596 1.77 yamt {
597 1.84 thorpej bool result = false;
598 1.77 yamt struct vm_anon *anon = pg->uanon;
599 1.77 yamt
600 1.77 yamt if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
601 1.77 yamt uvm_swap_free(anon->an_swslot, 1);
602 1.77 yamt anon->an_swslot = 0;
603 1.77 yamt pg->flags &= ~PG_CLEAN;
604 1.84 thorpej result = true;
605 1.77 yamt } else if (pg->pqflags & PQ_AOBJ) {
606 1.77 yamt int slot = uao_set_swslot(pg->uobject,
607 1.77 yamt pg->offset >> PAGE_SHIFT, 0);
608 1.77 yamt if (slot) {
609 1.77 yamt uvm_swap_free(slot, 1);
610 1.77 yamt pg->flags &= ~PG_CLEAN;
611 1.84 thorpej result = true;
612 1.77 yamt }
613 1.77 yamt }
614 1.77 yamt
615 1.77 yamt return result;
616 1.77 yamt }
617 1.77 yamt
618 1.77 yamt /*
619 1.77 yamt * uvmpd_trydropswap: try to free any swap allocated to this page.
620 1.77 yamt *
621 1.84 thorpej * => return true if a slot is successfully freed.
622 1.77 yamt */
623 1.77 yamt
624 1.83 thorpej bool
625 1.77 yamt uvmpd_trydropswap(struct vm_page *pg)
626 1.77 yamt {
627 1.89 ad kmutex_t *slock;
628 1.83 thorpej bool result;
629 1.77 yamt
630 1.77 yamt if ((pg->flags & PG_BUSY) != 0) {
631 1.84 thorpej return false;
632 1.77 yamt }
633 1.77 yamt
634 1.77 yamt /*
635 1.77 yamt * lock the page's owner.
636 1.77 yamt */
637 1.77 yamt
638 1.77 yamt slock = uvmpd_trylockowner(pg);
639 1.77 yamt if (slock == NULL) {
640 1.84 thorpej return false;
641 1.77 yamt }
642 1.77 yamt
643 1.77 yamt /*
644 1.77 yamt * skip this page if it's busy.
645 1.77 yamt */
646 1.77 yamt
647 1.77 yamt if ((pg->flags & PG_BUSY) != 0) {
648 1.89 ad mutex_exit(slock);
649 1.84 thorpej return false;
650 1.77 yamt }
651 1.77 yamt
652 1.77 yamt result = uvmpd_dropswap(pg);
653 1.77 yamt
654 1.89 ad mutex_exit(slock);
655 1.77 yamt
656 1.77 yamt return result;
657 1.77 yamt }
658 1.77 yamt
659 1.73 yamt #endif /* defined(VMSWAP) */
660 1.73 yamt
661 1.1 mrg /*
662 1.77 yamt * uvmpd_scan_queue: scan an replace candidate list for pages
663 1.77 yamt * to clean or free.
664 1.1 mrg *
665 1.1 mrg * => called with page queues locked
666 1.1 mrg * => we work on meeting our free target by converting inactive pages
667 1.1 mrg * into free pages.
668 1.1 mrg * => we handle the building of swap-backed clusters
669 1.1 mrg */
670 1.1 mrg
671 1.65 thorpej static void
672 1.77 yamt uvmpd_scan_queue(void)
673 1.8 mrg {
674 1.77 yamt struct vm_page *p;
675 1.8 mrg struct uvm_object *uobj;
676 1.37 chs struct vm_anon *anon;
677 1.68 yamt #if defined(VMSWAP)
678 1.73 yamt struct swapcluster swc;
679 1.68 yamt #endif /* defined(VMSWAP) */
680 1.77 yamt int dirtyreacts;
681 1.89 ad int lockownerfail;
682 1.89 ad kmutex_t *slock;
683 1.77 yamt UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
684 1.1 mrg
685 1.8 mrg /*
686 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
687 1.24 chs * to stay in the loop while we have a page to scan or we have
688 1.8 mrg * a swap-cluster to build.
689 1.8 mrg */
690 1.24 chs
691 1.73 yamt #if defined(VMSWAP)
692 1.73 yamt swapcluster_init(&swc);
693 1.73 yamt #endif /* defined(VMSWAP) */
694 1.77 yamt
695 1.14 chs dirtyreacts = 0;
696 1.89 ad lockownerfail = 0;
697 1.77 yamt uvmpdpol_scaninit();
698 1.43 chs
699 1.77 yamt while (/* CONSTCOND */ 1) {
700 1.24 chs
701 1.73 yamt /*
702 1.73 yamt * see if we've met the free target.
703 1.73 yamt */
704 1.73 yamt
705 1.89 ad if (uvmexp.free + uvmexp.paging
706 1.89 ad #if defined(VMSWAP)
707 1.89 ad + swapcluster_nused(&swc)
708 1.89 ad #endif /* defined(VMSWAP) */
709 1.89 ad >= uvmexp.freetarg << 2 ||
710 1.73 yamt dirtyreacts == UVMPD_NUMDIRTYREACTS) {
711 1.73 yamt UVMHIST_LOG(pdhist," met free target: "
712 1.73 yamt "exit loop", 0, 0, 0, 0);
713 1.73 yamt break;
714 1.73 yamt }
715 1.24 chs
716 1.77 yamt p = uvmpdpol_selectvictim();
717 1.77 yamt if (p == NULL) {
718 1.77 yamt break;
719 1.77 yamt }
720 1.77 yamt KASSERT(uvmpdpol_pageisqueued_p(p));
721 1.77 yamt KASSERT(p->wire_count == 0);
722 1.77 yamt
723 1.73 yamt /*
724 1.73 yamt * we are below target and have a new page to consider.
725 1.73 yamt */
726 1.30 chs
727 1.73 yamt anon = p->uanon;
728 1.73 yamt uobj = p->uobject;
729 1.8 mrg
730 1.73 yamt /*
731 1.73 yamt * first we attempt to lock the object that this page
732 1.73 yamt * belongs to. if our attempt fails we skip on to
733 1.73 yamt * the next page (no harm done). it is important to
734 1.73 yamt * "try" locking the object as we are locking in the
735 1.73 yamt * wrong order (pageq -> object) and we don't want to
736 1.73 yamt * deadlock.
737 1.73 yamt *
738 1.73 yamt * the only time we expect to see an ownerless page
739 1.73 yamt * (i.e. a page with no uobject and !PQ_ANON) is if an
740 1.73 yamt * anon has loaned a page from a uvm_object and the
741 1.73 yamt * uvm_object has dropped the ownership. in that
742 1.73 yamt * case, the anon can "take over" the loaned page
743 1.73 yamt * and make it its own.
744 1.73 yamt */
745 1.30 chs
746 1.76 yamt slock = uvmpd_trylockowner(p);
747 1.76 yamt if (slock == NULL) {
748 1.89 ad /*
749 1.89 ad * yield cpu to make a chance for an LWP holding
750 1.89 ad * the lock run. otherwise we can busy-loop too long
751 1.89 ad * if the page queue is filled with a lot of pages
752 1.89 ad * from few objects.
753 1.89 ad */
754 1.89 ad lockownerfail++;
755 1.89 ad if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
756 1.89 ad mutex_exit(&uvm_pageqlock);
757 1.89 ad /* XXX Better than yielding but inadequate. */
758 1.89 ad kpause("livelock", false, 1, NULL);
759 1.89 ad mutex_enter(&uvm_pageqlock);
760 1.89 ad lockownerfail = 0;
761 1.89 ad }
762 1.76 yamt continue;
763 1.76 yamt }
764 1.76 yamt if (p->flags & PG_BUSY) {
765 1.89 ad mutex_exit(slock);
766 1.76 yamt uvmexp.pdbusy++;
767 1.76 yamt continue;
768 1.76 yamt }
769 1.76 yamt
770 1.73 yamt /* does the page belong to an object? */
771 1.73 yamt if (uobj != NULL) {
772 1.73 yamt uvmexp.pdobscan++;
773 1.73 yamt } else {
774 1.73 yamt #if defined(VMSWAP)
775 1.73 yamt KASSERT(anon != NULL);
776 1.73 yamt uvmexp.pdanscan++;
777 1.68 yamt #else /* defined(VMSWAP) */
778 1.73 yamt panic("%s: anon", __func__);
779 1.68 yamt #endif /* defined(VMSWAP) */
780 1.73 yamt }
781 1.8 mrg
782 1.37 chs
783 1.73 yamt /*
784 1.73 yamt * we now have the object and the page queues locked.
785 1.73 yamt * if the page is not swap-backed, call the object's
786 1.73 yamt * pager to flush and free the page.
787 1.73 yamt */
788 1.37 chs
789 1.69 yamt #if defined(READAHEAD_STATS)
790 1.77 yamt if ((p->pqflags & PQ_READAHEAD) != 0) {
791 1.77 yamt p->pqflags &= ~PQ_READAHEAD;
792 1.73 yamt uvm_ra_miss.ev_count++;
793 1.73 yamt }
794 1.69 yamt #endif /* defined(READAHEAD_STATS) */
795 1.69 yamt
796 1.73 yamt if ((p->pqflags & PQ_SWAPBACKED) == 0) {
797 1.82 alc KASSERT(uobj != NULL);
798 1.89 ad mutex_exit(&uvm_pageqlock);
799 1.73 yamt (void) (uobj->pgops->pgo_put)(uobj, p->offset,
800 1.73 yamt p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
801 1.89 ad mutex_enter(&uvm_pageqlock);
802 1.73 yamt continue;
803 1.73 yamt }
804 1.37 chs
805 1.73 yamt /*
806 1.73 yamt * the page is swap-backed. remove all the permissions
807 1.73 yamt * from the page so we can sync the modified info
808 1.73 yamt * without any race conditions. if the page is clean
809 1.73 yamt * we can free it now and continue.
810 1.73 yamt */
811 1.8 mrg
812 1.73 yamt pmap_page_protect(p, VM_PROT_NONE);
813 1.73 yamt if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
814 1.73 yamt p->flags &= ~(PG_CLEAN);
815 1.73 yamt }
816 1.73 yamt if (p->flags & PG_CLEAN) {
817 1.73 yamt int slot;
818 1.73 yamt int pageidx;
819 1.73 yamt
820 1.73 yamt pageidx = p->offset >> PAGE_SHIFT;
821 1.73 yamt uvm_pagefree(p);
822 1.73 yamt uvmexp.pdfreed++;
823 1.8 mrg
824 1.8 mrg /*
825 1.73 yamt * for anons, we need to remove the page
826 1.73 yamt * from the anon ourselves. for aobjs,
827 1.73 yamt * pagefree did that for us.
828 1.8 mrg */
829 1.24 chs
830 1.73 yamt if (anon) {
831 1.73 yamt KASSERT(anon->an_swslot != 0);
832 1.73 yamt anon->an_page = NULL;
833 1.73 yamt slot = anon->an_swslot;
834 1.73 yamt } else {
835 1.73 yamt slot = uao_find_swslot(uobj, pageidx);
836 1.8 mrg }
837 1.89 ad mutex_exit(slock);
838 1.8 mrg
839 1.73 yamt if (slot > 0) {
840 1.73 yamt /* this page is now only in swap. */
841 1.87 ad mutex_enter(&uvm_swap_data_lock);
842 1.73 yamt KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
843 1.73 yamt uvmexp.swpgonly++;
844 1.87 ad mutex_exit(&uvm_swap_data_lock);
845 1.37 chs }
846 1.73 yamt continue;
847 1.73 yamt }
848 1.37 chs
849 1.77 yamt #if defined(VMSWAP)
850 1.73 yamt /*
851 1.73 yamt * this page is dirty, skip it if we'll have met our
852 1.73 yamt * free target when all the current pageouts complete.
853 1.73 yamt */
854 1.24 chs
855 1.73 yamt if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
856 1.89 ad mutex_exit(slock);
857 1.73 yamt continue;
858 1.73 yamt }
859 1.14 chs
860 1.73 yamt /*
861 1.73 yamt * free any swap space allocated to the page since
862 1.73 yamt * we'll have to write it again with its new data.
863 1.73 yamt */
864 1.24 chs
865 1.77 yamt uvmpd_dropswap(p);
866 1.14 chs
867 1.73 yamt /*
868 1.73 yamt * start new swap pageout cluster (if necessary).
869 1.93.4.1 snj *
870 1.93.4.1 snj * if swap is full reactivate this page so that
871 1.93.4.1 snj * we eventually cycle all pages through the
872 1.93.4.1 snj * inactive queue.
873 1.8 mrg */
874 1.24 chs
875 1.73 yamt if (swapcluster_allocslots(&swc)) {
876 1.93.4.1 snj dirtyreacts++;
877 1.93.4.1 snj uvm_pageactivate(p);
878 1.89 ad mutex_exit(slock);
879 1.73 yamt continue;
880 1.8 mrg }
881 1.8 mrg
882 1.8 mrg /*
883 1.73 yamt * at this point, we're definitely going reuse this
884 1.73 yamt * page. mark the page busy and delayed-free.
885 1.73 yamt * we should remove the page from the page queues
886 1.73 yamt * so we don't ever look at it again.
887 1.73 yamt * adjust counters and such.
888 1.8 mrg */
889 1.8 mrg
890 1.73 yamt p->flags |= PG_BUSY;
891 1.77 yamt UVM_PAGE_OWN(p, "scan_queue");
892 1.73 yamt
893 1.73 yamt p->flags |= PG_PAGEOUT;
894 1.73 yamt uvm_pagedequeue(p);
895 1.73 yamt
896 1.73 yamt uvmexp.pgswapout++;
897 1.89 ad mutex_exit(&uvm_pageqlock);
898 1.8 mrg
899 1.8 mrg /*
900 1.73 yamt * add the new page to the cluster.
901 1.8 mrg */
902 1.8 mrg
903 1.73 yamt if (swapcluster_add(&swc, p)) {
904 1.73 yamt p->flags &= ~(PG_BUSY|PG_PAGEOUT);
905 1.73 yamt UVM_PAGE_OWN(p, NULL);
906 1.89 ad mutex_enter(&uvm_pageqlock);
907 1.77 yamt dirtyreacts++;
908 1.73 yamt uvm_pageactivate(p);
909 1.89 ad mutex_exit(slock);
910 1.73 yamt continue;
911 1.73 yamt }
912 1.89 ad mutex_exit(slock);
913 1.73 yamt
914 1.84 thorpej swapcluster_flush(&swc, false);
915 1.89 ad mutex_enter(&uvm_pageqlock);
916 1.73 yamt
917 1.8 mrg /*
918 1.31 chs * the pageout is in progress. bump counters and set up
919 1.31 chs * for the next loop.
920 1.8 mrg */
921 1.8 mrg
922 1.31 chs uvmexp.pdpending++;
923 1.77 yamt
924 1.77 yamt #else /* defined(VMSWAP) */
925 1.77 yamt uvm_pageactivate(p);
926 1.89 ad mutex_exit(slock);
927 1.77 yamt #endif /* defined(VMSWAP) */
928 1.73 yamt }
929 1.73 yamt
930 1.73 yamt #if defined(VMSWAP)
931 1.89 ad mutex_exit(&uvm_pageqlock);
932 1.84 thorpej swapcluster_flush(&swc, true);
933 1.89 ad mutex_enter(&uvm_pageqlock);
934 1.68 yamt #endif /* defined(VMSWAP) */
935 1.1 mrg }
936 1.1 mrg
937 1.1 mrg /*
938 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
939 1.1 mrg *
940 1.1 mrg * => called with pageq's locked
941 1.1 mrg */
942 1.1 mrg
943 1.65 thorpej static void
944 1.37 chs uvmpd_scan(void)
945 1.1 mrg {
946 1.77 yamt int swap_shortage, pages_freed;
947 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
948 1.1 mrg
949 1.37 chs uvmexp.pdrevs++;
950 1.1 mrg
951 1.8 mrg /*
952 1.93 ad * work on meeting our targets. first we work on our free target
953 1.93 ad * by converting inactive pages into free pages. then we work on
954 1.93 ad * meeting our inactive target by converting active pages to
955 1.93 ad * inactive ones.
956 1.8 mrg */
957 1.8 mrg
958 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
959 1.8 mrg
960 1.14 chs pages_freed = uvmexp.pdfreed;
961 1.77 yamt uvmpd_scan_queue();
962 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
963 1.8 mrg
964 1.8 mrg /*
965 1.14 chs * detect if we're not going to be able to page anything out
966 1.14 chs * until we free some swap resources from active pages.
967 1.14 chs */
968 1.24 chs
969 1.14 chs swap_shortage = 0;
970 1.14 chs if (uvmexp.free < uvmexp.freetarg &&
971 1.52 pk uvmexp.swpginuse >= uvmexp.swpgavail &&
972 1.52 pk !uvm_swapisfull() &&
973 1.14 chs pages_freed == 0) {
974 1.14 chs swap_shortage = uvmexp.freetarg - uvmexp.free;
975 1.14 chs }
976 1.24 chs
977 1.77 yamt uvmpdpol_balancequeue(swap_shortage);
978 1.93 ad
979 1.93 ad /*
980 1.93 ad * swap out some processes if we are still below the minimum
981 1.93 ad * free target. we need to unlock the page queues for this.
982 1.93 ad */
983 1.93 ad
984 1.93 ad if (uvmexp.free < uvmexp.freemin && uvmexp.nswapdev != 0 &&
985 1.93 ad uvm.swapout_enabled) {
986 1.93 ad uvmexp.pdswout++;
987 1.93 ad UVMHIST_LOG(pdhist," free %d < min %d: swapout",
988 1.93 ad uvmexp.free, uvmexp.freemin, 0, 0);
989 1.93 ad mutex_exit(&uvm_pageqlock);
990 1.93 ad uvm_swapout_threads();
991 1.93 ad mutex_enter(&uvm_pageqlock);
992 1.93 ad
993 1.93 ad }
994 1.1 mrg }
995 1.62 yamt
996 1.62 yamt /*
997 1.62 yamt * uvm_reclaimable: decide whether to wait for pagedaemon.
998 1.62 yamt *
999 1.84 thorpej * => return true if it seems to be worth to do uvm_wait.
1000 1.62 yamt *
1001 1.62 yamt * XXX should be tunable.
1002 1.62 yamt * XXX should consider pools, etc?
1003 1.62 yamt */
1004 1.62 yamt
1005 1.83 thorpej bool
1006 1.62 yamt uvm_reclaimable(void)
1007 1.62 yamt {
1008 1.62 yamt int filepages;
1009 1.77 yamt int active, inactive;
1010 1.62 yamt
1011 1.62 yamt /*
1012 1.62 yamt * if swap is not full, no problem.
1013 1.62 yamt */
1014 1.62 yamt
1015 1.62 yamt if (!uvm_swapisfull()) {
1016 1.84 thorpej return true;
1017 1.62 yamt }
1018 1.62 yamt
1019 1.62 yamt /*
1020 1.62 yamt * file-backed pages can be reclaimed even when swap is full.
1021 1.62 yamt * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
1022 1.62 yamt *
1023 1.62 yamt * XXX assume the worst case, ie. all wired pages are file-backed.
1024 1.63 yamt *
1025 1.63 yamt * XXX should consider about other reclaimable memory.
1026 1.63 yamt * XXX ie. pools, traditional buffer cache.
1027 1.62 yamt */
1028 1.62 yamt
1029 1.62 yamt filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
1030 1.77 yamt uvm_estimatepageable(&active, &inactive);
1031 1.77 yamt if (filepages >= MIN((active + inactive) >> 4,
1032 1.62 yamt 5 * 1024 * 1024 >> PAGE_SHIFT)) {
1033 1.84 thorpej return true;
1034 1.62 yamt }
1035 1.62 yamt
1036 1.62 yamt /*
1037 1.62 yamt * kill the process, fail allocation, etc..
1038 1.62 yamt */
1039 1.62 yamt
1040 1.84 thorpej return false;
1041 1.62 yamt }
1042 1.77 yamt
1043 1.77 yamt void
1044 1.77 yamt uvm_estimatepageable(int *active, int *inactive)
1045 1.77 yamt {
1046 1.77 yamt
1047 1.77 yamt uvmpdpol_estimatepageable(active, inactive);
1048 1.77 yamt }
1049