uvm_pdaemon.c revision 1.98 1 1.98 haad /* $NetBSD: uvm_pdaemon.c,v 1.98 2009/08/10 23:17:29 haad Exp $ */
2 1.1 mrg
3 1.34 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.34 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.34 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.34 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.34 chs *
54 1.34 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.34 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.34 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_pdaemon.c: the page daemon
71 1.1 mrg */
72 1.42 lukem
73 1.42 lukem #include <sys/cdefs.h>
74 1.98 haad __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.98 2009/08/10 23:17:29 haad Exp $");
75 1.42 lukem
76 1.42 lukem #include "opt_uvmhist.h"
77 1.69 yamt #include "opt_readahead.h"
78 1.1 mrg
79 1.1 mrg #include <sys/param.h>
80 1.1 mrg #include <sys/proc.h>
81 1.1 mrg #include <sys/systm.h>
82 1.1 mrg #include <sys/kernel.h>
83 1.9 pk #include <sys/pool.h>
84 1.24 chs #include <sys/buf.h>
85 1.94 ad #include <sys/module.h>
86 1.96 ad #include <sys/atomic.h>
87 1.1 mrg
88 1.1 mrg #include <uvm/uvm.h>
89 1.77 yamt #include <uvm/uvm_pdpolicy.h>
90 1.1 mrg
91 1.1 mrg /*
92 1.45 wiz * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
93 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
94 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
95 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
96 1.14 chs */
97 1.14 chs
98 1.89 ad #define UVMPD_NUMDIRTYREACTS 16
99 1.14 chs
100 1.89 ad #define UVMPD_NUMTRYLOCKOWNER 16
101 1.14 chs
102 1.14 chs /*
103 1.1 mrg * local prototypes
104 1.1 mrg */
105 1.1 mrg
106 1.65 thorpej static void uvmpd_scan(void);
107 1.77 yamt static void uvmpd_scan_queue(void);
108 1.65 thorpej static void uvmpd_tune(void);
109 1.1 mrg
110 1.89 ad unsigned int uvm_pagedaemon_waiters;
111 1.89 ad
112 1.1 mrg /*
113 1.61 chs * XXX hack to avoid hangs when large processes fork.
114 1.61 chs */
115 1.96 ad u_int uvm_extrapages;
116 1.61 chs
117 1.98 haad static kmutex_t uvm_reclaim_lock;
118 1.98 haad
119 1.98 haad SLIST_HEAD(uvm_reclaim_hooks, uvm_reclaim_hook) uvm_reclaim_list;
120 1.98 haad
121 1.98 haad
122 1.61 chs /*
123 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
124 1.1 mrg *
125 1.1 mrg * => should be called with all locks released
126 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
127 1.1 mrg */
128 1.1 mrg
129 1.19 thorpej void
130 1.65 thorpej uvm_wait(const char *wmsg)
131 1.8 mrg {
132 1.8 mrg int timo = 0;
133 1.89 ad
134 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
135 1.1 mrg
136 1.8 mrg /*
137 1.8 mrg * check for page daemon going to sleep (waiting for itself)
138 1.8 mrg */
139 1.1 mrg
140 1.86 ad if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
141 1.8 mrg /*
142 1.8 mrg * now we have a problem: the pagedaemon wants to go to
143 1.8 mrg * sleep until it frees more memory. but how can it
144 1.8 mrg * free more memory if it is asleep? that is a deadlock.
145 1.8 mrg * we have two options:
146 1.8 mrg * [1] panic now
147 1.8 mrg * [2] put a timeout on the sleep, thus causing the
148 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
149 1.8 mrg *
150 1.8 mrg * note that option [2] will only help us if we get lucky
151 1.8 mrg * and some other process on the system breaks the deadlock
152 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
153 1.8 mrg * to continue). for now we panic if DEBUG is defined,
154 1.8 mrg * otherwise we hope for the best with option [2] (better
155 1.8 mrg * yet, this should never happen in the first place!).
156 1.8 mrg */
157 1.1 mrg
158 1.8 mrg printf("pagedaemon: deadlock detected!\n");
159 1.8 mrg timo = hz >> 3; /* set timeout */
160 1.1 mrg #if defined(DEBUG)
161 1.8 mrg /* DEBUG: panic so we can debug it */
162 1.8 mrg panic("pagedaemon deadlock");
163 1.1 mrg #endif
164 1.8 mrg }
165 1.1 mrg
166 1.89 ad uvm_pagedaemon_waiters++;
167 1.17 thorpej wakeup(&uvm.pagedaemon); /* wake the daemon! */
168 1.89 ad UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
169 1.1 mrg }
170 1.1 mrg
171 1.77 yamt /*
172 1.77 yamt * uvm_kick_pdaemon: perform checks to determine if we need to
173 1.77 yamt * give the pagedaemon a nudge, and do so if necessary.
174 1.89 ad *
175 1.89 ad * => called with uvm_fpageqlock held.
176 1.77 yamt */
177 1.77 yamt
178 1.77 yamt void
179 1.77 yamt uvm_kick_pdaemon(void)
180 1.77 yamt {
181 1.77 yamt
182 1.89 ad KASSERT(mutex_owned(&uvm_fpageqlock));
183 1.89 ad
184 1.77 yamt if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
185 1.77 yamt (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
186 1.77 yamt uvmpdpol_needsscan_p())) {
187 1.77 yamt wakeup(&uvm.pagedaemon);
188 1.77 yamt }
189 1.77 yamt }
190 1.1 mrg
191 1.1 mrg /*
192 1.1 mrg * uvmpd_tune: tune paging parameters
193 1.1 mrg *
194 1.1 mrg * => called when ever memory is added (or removed?) to the system
195 1.1 mrg * => caller must call with page queues locked
196 1.1 mrg */
197 1.1 mrg
198 1.65 thorpej static void
199 1.37 chs uvmpd_tune(void)
200 1.8 mrg {
201 1.95 ad int val;
202 1.95 ad
203 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
204 1.1 mrg
205 1.93 ad /*
206 1.93 ad * try to keep 0.5% of available RAM free, but limit to between
207 1.93 ad * 128k and 1024k per-CPU. XXX: what are these values good for?
208 1.93 ad */
209 1.95 ad val = uvmexp.npages / 200;
210 1.95 ad val = MAX(val, (128*1024) >> PAGE_SHIFT);
211 1.95 ad val = MIN(val, (1024*1024) >> PAGE_SHIFT);
212 1.95 ad val *= ncpu;
213 1.23 bjh21
214 1.23 bjh21 /* Make sure there's always a user page free. */
215 1.95 ad if (val < uvmexp.reserve_kernel + 1)
216 1.95 ad val = uvmexp.reserve_kernel + 1;
217 1.95 ad uvmexp.freemin = val;
218 1.95 ad
219 1.96 ad /* Calculate free target. */
220 1.95 ad val = (uvmexp.freemin * 4) / 3;
221 1.95 ad if (val <= uvmexp.freemin)
222 1.95 ad val = uvmexp.freemin + 1;
223 1.96 ad uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
224 1.61 chs
225 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
226 1.8 mrg UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
227 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
228 1.1 mrg }
229 1.1 mrg
230 1.1 mrg /*
231 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
232 1.1 mrg */
233 1.1 mrg
234 1.8 mrg void
235 1.80 yamt uvm_pageout(void *arg)
236 1.8 mrg {
237 1.60 enami int bufcnt, npages = 0;
238 1.61 chs int extrapages = 0;
239 1.88 ad struct pool *pp;
240 1.88 ad uint64_t where;
241 1.98 haad struct uvm_reclaim_hook *hook;
242 1.98 haad
243 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
244 1.24 chs
245 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
246 1.8 mrg
247 1.8 mrg /*
248 1.8 mrg * ensure correct priority and set paging parameters...
249 1.8 mrg */
250 1.8 mrg
251 1.86 ad uvm.pagedaemon_lwp = curlwp;
252 1.89 ad mutex_enter(&uvm_pageqlock);
253 1.8 mrg npages = uvmexp.npages;
254 1.8 mrg uvmpd_tune();
255 1.89 ad mutex_exit(&uvm_pageqlock);
256 1.8 mrg
257 1.8 mrg /*
258 1.8 mrg * main loop
259 1.8 mrg */
260 1.24 chs
261 1.24 chs for (;;) {
262 1.93 ad bool needsscan, needsfree;
263 1.24 chs
264 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
265 1.89 ad if (uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) {
266 1.89 ad UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
267 1.89 ad UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
268 1.89 ad &uvm_fpageqlock, false, "pgdaemon", 0);
269 1.89 ad uvmexp.pdwoke++;
270 1.89 ad UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
271 1.89 ad } else {
272 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
273 1.89 ad }
274 1.24 chs
275 1.8 mrg /*
276 1.24 chs * now lock page queues and recompute inactive count
277 1.8 mrg */
278 1.8 mrg
279 1.89 ad mutex_enter(&uvm_pageqlock);
280 1.61 chs if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
281 1.24 chs npages = uvmexp.npages;
282 1.61 chs extrapages = uvm_extrapages;
283 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
284 1.24 chs uvmpd_tune();
285 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
286 1.24 chs }
287 1.24 chs
288 1.77 yamt uvmpdpol_tune();
289 1.24 chs
290 1.60 enami /*
291 1.60 enami * Estimate a hint. Note that bufmem are returned to
292 1.60 enami * system only when entire pool page is empty.
293 1.60 enami */
294 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
295 1.60 enami bufcnt = uvmexp.freetarg - uvmexp.free;
296 1.60 enami if (bufcnt < 0)
297 1.60 enami bufcnt = 0;
298 1.60 enami
299 1.77 yamt UVMHIST_LOG(pdhist," free/ftarg=%d/%d",
300 1.77 yamt uvmexp.free, uvmexp.freetarg, 0,0);
301 1.8 mrg
302 1.93 ad needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
303 1.93 ad needsscan = needsfree || uvmpdpol_needsscan_p();
304 1.89 ad
305 1.8 mrg /*
306 1.24 chs * scan if needed
307 1.8 mrg */
308 1.97 ad if (needsscan) {
309 1.97 ad mutex_spin_exit(&uvm_fpageqlock);
310 1.24 chs uvmpd_scan();
311 1.97 ad mutex_spin_enter(&uvm_fpageqlock);
312 1.97 ad }
313 1.8 mrg
314 1.8 mrg /*
315 1.24 chs * if there's any free memory to be had,
316 1.24 chs * wake up any waiters.
317 1.8 mrg */
318 1.24 chs if (uvmexp.free > uvmexp.reserve_kernel ||
319 1.24 chs uvmexp.paging == 0) {
320 1.24 chs wakeup(&uvmexp.free);
321 1.89 ad uvm_pagedaemon_waiters = 0;
322 1.8 mrg }
323 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
324 1.1 mrg
325 1.8 mrg /*
326 1.24 chs * scan done. unlock page queues (the only lock we are holding)
327 1.8 mrg */
328 1.89 ad mutex_exit(&uvm_pageqlock);
329 1.38 chs
330 1.88 ad /*
331 1.93 ad * if we don't need free memory, we're done.
332 1.93 ad */
333 1.93 ad
334 1.93 ad if (!needsfree)
335 1.93 ad continue;
336 1.93 ad
337 1.93 ad /*
338 1.88 ad * start draining pool resources now that we're not
339 1.88 ad * holding any locks.
340 1.88 ad */
341 1.88 ad pool_drain_start(&pp, &where);
342 1.60 enami
343 1.38 chs /*
344 1.88 ad * kill unused metadata buffers.
345 1.38 chs */
346 1.89 ad mutex_enter(&bufcache_lock);
347 1.88 ad buf_drain(bufcnt << PAGE_SHIFT);
348 1.89 ad mutex_exit(&bufcache_lock);
349 1.57 jdolecek
350 1.98 haad mutex_enter(&uvm_reclaim_lock);
351 1.98 haad SLIST_FOREACH(hook, &uvm_reclaim_list, uvm_reclaim_next) {
352 1.98 haad (*hook->uvm_reclaim_hook)();
353 1.98 haad }
354 1.98 haad mutex_exit(&uvm_reclaim_lock);
355 1.98 haad
356 1.98 haad
357 1.57 jdolecek /*
358 1.88 ad * complete draining the pools.
359 1.88 ad */
360 1.88 ad pool_drain_end(pp, where);
361 1.24 chs }
362 1.24 chs /*NOTREACHED*/
363 1.24 chs }
364 1.24 chs
365 1.8 mrg
366 1.24 chs /*
367 1.81 yamt * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
368 1.24 chs */
369 1.8 mrg
370 1.24 chs void
371 1.81 yamt uvm_aiodone_worker(struct work *wk, void *dummy)
372 1.24 chs {
373 1.81 yamt struct buf *bp = (void *)wk;
374 1.9 pk
375 1.81 yamt KASSERT(&bp->b_work == wk);
376 1.8 mrg
377 1.81 yamt /*
378 1.81 yamt * process an i/o that's done.
379 1.81 yamt */
380 1.8 mrg
381 1.81 yamt (*bp->b_iodone)(bp);
382 1.89 ad }
383 1.89 ad
384 1.89 ad void
385 1.89 ad uvm_pageout_start(int npages)
386 1.89 ad {
387 1.89 ad
388 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
389 1.89 ad uvmexp.paging += npages;
390 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
391 1.89 ad }
392 1.89 ad
393 1.89 ad void
394 1.89 ad uvm_pageout_done(int npages)
395 1.89 ad {
396 1.89 ad
397 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
398 1.89 ad KASSERT(uvmexp.paging >= npages);
399 1.89 ad uvmexp.paging -= npages;
400 1.89 ad
401 1.89 ad /*
402 1.89 ad * wake up either of pagedaemon or LWPs waiting for it.
403 1.89 ad */
404 1.89 ad
405 1.89 ad if (uvmexp.free <= uvmexp.reserve_kernel) {
406 1.81 yamt wakeup(&uvm.pagedaemon);
407 1.81 yamt } else {
408 1.81 yamt wakeup(&uvmexp.free);
409 1.89 ad uvm_pagedaemon_waiters = 0;
410 1.8 mrg }
411 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
412 1.1 mrg }
413 1.1 mrg
414 1.76 yamt /*
415 1.76 yamt * uvmpd_trylockowner: trylock the page's owner.
416 1.76 yamt *
417 1.76 yamt * => called with pageq locked.
418 1.76 yamt * => resolve orphaned O->A loaned page.
419 1.89 ad * => return the locked mutex on success. otherwise, return NULL.
420 1.76 yamt */
421 1.76 yamt
422 1.89 ad kmutex_t *
423 1.76 yamt uvmpd_trylockowner(struct vm_page *pg)
424 1.76 yamt {
425 1.76 yamt struct uvm_object *uobj = pg->uobject;
426 1.89 ad kmutex_t *slock;
427 1.89 ad
428 1.89 ad KASSERT(mutex_owned(&uvm_pageqlock));
429 1.76 yamt
430 1.76 yamt if (uobj != NULL) {
431 1.76 yamt slock = &uobj->vmobjlock;
432 1.76 yamt } else {
433 1.76 yamt struct vm_anon *anon = pg->uanon;
434 1.76 yamt
435 1.76 yamt KASSERT(anon != NULL);
436 1.76 yamt slock = &anon->an_lock;
437 1.76 yamt }
438 1.76 yamt
439 1.89 ad if (!mutex_tryenter(slock)) {
440 1.76 yamt return NULL;
441 1.76 yamt }
442 1.76 yamt
443 1.76 yamt if (uobj == NULL) {
444 1.76 yamt
445 1.76 yamt /*
446 1.76 yamt * set PQ_ANON if it isn't set already.
447 1.76 yamt */
448 1.76 yamt
449 1.76 yamt if ((pg->pqflags & PQ_ANON) == 0) {
450 1.76 yamt KASSERT(pg->loan_count > 0);
451 1.76 yamt pg->loan_count--;
452 1.76 yamt pg->pqflags |= PQ_ANON;
453 1.76 yamt /* anon now owns it */
454 1.76 yamt }
455 1.76 yamt }
456 1.76 yamt
457 1.76 yamt return slock;
458 1.76 yamt }
459 1.76 yamt
460 1.73 yamt #if defined(VMSWAP)
461 1.73 yamt struct swapcluster {
462 1.73 yamt int swc_slot;
463 1.73 yamt int swc_nallocated;
464 1.73 yamt int swc_nused;
465 1.75 yamt struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
466 1.73 yamt };
467 1.73 yamt
468 1.73 yamt static void
469 1.73 yamt swapcluster_init(struct swapcluster *swc)
470 1.73 yamt {
471 1.73 yamt
472 1.73 yamt swc->swc_slot = 0;
473 1.89 ad swc->swc_nused = 0;
474 1.73 yamt }
475 1.73 yamt
476 1.73 yamt static int
477 1.73 yamt swapcluster_allocslots(struct swapcluster *swc)
478 1.73 yamt {
479 1.73 yamt int slot;
480 1.73 yamt int npages;
481 1.73 yamt
482 1.73 yamt if (swc->swc_slot != 0) {
483 1.73 yamt return 0;
484 1.73 yamt }
485 1.73 yamt
486 1.73 yamt /* Even with strange MAXPHYS, the shift
487 1.73 yamt implicitly rounds down to a page. */
488 1.73 yamt npages = MAXPHYS >> PAGE_SHIFT;
489 1.84 thorpej slot = uvm_swap_alloc(&npages, true);
490 1.73 yamt if (slot == 0) {
491 1.73 yamt return ENOMEM;
492 1.73 yamt }
493 1.73 yamt swc->swc_slot = slot;
494 1.73 yamt swc->swc_nallocated = npages;
495 1.73 yamt swc->swc_nused = 0;
496 1.73 yamt
497 1.73 yamt return 0;
498 1.73 yamt }
499 1.73 yamt
500 1.73 yamt static int
501 1.73 yamt swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
502 1.73 yamt {
503 1.73 yamt int slot;
504 1.73 yamt struct uvm_object *uobj;
505 1.73 yamt
506 1.73 yamt KASSERT(swc->swc_slot != 0);
507 1.73 yamt KASSERT(swc->swc_nused < swc->swc_nallocated);
508 1.73 yamt KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
509 1.73 yamt
510 1.73 yamt slot = swc->swc_slot + swc->swc_nused;
511 1.73 yamt uobj = pg->uobject;
512 1.73 yamt if (uobj == NULL) {
513 1.89 ad KASSERT(mutex_owned(&pg->uanon->an_lock));
514 1.73 yamt pg->uanon->an_swslot = slot;
515 1.73 yamt } else {
516 1.73 yamt int result;
517 1.73 yamt
518 1.89 ad KASSERT(mutex_owned(&uobj->vmobjlock));
519 1.73 yamt result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
520 1.73 yamt if (result == -1) {
521 1.73 yamt return ENOMEM;
522 1.73 yamt }
523 1.73 yamt }
524 1.73 yamt swc->swc_pages[swc->swc_nused] = pg;
525 1.73 yamt swc->swc_nused++;
526 1.73 yamt
527 1.73 yamt return 0;
528 1.73 yamt }
529 1.73 yamt
530 1.73 yamt static void
531 1.83 thorpej swapcluster_flush(struct swapcluster *swc, bool now)
532 1.73 yamt {
533 1.73 yamt int slot;
534 1.73 yamt int nused;
535 1.73 yamt int nallocated;
536 1.73 yamt int error;
537 1.73 yamt
538 1.73 yamt if (swc->swc_slot == 0) {
539 1.73 yamt return;
540 1.73 yamt }
541 1.73 yamt KASSERT(swc->swc_nused <= swc->swc_nallocated);
542 1.73 yamt
543 1.73 yamt slot = swc->swc_slot;
544 1.73 yamt nused = swc->swc_nused;
545 1.73 yamt nallocated = swc->swc_nallocated;
546 1.73 yamt
547 1.73 yamt /*
548 1.73 yamt * if this is the final pageout we could have a few
549 1.73 yamt * unused swap blocks. if so, free them now.
550 1.73 yamt */
551 1.73 yamt
552 1.73 yamt if (nused < nallocated) {
553 1.73 yamt if (!now) {
554 1.73 yamt return;
555 1.73 yamt }
556 1.73 yamt uvm_swap_free(slot + nused, nallocated - nused);
557 1.73 yamt }
558 1.73 yamt
559 1.73 yamt /*
560 1.73 yamt * now start the pageout.
561 1.73 yamt */
562 1.73 yamt
563 1.91 yamt if (nused > 0) {
564 1.91 yamt uvmexp.pdpageouts++;
565 1.91 yamt uvm_pageout_start(nused);
566 1.91 yamt error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
567 1.92 yamt KASSERT(error == 0 || error == ENOMEM);
568 1.91 yamt }
569 1.73 yamt
570 1.73 yamt /*
571 1.73 yamt * zero swslot to indicate that we are
572 1.73 yamt * no longer building a swap-backed cluster.
573 1.73 yamt */
574 1.73 yamt
575 1.73 yamt swc->swc_slot = 0;
576 1.89 ad swc->swc_nused = 0;
577 1.89 ad }
578 1.89 ad
579 1.89 ad static int
580 1.89 ad swapcluster_nused(struct swapcluster *swc)
581 1.89 ad {
582 1.89 ad
583 1.89 ad return swc->swc_nused;
584 1.73 yamt }
585 1.77 yamt
586 1.77 yamt /*
587 1.77 yamt * uvmpd_dropswap: free any swap allocated to this page.
588 1.77 yamt *
589 1.77 yamt * => called with owner locked.
590 1.84 thorpej * => return true if a page had an associated slot.
591 1.77 yamt */
592 1.77 yamt
593 1.83 thorpej static bool
594 1.77 yamt uvmpd_dropswap(struct vm_page *pg)
595 1.77 yamt {
596 1.84 thorpej bool result = false;
597 1.77 yamt struct vm_anon *anon = pg->uanon;
598 1.77 yamt
599 1.77 yamt if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
600 1.77 yamt uvm_swap_free(anon->an_swslot, 1);
601 1.77 yamt anon->an_swslot = 0;
602 1.77 yamt pg->flags &= ~PG_CLEAN;
603 1.84 thorpej result = true;
604 1.77 yamt } else if (pg->pqflags & PQ_AOBJ) {
605 1.77 yamt int slot = uao_set_swslot(pg->uobject,
606 1.77 yamt pg->offset >> PAGE_SHIFT, 0);
607 1.77 yamt if (slot) {
608 1.77 yamt uvm_swap_free(slot, 1);
609 1.77 yamt pg->flags &= ~PG_CLEAN;
610 1.84 thorpej result = true;
611 1.77 yamt }
612 1.77 yamt }
613 1.77 yamt
614 1.77 yamt return result;
615 1.77 yamt }
616 1.77 yamt
617 1.77 yamt /*
618 1.77 yamt * uvmpd_trydropswap: try to free any swap allocated to this page.
619 1.77 yamt *
620 1.84 thorpej * => return true if a slot is successfully freed.
621 1.77 yamt */
622 1.77 yamt
623 1.83 thorpej bool
624 1.77 yamt uvmpd_trydropswap(struct vm_page *pg)
625 1.77 yamt {
626 1.89 ad kmutex_t *slock;
627 1.83 thorpej bool result;
628 1.77 yamt
629 1.77 yamt if ((pg->flags & PG_BUSY) != 0) {
630 1.84 thorpej return false;
631 1.77 yamt }
632 1.77 yamt
633 1.77 yamt /*
634 1.77 yamt * lock the page's owner.
635 1.77 yamt */
636 1.77 yamt
637 1.77 yamt slock = uvmpd_trylockowner(pg);
638 1.77 yamt if (slock == NULL) {
639 1.84 thorpej return false;
640 1.77 yamt }
641 1.77 yamt
642 1.77 yamt /*
643 1.77 yamt * skip this page if it's busy.
644 1.77 yamt */
645 1.77 yamt
646 1.77 yamt if ((pg->flags & PG_BUSY) != 0) {
647 1.89 ad mutex_exit(slock);
648 1.84 thorpej return false;
649 1.77 yamt }
650 1.77 yamt
651 1.77 yamt result = uvmpd_dropswap(pg);
652 1.77 yamt
653 1.89 ad mutex_exit(slock);
654 1.77 yamt
655 1.77 yamt return result;
656 1.77 yamt }
657 1.77 yamt
658 1.73 yamt #endif /* defined(VMSWAP) */
659 1.73 yamt
660 1.1 mrg /*
661 1.77 yamt * uvmpd_scan_queue: scan an replace candidate list for pages
662 1.77 yamt * to clean or free.
663 1.1 mrg *
664 1.1 mrg * => called with page queues locked
665 1.1 mrg * => we work on meeting our free target by converting inactive pages
666 1.1 mrg * into free pages.
667 1.1 mrg * => we handle the building of swap-backed clusters
668 1.1 mrg */
669 1.1 mrg
670 1.65 thorpej static void
671 1.77 yamt uvmpd_scan_queue(void)
672 1.8 mrg {
673 1.77 yamt struct vm_page *p;
674 1.8 mrg struct uvm_object *uobj;
675 1.37 chs struct vm_anon *anon;
676 1.68 yamt #if defined(VMSWAP)
677 1.73 yamt struct swapcluster swc;
678 1.68 yamt #endif /* defined(VMSWAP) */
679 1.77 yamt int dirtyreacts;
680 1.89 ad int lockownerfail;
681 1.89 ad kmutex_t *slock;
682 1.77 yamt UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
683 1.1 mrg
684 1.8 mrg /*
685 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
686 1.24 chs * to stay in the loop while we have a page to scan or we have
687 1.8 mrg * a swap-cluster to build.
688 1.8 mrg */
689 1.24 chs
690 1.73 yamt #if defined(VMSWAP)
691 1.73 yamt swapcluster_init(&swc);
692 1.73 yamt #endif /* defined(VMSWAP) */
693 1.77 yamt
694 1.14 chs dirtyreacts = 0;
695 1.89 ad lockownerfail = 0;
696 1.77 yamt uvmpdpol_scaninit();
697 1.43 chs
698 1.77 yamt while (/* CONSTCOND */ 1) {
699 1.24 chs
700 1.73 yamt /*
701 1.73 yamt * see if we've met the free target.
702 1.73 yamt */
703 1.73 yamt
704 1.89 ad if (uvmexp.free + uvmexp.paging
705 1.89 ad #if defined(VMSWAP)
706 1.89 ad + swapcluster_nused(&swc)
707 1.89 ad #endif /* defined(VMSWAP) */
708 1.89 ad >= uvmexp.freetarg << 2 ||
709 1.73 yamt dirtyreacts == UVMPD_NUMDIRTYREACTS) {
710 1.73 yamt UVMHIST_LOG(pdhist," met free target: "
711 1.73 yamt "exit loop", 0, 0, 0, 0);
712 1.73 yamt break;
713 1.73 yamt }
714 1.24 chs
715 1.77 yamt p = uvmpdpol_selectvictim();
716 1.77 yamt if (p == NULL) {
717 1.77 yamt break;
718 1.77 yamt }
719 1.77 yamt KASSERT(uvmpdpol_pageisqueued_p(p));
720 1.77 yamt KASSERT(p->wire_count == 0);
721 1.77 yamt
722 1.73 yamt /*
723 1.73 yamt * we are below target and have a new page to consider.
724 1.73 yamt */
725 1.30 chs
726 1.73 yamt anon = p->uanon;
727 1.73 yamt uobj = p->uobject;
728 1.8 mrg
729 1.73 yamt /*
730 1.73 yamt * first we attempt to lock the object that this page
731 1.73 yamt * belongs to. if our attempt fails we skip on to
732 1.73 yamt * the next page (no harm done). it is important to
733 1.73 yamt * "try" locking the object as we are locking in the
734 1.73 yamt * wrong order (pageq -> object) and we don't want to
735 1.73 yamt * deadlock.
736 1.73 yamt *
737 1.73 yamt * the only time we expect to see an ownerless page
738 1.73 yamt * (i.e. a page with no uobject and !PQ_ANON) is if an
739 1.73 yamt * anon has loaned a page from a uvm_object and the
740 1.73 yamt * uvm_object has dropped the ownership. in that
741 1.73 yamt * case, the anon can "take over" the loaned page
742 1.73 yamt * and make it its own.
743 1.73 yamt */
744 1.30 chs
745 1.76 yamt slock = uvmpd_trylockowner(p);
746 1.76 yamt if (slock == NULL) {
747 1.89 ad /*
748 1.89 ad * yield cpu to make a chance for an LWP holding
749 1.89 ad * the lock run. otherwise we can busy-loop too long
750 1.89 ad * if the page queue is filled with a lot of pages
751 1.89 ad * from few objects.
752 1.89 ad */
753 1.89 ad lockownerfail++;
754 1.89 ad if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
755 1.89 ad mutex_exit(&uvm_pageqlock);
756 1.89 ad /* XXX Better than yielding but inadequate. */
757 1.89 ad kpause("livelock", false, 1, NULL);
758 1.89 ad mutex_enter(&uvm_pageqlock);
759 1.89 ad lockownerfail = 0;
760 1.89 ad }
761 1.76 yamt continue;
762 1.76 yamt }
763 1.76 yamt if (p->flags & PG_BUSY) {
764 1.89 ad mutex_exit(slock);
765 1.76 yamt uvmexp.pdbusy++;
766 1.76 yamt continue;
767 1.76 yamt }
768 1.76 yamt
769 1.73 yamt /* does the page belong to an object? */
770 1.73 yamt if (uobj != NULL) {
771 1.73 yamt uvmexp.pdobscan++;
772 1.73 yamt } else {
773 1.73 yamt #if defined(VMSWAP)
774 1.73 yamt KASSERT(anon != NULL);
775 1.73 yamt uvmexp.pdanscan++;
776 1.68 yamt #else /* defined(VMSWAP) */
777 1.73 yamt panic("%s: anon", __func__);
778 1.68 yamt #endif /* defined(VMSWAP) */
779 1.73 yamt }
780 1.8 mrg
781 1.37 chs
782 1.73 yamt /*
783 1.73 yamt * we now have the object and the page queues locked.
784 1.73 yamt * if the page is not swap-backed, call the object's
785 1.73 yamt * pager to flush and free the page.
786 1.73 yamt */
787 1.37 chs
788 1.69 yamt #if defined(READAHEAD_STATS)
789 1.77 yamt if ((p->pqflags & PQ_READAHEAD) != 0) {
790 1.77 yamt p->pqflags &= ~PQ_READAHEAD;
791 1.73 yamt uvm_ra_miss.ev_count++;
792 1.73 yamt }
793 1.69 yamt #endif /* defined(READAHEAD_STATS) */
794 1.69 yamt
795 1.73 yamt if ((p->pqflags & PQ_SWAPBACKED) == 0) {
796 1.82 alc KASSERT(uobj != NULL);
797 1.89 ad mutex_exit(&uvm_pageqlock);
798 1.73 yamt (void) (uobj->pgops->pgo_put)(uobj, p->offset,
799 1.73 yamt p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
800 1.89 ad mutex_enter(&uvm_pageqlock);
801 1.73 yamt continue;
802 1.73 yamt }
803 1.37 chs
804 1.73 yamt /*
805 1.73 yamt * the page is swap-backed. remove all the permissions
806 1.73 yamt * from the page so we can sync the modified info
807 1.73 yamt * without any race conditions. if the page is clean
808 1.73 yamt * we can free it now and continue.
809 1.73 yamt */
810 1.8 mrg
811 1.73 yamt pmap_page_protect(p, VM_PROT_NONE);
812 1.73 yamt if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
813 1.73 yamt p->flags &= ~(PG_CLEAN);
814 1.73 yamt }
815 1.73 yamt if (p->flags & PG_CLEAN) {
816 1.73 yamt int slot;
817 1.73 yamt int pageidx;
818 1.73 yamt
819 1.73 yamt pageidx = p->offset >> PAGE_SHIFT;
820 1.73 yamt uvm_pagefree(p);
821 1.73 yamt uvmexp.pdfreed++;
822 1.8 mrg
823 1.8 mrg /*
824 1.73 yamt * for anons, we need to remove the page
825 1.73 yamt * from the anon ourselves. for aobjs,
826 1.73 yamt * pagefree did that for us.
827 1.8 mrg */
828 1.24 chs
829 1.73 yamt if (anon) {
830 1.73 yamt KASSERT(anon->an_swslot != 0);
831 1.73 yamt anon->an_page = NULL;
832 1.73 yamt slot = anon->an_swslot;
833 1.73 yamt } else {
834 1.73 yamt slot = uao_find_swslot(uobj, pageidx);
835 1.8 mrg }
836 1.89 ad mutex_exit(slock);
837 1.8 mrg
838 1.73 yamt if (slot > 0) {
839 1.73 yamt /* this page is now only in swap. */
840 1.87 ad mutex_enter(&uvm_swap_data_lock);
841 1.73 yamt KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
842 1.73 yamt uvmexp.swpgonly++;
843 1.87 ad mutex_exit(&uvm_swap_data_lock);
844 1.37 chs }
845 1.73 yamt continue;
846 1.73 yamt }
847 1.37 chs
848 1.77 yamt #if defined(VMSWAP)
849 1.73 yamt /*
850 1.73 yamt * this page is dirty, skip it if we'll have met our
851 1.73 yamt * free target when all the current pageouts complete.
852 1.73 yamt */
853 1.24 chs
854 1.73 yamt if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
855 1.89 ad mutex_exit(slock);
856 1.73 yamt continue;
857 1.73 yamt }
858 1.14 chs
859 1.73 yamt /*
860 1.73 yamt * free any swap space allocated to the page since
861 1.73 yamt * we'll have to write it again with its new data.
862 1.73 yamt */
863 1.24 chs
864 1.77 yamt uvmpd_dropswap(p);
865 1.14 chs
866 1.73 yamt /*
867 1.97 ad * start new swap pageout cluster (if necessary).
868 1.97 ad *
869 1.97 ad * if swap is full reactivate this page so that
870 1.97 ad * we eventually cycle all pages through the
871 1.97 ad * inactive queue.
872 1.73 yamt */
873 1.68 yamt
874 1.97 ad if (swapcluster_allocslots(&swc)) {
875 1.73 yamt dirtyreacts++;
876 1.73 yamt uvm_pageactivate(p);
877 1.89 ad mutex_exit(slock);
878 1.73 yamt continue;
879 1.8 mrg }
880 1.8 mrg
881 1.8 mrg /*
882 1.73 yamt * at this point, we're definitely going reuse this
883 1.73 yamt * page. mark the page busy and delayed-free.
884 1.73 yamt * we should remove the page from the page queues
885 1.73 yamt * so we don't ever look at it again.
886 1.73 yamt * adjust counters and such.
887 1.8 mrg */
888 1.8 mrg
889 1.73 yamt p->flags |= PG_BUSY;
890 1.77 yamt UVM_PAGE_OWN(p, "scan_queue");
891 1.73 yamt
892 1.73 yamt p->flags |= PG_PAGEOUT;
893 1.73 yamt uvm_pagedequeue(p);
894 1.73 yamt
895 1.73 yamt uvmexp.pgswapout++;
896 1.89 ad mutex_exit(&uvm_pageqlock);
897 1.8 mrg
898 1.8 mrg /*
899 1.73 yamt * add the new page to the cluster.
900 1.8 mrg */
901 1.8 mrg
902 1.73 yamt if (swapcluster_add(&swc, p)) {
903 1.73 yamt p->flags &= ~(PG_BUSY|PG_PAGEOUT);
904 1.73 yamt UVM_PAGE_OWN(p, NULL);
905 1.89 ad mutex_enter(&uvm_pageqlock);
906 1.77 yamt dirtyreacts++;
907 1.73 yamt uvm_pageactivate(p);
908 1.89 ad mutex_exit(slock);
909 1.73 yamt continue;
910 1.73 yamt }
911 1.89 ad mutex_exit(slock);
912 1.73 yamt
913 1.84 thorpej swapcluster_flush(&swc, false);
914 1.89 ad mutex_enter(&uvm_pageqlock);
915 1.73 yamt
916 1.8 mrg /*
917 1.31 chs * the pageout is in progress. bump counters and set up
918 1.31 chs * for the next loop.
919 1.8 mrg */
920 1.8 mrg
921 1.31 chs uvmexp.pdpending++;
922 1.77 yamt
923 1.77 yamt #else /* defined(VMSWAP) */
924 1.77 yamt uvm_pageactivate(p);
925 1.89 ad mutex_exit(slock);
926 1.77 yamt #endif /* defined(VMSWAP) */
927 1.73 yamt }
928 1.73 yamt
929 1.73 yamt #if defined(VMSWAP)
930 1.89 ad mutex_exit(&uvm_pageqlock);
931 1.84 thorpej swapcluster_flush(&swc, true);
932 1.89 ad mutex_enter(&uvm_pageqlock);
933 1.68 yamt #endif /* defined(VMSWAP) */
934 1.1 mrg }
935 1.1 mrg
936 1.1 mrg /*
937 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
938 1.1 mrg *
939 1.1 mrg * => called with pageq's locked
940 1.1 mrg */
941 1.1 mrg
942 1.65 thorpej static void
943 1.37 chs uvmpd_scan(void)
944 1.1 mrg {
945 1.77 yamt int swap_shortage, pages_freed;
946 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
947 1.1 mrg
948 1.37 chs uvmexp.pdrevs++;
949 1.1 mrg
950 1.8 mrg /*
951 1.93 ad * work on meeting our targets. first we work on our free target
952 1.93 ad * by converting inactive pages into free pages. then we work on
953 1.93 ad * meeting our inactive target by converting active pages to
954 1.93 ad * inactive ones.
955 1.8 mrg */
956 1.8 mrg
957 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
958 1.8 mrg
959 1.14 chs pages_freed = uvmexp.pdfreed;
960 1.77 yamt uvmpd_scan_queue();
961 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
962 1.8 mrg
963 1.8 mrg /*
964 1.14 chs * detect if we're not going to be able to page anything out
965 1.14 chs * until we free some swap resources from active pages.
966 1.14 chs */
967 1.24 chs
968 1.14 chs swap_shortage = 0;
969 1.14 chs if (uvmexp.free < uvmexp.freetarg &&
970 1.52 pk uvmexp.swpginuse >= uvmexp.swpgavail &&
971 1.52 pk !uvm_swapisfull() &&
972 1.14 chs pages_freed == 0) {
973 1.14 chs swap_shortage = uvmexp.freetarg - uvmexp.free;
974 1.14 chs }
975 1.24 chs
976 1.77 yamt uvmpdpol_balancequeue(swap_shortage);
977 1.93 ad
978 1.93 ad /*
979 1.93 ad * swap out some processes if we are still below the minimum
980 1.93 ad * free target. we need to unlock the page queues for this.
981 1.93 ad */
982 1.93 ad
983 1.93 ad if (uvmexp.free < uvmexp.freemin && uvmexp.nswapdev != 0 &&
984 1.93 ad uvm.swapout_enabled) {
985 1.93 ad uvmexp.pdswout++;
986 1.93 ad UVMHIST_LOG(pdhist," free %d < min %d: swapout",
987 1.93 ad uvmexp.free, uvmexp.freemin, 0, 0);
988 1.93 ad mutex_exit(&uvm_pageqlock);
989 1.93 ad uvm_swapout_threads();
990 1.93 ad mutex_enter(&uvm_pageqlock);
991 1.94 ad }
992 1.94 ad
993 1.94 ad /*
994 1.94 ad * if still below the minimum target, try unloading kernel
995 1.94 ad * modules.
996 1.94 ad */
997 1.93 ad
998 1.94 ad if (uvmexp.free < uvmexp.freemin) {
999 1.94 ad module_thread_kick();
1000 1.93 ad }
1001 1.1 mrg }
1002 1.62 yamt
1003 1.62 yamt /*
1004 1.62 yamt * uvm_reclaimable: decide whether to wait for pagedaemon.
1005 1.62 yamt *
1006 1.84 thorpej * => return true if it seems to be worth to do uvm_wait.
1007 1.62 yamt *
1008 1.62 yamt * XXX should be tunable.
1009 1.62 yamt * XXX should consider pools, etc?
1010 1.62 yamt */
1011 1.62 yamt
1012 1.83 thorpej bool
1013 1.62 yamt uvm_reclaimable(void)
1014 1.62 yamt {
1015 1.62 yamt int filepages;
1016 1.77 yamt int active, inactive;
1017 1.62 yamt
1018 1.62 yamt /*
1019 1.62 yamt * if swap is not full, no problem.
1020 1.62 yamt */
1021 1.62 yamt
1022 1.62 yamt if (!uvm_swapisfull()) {
1023 1.84 thorpej return true;
1024 1.62 yamt }
1025 1.62 yamt
1026 1.62 yamt /*
1027 1.62 yamt * file-backed pages can be reclaimed even when swap is full.
1028 1.62 yamt * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
1029 1.62 yamt *
1030 1.62 yamt * XXX assume the worst case, ie. all wired pages are file-backed.
1031 1.63 yamt *
1032 1.63 yamt * XXX should consider about other reclaimable memory.
1033 1.63 yamt * XXX ie. pools, traditional buffer cache.
1034 1.62 yamt */
1035 1.62 yamt
1036 1.62 yamt filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
1037 1.77 yamt uvm_estimatepageable(&active, &inactive);
1038 1.77 yamt if (filepages >= MIN((active + inactive) >> 4,
1039 1.62 yamt 5 * 1024 * 1024 >> PAGE_SHIFT)) {
1040 1.84 thorpej return true;
1041 1.62 yamt }
1042 1.62 yamt
1043 1.62 yamt /*
1044 1.62 yamt * kill the process, fail allocation, etc..
1045 1.62 yamt */
1046 1.62 yamt
1047 1.84 thorpej return false;
1048 1.62 yamt }
1049 1.77 yamt
1050 1.77 yamt void
1051 1.77 yamt uvm_estimatepageable(int *active, int *inactive)
1052 1.77 yamt {
1053 1.77 yamt
1054 1.77 yamt uvmpdpol_estimatepageable(active, inactive);
1055 1.77 yamt }
1056 1.98 haad
1057 1.98 haad void
1058 1.98 haad uvm_reclaim_init(void)
1059 1.98 haad {
1060 1.98 haad
1061 1.98 haad /* Initialize UVM reclaim hooks. */
1062 1.98 haad mutex_init(&uvm_reclaim_lock, MUTEX_DEFAULT, IPL_NONE);
1063 1.98 haad SLIST_INIT(&uvm_reclaim_list);
1064 1.98 haad
1065 1.98 haad }
1066 1.98 haad
1067 1.98 haad void
1068 1.98 haad uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook)
1069 1.98 haad {
1070 1.98 haad
1071 1.98 haad KASSERT(hook != NULL);
1072 1.98 haad
1073 1.98 haad mutex_enter(&uvm_reclaim_lock);
1074 1.98 haad SLIST_INSERT_HEAD(&uvm_reclaim_list, hook, uvm_reclaim_next);
1075 1.98 haad mutex_exit(&uvm_reclaim_lock);
1076 1.98 haad }
1077 1.98 haad
1078 1.98 haad void
1079 1.98 haad uvm_reclaim_hook_del(struct uvm_reclaim_hook *hook_entry)
1080 1.98 haad {
1081 1.98 haad struct uvm_reclaim_hook *hook;
1082 1.98 haad
1083 1.98 haad KASSERT(hook_entry != NULL);
1084 1.98 haad
1085 1.98 haad mutex_enter(&uvm_reclaim_lock);
1086 1.98 haad SLIST_FOREACH(hook, &uvm_reclaim_list, uvm_reclaim_next) {
1087 1.98 haad if (hook != hook_entry) {
1088 1.98 haad continue;
1089 1.98 haad }
1090 1.98 haad
1091 1.98 haad SLIST_REMOVE(&uvm_reclaim_list, hook, uvm_reclaim_hook,
1092 1.98 haad uvm_reclaim_next);
1093 1.98 haad break;
1094 1.98 haad }
1095 1.98 haad
1096 1.98 haad mutex_exit(&uvm_reclaim_lock);
1097 1.98 haad }
1098