Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.101
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.101 2010/06/02 15:48:49 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_pdaemon.c: the page daemon
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.101 2010/06/02 15:48:49 pooka Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/pool.h>
     84 #include <sys/buf.h>
     85 #include <sys/module.h>
     86 #include <sys/atomic.h>
     87 
     88 #include <uvm/uvm.h>
     89 #include <uvm/uvm_pdpolicy.h>
     90 
     91 /*
     92  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     93  * in a pass thru the inactive list when swap is full.  the value should be
     94  * "small"... if it's too large we'll cycle the active pages thru the inactive
     95  * queue too quickly to for them to be referenced and avoid being freed.
     96  */
     97 
     98 #define	UVMPD_NUMDIRTYREACTS	16
     99 
    100 #define	UVMPD_NUMTRYLOCKOWNER	16
    101 
    102 /*
    103  * local prototypes
    104  */
    105 
    106 static void	uvmpd_scan(void);
    107 static void	uvmpd_scan_queue(void);
    108 static void	uvmpd_tune(void);
    109 
    110 static unsigned int uvm_pagedaemon_waiters;
    111 
    112 /*
    113  * XXX hack to avoid hangs when large processes fork.
    114  */
    115 u_int uvm_extrapages;
    116 
    117 static kmutex_t uvm_reclaim_lock;
    118 
    119 SLIST_HEAD(uvm_reclaim_hooks, uvm_reclaim_hook) uvm_reclaim_list;
    120 
    121 /*
    122  * uvm_wait: wait (sleep) for the page daemon to free some pages
    123  *
    124  * => should be called with all locks released
    125  * => should _not_ be called by the page daemon (to avoid deadlock)
    126  */
    127 
    128 void
    129 uvm_wait(const char *wmsg)
    130 {
    131 	int timo = 0;
    132 
    133 	mutex_spin_enter(&uvm_fpageqlock);
    134 
    135 	/*
    136 	 * check for page daemon going to sleep (waiting for itself)
    137 	 */
    138 
    139 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    140 		/*
    141 		 * now we have a problem: the pagedaemon wants to go to
    142 		 * sleep until it frees more memory.   but how can it
    143 		 * free more memory if it is asleep?  that is a deadlock.
    144 		 * we have two options:
    145 		 *  [1] panic now
    146 		 *  [2] put a timeout on the sleep, thus causing the
    147 		 *      pagedaemon to only pause (rather than sleep forever)
    148 		 *
    149 		 * note that option [2] will only help us if we get lucky
    150 		 * and some other process on the system breaks the deadlock
    151 		 * by exiting or freeing memory (thus allowing the pagedaemon
    152 		 * to continue).  for now we panic if DEBUG is defined,
    153 		 * otherwise we hope for the best with option [2] (better
    154 		 * yet, this should never happen in the first place!).
    155 		 */
    156 
    157 		printf("pagedaemon: deadlock detected!\n");
    158 		timo = hz >> 3;		/* set timeout */
    159 #if defined(DEBUG)
    160 		/* DEBUG: panic so we can debug it */
    161 		panic("pagedaemon deadlock");
    162 #endif
    163 	}
    164 
    165 	uvm_pagedaemon_waiters++;
    166 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    167 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
    168 }
    169 
    170 /*
    171  * uvm_kick_pdaemon: perform checks to determine if we need to
    172  * give the pagedaemon a nudge, and do so if necessary.
    173  *
    174  * => called with uvm_fpageqlock held.
    175  */
    176 
    177 void
    178 uvm_kick_pdaemon(void)
    179 {
    180 
    181 	KASSERT(mutex_owned(&uvm_fpageqlock));
    182 
    183 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    184 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    185 	     uvmpdpol_needsscan_p())) {
    186 		wakeup(&uvm.pagedaemon);
    187 	}
    188 }
    189 
    190 /*
    191  * uvmpd_tune: tune paging parameters
    192  *
    193  * => called when ever memory is added (or removed?) to the system
    194  * => caller must call with page queues locked
    195  */
    196 
    197 static void
    198 uvmpd_tune(void)
    199 {
    200 	int val;
    201 
    202 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    203 
    204 	/*
    205 	 * try to keep 0.5% of available RAM free, but limit to between
    206 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
    207 	 */
    208 	val = uvmexp.npages / 200;
    209 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
    210 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
    211 	val *= ncpu;
    212 
    213 	/* Make sure there's always a user page free. */
    214 	if (val < uvmexp.reserve_kernel + 1)
    215 		val = uvmexp.reserve_kernel + 1;
    216 	uvmexp.freemin = val;
    217 
    218 	/* Calculate free target. */
    219 	val = (uvmexp.freemin * 4) / 3;
    220 	if (val <= uvmexp.freemin)
    221 		val = uvmexp.freemin + 1;
    222 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
    223 
    224 	uvmexp.wiredmax = uvmexp.npages / 3;
    225 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    226 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    227 }
    228 
    229 /*
    230  * uvm_pageout: the main loop for the pagedaemon
    231  */
    232 
    233 void
    234 uvm_pageout(void *arg)
    235 {
    236 	int bufcnt, npages = 0;
    237 	int extrapages = 0;
    238 	struct pool *pp;
    239 	uint64_t where;
    240 	struct uvm_reclaim_hook *hook;
    241 
    242 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    243 
    244 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    245 
    246 	/*
    247 	 * ensure correct priority and set paging parameters...
    248 	 */
    249 
    250 	uvm.pagedaemon_lwp = curlwp;
    251 	mutex_enter(&uvm_pageqlock);
    252 	npages = uvmexp.npages;
    253 	uvmpd_tune();
    254 	mutex_exit(&uvm_pageqlock);
    255 
    256 	/*
    257 	 * main loop
    258 	 */
    259 
    260 	for (;;) {
    261 		bool needsscan, needsfree;
    262 
    263 		mutex_spin_enter(&uvm_fpageqlock);
    264 		if (uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) {
    265 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    266 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    267 			    &uvm_fpageqlock, false, "pgdaemon", 0);
    268 			uvmexp.pdwoke++;
    269 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    270 		} else {
    271 			mutex_spin_exit(&uvm_fpageqlock);
    272 		}
    273 
    274 		/*
    275 		 * now lock page queues and recompute inactive count
    276 		 */
    277 
    278 		mutex_enter(&uvm_pageqlock);
    279 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    280 			npages = uvmexp.npages;
    281 			extrapages = uvm_extrapages;
    282 			mutex_spin_enter(&uvm_fpageqlock);
    283 			uvmpd_tune();
    284 			mutex_spin_exit(&uvm_fpageqlock);
    285 		}
    286 
    287 		uvmpdpol_tune();
    288 
    289 		/*
    290 		 * Estimate a hint.  Note that bufmem are returned to
    291 		 * system only when entire pool page is empty.
    292 		 */
    293 		mutex_spin_enter(&uvm_fpageqlock);
    294 		bufcnt = uvmexp.freetarg - uvmexp.free;
    295 		if (bufcnt < 0)
    296 			bufcnt = 0;
    297 
    298 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d",
    299 		    uvmexp.free, uvmexp.freetarg, 0,0);
    300 
    301 		needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
    302 		needsscan = needsfree || uvmpdpol_needsscan_p();
    303 
    304 		/*
    305 		 * scan if needed
    306 		 */
    307 		if (needsscan) {
    308 			mutex_spin_exit(&uvm_fpageqlock);
    309 			uvmpd_scan();
    310 			mutex_spin_enter(&uvm_fpageqlock);
    311 		}
    312 
    313 		/*
    314 		 * if there's any free memory to be had,
    315 		 * wake up any waiters.
    316 		 */
    317 		if (uvmexp.free > uvmexp.reserve_kernel ||
    318 		    uvmexp.paging == 0) {
    319 			wakeup(&uvmexp.free);
    320 			uvm_pagedaemon_waiters = 0;
    321 		}
    322 		mutex_spin_exit(&uvm_fpageqlock);
    323 
    324 		/*
    325 		 * scan done.  unlock page queues (the only lock we are holding)
    326 		 */
    327 		mutex_exit(&uvm_pageqlock);
    328 
    329 		/*
    330 		 * if we don't need free memory, we're done.
    331 		 */
    332 
    333 		if (!needsfree)
    334 			continue;
    335 
    336 		/*
    337 		 * start draining pool resources now that we're not
    338 		 * holding any locks.
    339 		 */
    340 		pool_drain_start(&pp, &where);
    341 
    342 		/*
    343 		 * kill unused metadata buffers.
    344 		 */
    345 		mutex_enter(&bufcache_lock);
    346 		buf_drain(bufcnt << PAGE_SHIFT);
    347 		mutex_exit(&bufcache_lock);
    348 
    349 		mutex_enter(&uvm_reclaim_lock);
    350 		SLIST_FOREACH(hook, &uvm_reclaim_list, uvm_reclaim_next) {
    351 			(*hook->uvm_reclaim_hook)();
    352 		}
    353 		mutex_exit(&uvm_reclaim_lock);
    354 
    355 		/*
    356 		 * complete draining the pools.
    357 		 */
    358 		pool_drain_end(pp, where);
    359 	}
    360 	/*NOTREACHED*/
    361 }
    362 
    363 
    364 /*
    365  * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
    366  */
    367 
    368 void
    369 uvm_aiodone_worker(struct work *wk, void *dummy)
    370 {
    371 	struct buf *bp = (void *)wk;
    372 
    373 	KASSERT(&bp->b_work == wk);
    374 
    375 	/*
    376 	 * process an i/o that's done.
    377 	 */
    378 
    379 	(*bp->b_iodone)(bp);
    380 }
    381 
    382 void
    383 uvm_pageout_start(int npages)
    384 {
    385 
    386 	mutex_spin_enter(&uvm_fpageqlock);
    387 	uvmexp.paging += npages;
    388 	mutex_spin_exit(&uvm_fpageqlock);
    389 }
    390 
    391 void
    392 uvm_pageout_done(int npages)
    393 {
    394 
    395 	mutex_spin_enter(&uvm_fpageqlock);
    396 	KASSERT(uvmexp.paging >= npages);
    397 	uvmexp.paging -= npages;
    398 
    399 	/*
    400 	 * wake up either of pagedaemon or LWPs waiting for it.
    401 	 */
    402 
    403 	if (uvmexp.free <= uvmexp.reserve_kernel) {
    404 		wakeup(&uvm.pagedaemon);
    405 	} else {
    406 		wakeup(&uvmexp.free);
    407 		uvm_pagedaemon_waiters = 0;
    408 	}
    409 	mutex_spin_exit(&uvm_fpageqlock);
    410 }
    411 
    412 /*
    413  * uvmpd_trylockowner: trylock the page's owner.
    414  *
    415  * => called with pageq locked.
    416  * => resolve orphaned O->A loaned page.
    417  * => return the locked mutex on success.  otherwise, return NULL.
    418  */
    419 
    420 kmutex_t *
    421 uvmpd_trylockowner(struct vm_page *pg)
    422 {
    423 	struct uvm_object *uobj = pg->uobject;
    424 	kmutex_t *slock;
    425 
    426 	KASSERT(mutex_owned(&uvm_pageqlock));
    427 
    428 	if (uobj != NULL) {
    429 		slock = &uobj->vmobjlock;
    430 	} else {
    431 		struct vm_anon *anon = pg->uanon;
    432 
    433 		KASSERT(anon != NULL);
    434 		slock = &anon->an_lock;
    435 	}
    436 
    437 	if (!mutex_tryenter(slock)) {
    438 		return NULL;
    439 	}
    440 
    441 	if (uobj == NULL) {
    442 
    443 		/*
    444 		 * set PQ_ANON if it isn't set already.
    445 		 */
    446 
    447 		if ((pg->pqflags & PQ_ANON) == 0) {
    448 			KASSERT(pg->loan_count > 0);
    449 			pg->loan_count--;
    450 			pg->pqflags |= PQ_ANON;
    451 			/* anon now owns it */
    452 		}
    453 	}
    454 
    455 	return slock;
    456 }
    457 
    458 #if defined(VMSWAP)
    459 struct swapcluster {
    460 	int swc_slot;
    461 	int swc_nallocated;
    462 	int swc_nused;
    463 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    464 };
    465 
    466 static void
    467 swapcluster_init(struct swapcluster *swc)
    468 {
    469 
    470 	swc->swc_slot = 0;
    471 	swc->swc_nused = 0;
    472 }
    473 
    474 static int
    475 swapcluster_allocslots(struct swapcluster *swc)
    476 {
    477 	int slot;
    478 	int npages;
    479 
    480 	if (swc->swc_slot != 0) {
    481 		return 0;
    482 	}
    483 
    484 	/* Even with strange MAXPHYS, the shift
    485 	   implicitly rounds down to a page. */
    486 	npages = MAXPHYS >> PAGE_SHIFT;
    487 	slot = uvm_swap_alloc(&npages, true);
    488 	if (slot == 0) {
    489 		return ENOMEM;
    490 	}
    491 	swc->swc_slot = slot;
    492 	swc->swc_nallocated = npages;
    493 	swc->swc_nused = 0;
    494 
    495 	return 0;
    496 }
    497 
    498 static int
    499 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    500 {
    501 	int slot;
    502 	struct uvm_object *uobj;
    503 
    504 	KASSERT(swc->swc_slot != 0);
    505 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    506 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
    507 
    508 	slot = swc->swc_slot + swc->swc_nused;
    509 	uobj = pg->uobject;
    510 	if (uobj == NULL) {
    511 		KASSERT(mutex_owned(&pg->uanon->an_lock));
    512 		pg->uanon->an_swslot = slot;
    513 	} else {
    514 		int result;
    515 
    516 		KASSERT(mutex_owned(&uobj->vmobjlock));
    517 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    518 		if (result == -1) {
    519 			return ENOMEM;
    520 		}
    521 	}
    522 	swc->swc_pages[swc->swc_nused] = pg;
    523 	swc->swc_nused++;
    524 
    525 	return 0;
    526 }
    527 
    528 static void
    529 swapcluster_flush(struct swapcluster *swc, bool now)
    530 {
    531 	int slot;
    532 	int nused;
    533 	int nallocated;
    534 	int error;
    535 
    536 	if (swc->swc_slot == 0) {
    537 		return;
    538 	}
    539 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    540 
    541 	slot = swc->swc_slot;
    542 	nused = swc->swc_nused;
    543 	nallocated = swc->swc_nallocated;
    544 
    545 	/*
    546 	 * if this is the final pageout we could have a few
    547 	 * unused swap blocks.  if so, free them now.
    548 	 */
    549 
    550 	if (nused < nallocated) {
    551 		if (!now) {
    552 			return;
    553 		}
    554 		uvm_swap_free(slot + nused, nallocated - nused);
    555 	}
    556 
    557 	/*
    558 	 * now start the pageout.
    559 	 */
    560 
    561 	if (nused > 0) {
    562 		uvmexp.pdpageouts++;
    563 		uvm_pageout_start(nused);
    564 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    565 		KASSERT(error == 0 || error == ENOMEM);
    566 	}
    567 
    568 	/*
    569 	 * zero swslot to indicate that we are
    570 	 * no longer building a swap-backed cluster.
    571 	 */
    572 
    573 	swc->swc_slot = 0;
    574 	swc->swc_nused = 0;
    575 }
    576 
    577 static int
    578 swapcluster_nused(struct swapcluster *swc)
    579 {
    580 
    581 	return swc->swc_nused;
    582 }
    583 
    584 /*
    585  * uvmpd_dropswap: free any swap allocated to this page.
    586  *
    587  * => called with owner locked.
    588  * => return true if a page had an associated slot.
    589  */
    590 
    591 static bool
    592 uvmpd_dropswap(struct vm_page *pg)
    593 {
    594 	bool result = false;
    595 	struct vm_anon *anon = pg->uanon;
    596 
    597 	if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
    598 		uvm_swap_free(anon->an_swslot, 1);
    599 		anon->an_swslot = 0;
    600 		pg->flags &= ~PG_CLEAN;
    601 		result = true;
    602 	} else if (pg->pqflags & PQ_AOBJ) {
    603 		int slot = uao_set_swslot(pg->uobject,
    604 		    pg->offset >> PAGE_SHIFT, 0);
    605 		if (slot) {
    606 			uvm_swap_free(slot, 1);
    607 			pg->flags &= ~PG_CLEAN;
    608 			result = true;
    609 		}
    610 	}
    611 
    612 	return result;
    613 }
    614 
    615 /*
    616  * uvmpd_trydropswap: try to free any swap allocated to this page.
    617  *
    618  * => return true if a slot is successfully freed.
    619  */
    620 
    621 bool
    622 uvmpd_trydropswap(struct vm_page *pg)
    623 {
    624 	kmutex_t *slock;
    625 	bool result;
    626 
    627 	if ((pg->flags & PG_BUSY) != 0) {
    628 		return false;
    629 	}
    630 
    631 	/*
    632 	 * lock the page's owner.
    633 	 */
    634 
    635 	slock = uvmpd_trylockowner(pg);
    636 	if (slock == NULL) {
    637 		return false;
    638 	}
    639 
    640 	/*
    641 	 * skip this page if it's busy.
    642 	 */
    643 
    644 	if ((pg->flags & PG_BUSY) != 0) {
    645 		mutex_exit(slock);
    646 		return false;
    647 	}
    648 
    649 	result = uvmpd_dropswap(pg);
    650 
    651 	mutex_exit(slock);
    652 
    653 	return result;
    654 }
    655 
    656 #endif /* defined(VMSWAP) */
    657 
    658 /*
    659  * uvmpd_scan_queue: scan an replace candidate list for pages
    660  * to clean or free.
    661  *
    662  * => called with page queues locked
    663  * => we work on meeting our free target by converting inactive pages
    664  *    into free pages.
    665  * => we handle the building of swap-backed clusters
    666  */
    667 
    668 static void
    669 uvmpd_scan_queue(void)
    670 {
    671 	struct vm_page *p;
    672 	struct uvm_object *uobj;
    673 	struct vm_anon *anon;
    674 #if defined(VMSWAP)
    675 	struct swapcluster swc;
    676 #endif /* defined(VMSWAP) */
    677 	int dirtyreacts;
    678 	int lockownerfail;
    679 	kmutex_t *slock;
    680 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    681 
    682 	/*
    683 	 * swslot is non-zero if we are building a swap cluster.  we want
    684 	 * to stay in the loop while we have a page to scan or we have
    685 	 * a swap-cluster to build.
    686 	 */
    687 
    688 #if defined(VMSWAP)
    689 	swapcluster_init(&swc);
    690 #endif /* defined(VMSWAP) */
    691 
    692 	dirtyreacts = 0;
    693 	lockownerfail = 0;
    694 	uvmpdpol_scaninit();
    695 
    696 	while (/* CONSTCOND */ 1) {
    697 
    698 		/*
    699 		 * see if we've met the free target.
    700 		 */
    701 
    702 		if (uvmexp.free + uvmexp.paging
    703 #if defined(VMSWAP)
    704 		    + swapcluster_nused(&swc)
    705 #endif /* defined(VMSWAP) */
    706 		    >= uvmexp.freetarg << 2 ||
    707 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    708 			UVMHIST_LOG(pdhist,"  met free target: "
    709 				    "exit loop", 0, 0, 0, 0);
    710 			break;
    711 		}
    712 
    713 		p = uvmpdpol_selectvictim();
    714 		if (p == NULL) {
    715 			break;
    716 		}
    717 		KASSERT(uvmpdpol_pageisqueued_p(p));
    718 		KASSERT(p->wire_count == 0);
    719 
    720 		/*
    721 		 * we are below target and have a new page to consider.
    722 		 */
    723 
    724 		anon = p->uanon;
    725 		uobj = p->uobject;
    726 
    727 		/*
    728 		 * first we attempt to lock the object that this page
    729 		 * belongs to.  if our attempt fails we skip on to
    730 		 * the next page (no harm done).  it is important to
    731 		 * "try" locking the object as we are locking in the
    732 		 * wrong order (pageq -> object) and we don't want to
    733 		 * deadlock.
    734 		 *
    735 		 * the only time we expect to see an ownerless page
    736 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
    737 		 * anon has loaned a page from a uvm_object and the
    738 		 * uvm_object has dropped the ownership.  in that
    739 		 * case, the anon can "take over" the loaned page
    740 		 * and make it its own.
    741 		 */
    742 
    743 		slock = uvmpd_trylockowner(p);
    744 		if (slock == NULL) {
    745 			/*
    746 			 * yield cpu to make a chance for an LWP holding
    747 			 * the lock run.  otherwise we can busy-loop too long
    748 			 * if the page queue is filled with a lot of pages
    749 			 * from few objects.
    750 			 */
    751 			lockownerfail++;
    752 			if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
    753 				mutex_exit(&uvm_pageqlock);
    754 				/* XXX Better than yielding but inadequate. */
    755 				kpause("livelock", false, 1, NULL);
    756 				mutex_enter(&uvm_pageqlock);
    757 				lockownerfail = 0;
    758 			}
    759 			continue;
    760 		}
    761 		if (p->flags & PG_BUSY) {
    762 			mutex_exit(slock);
    763 			uvmexp.pdbusy++;
    764 			continue;
    765 		}
    766 
    767 		/* does the page belong to an object? */
    768 		if (uobj != NULL) {
    769 			uvmexp.pdobscan++;
    770 		} else {
    771 #if defined(VMSWAP)
    772 			KASSERT(anon != NULL);
    773 			uvmexp.pdanscan++;
    774 #else /* defined(VMSWAP) */
    775 			panic("%s: anon", __func__);
    776 #endif /* defined(VMSWAP) */
    777 		}
    778 
    779 
    780 		/*
    781 		 * we now have the object and the page queues locked.
    782 		 * if the page is not swap-backed, call the object's
    783 		 * pager to flush and free the page.
    784 		 */
    785 
    786 #if defined(READAHEAD_STATS)
    787 		if ((p->pqflags & PQ_READAHEAD) != 0) {
    788 			p->pqflags &= ~PQ_READAHEAD;
    789 			uvm_ra_miss.ev_count++;
    790 		}
    791 #endif /* defined(READAHEAD_STATS) */
    792 
    793 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    794 			KASSERT(uobj != NULL);
    795 			mutex_exit(&uvm_pageqlock);
    796 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    797 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    798 			mutex_enter(&uvm_pageqlock);
    799 			continue;
    800 		}
    801 
    802 		/*
    803 		 * the page is swap-backed.  remove all the permissions
    804 		 * from the page so we can sync the modified info
    805 		 * without any race conditions.  if the page is clean
    806 		 * we can free it now and continue.
    807 		 */
    808 
    809 		pmap_page_protect(p, VM_PROT_NONE);
    810 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    811 			p->flags &= ~(PG_CLEAN);
    812 		}
    813 		if (p->flags & PG_CLEAN) {
    814 			int slot;
    815 			int pageidx;
    816 
    817 			pageidx = p->offset >> PAGE_SHIFT;
    818 			uvm_pagefree(p);
    819 			uvmexp.pdfreed++;
    820 
    821 			/*
    822 			 * for anons, we need to remove the page
    823 			 * from the anon ourselves.  for aobjs,
    824 			 * pagefree did that for us.
    825 			 */
    826 
    827 			if (anon) {
    828 				KASSERT(anon->an_swslot != 0);
    829 				anon->an_page = NULL;
    830 				slot = anon->an_swslot;
    831 			} else {
    832 				slot = uao_find_swslot(uobj, pageidx);
    833 			}
    834 			mutex_exit(slock);
    835 
    836 			if (slot > 0) {
    837 				/* this page is now only in swap. */
    838 				mutex_enter(&uvm_swap_data_lock);
    839 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    840 				uvmexp.swpgonly++;
    841 				mutex_exit(&uvm_swap_data_lock);
    842 			}
    843 			continue;
    844 		}
    845 
    846 #if defined(VMSWAP)
    847 		/*
    848 		 * this page is dirty, skip it if we'll have met our
    849 		 * free target when all the current pageouts complete.
    850 		 */
    851 
    852 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    853 			mutex_exit(slock);
    854 			continue;
    855 		}
    856 
    857 		/*
    858 		 * free any swap space allocated to the page since
    859 		 * we'll have to write it again with its new data.
    860 		 */
    861 
    862 		uvmpd_dropswap(p);
    863 
    864 		/*
    865 		 * start new swap pageout cluster (if necessary).
    866 		 *
    867 		 * if swap is full reactivate this page so that
    868 		 * we eventually cycle all pages through the
    869 		 * inactive queue.
    870 		 */
    871 
    872 		if (swapcluster_allocslots(&swc)) {
    873 			dirtyreacts++;
    874 			uvm_pageactivate(p);
    875 			mutex_exit(slock);
    876 			continue;
    877 		}
    878 
    879 		/*
    880 		 * at this point, we're definitely going reuse this
    881 		 * page.  mark the page busy and delayed-free.
    882 		 * we should remove the page from the page queues
    883 		 * so we don't ever look at it again.
    884 		 * adjust counters and such.
    885 		 */
    886 
    887 		p->flags |= PG_BUSY;
    888 		UVM_PAGE_OWN(p, "scan_queue");
    889 
    890 		p->flags |= PG_PAGEOUT;
    891 		uvm_pagedequeue(p);
    892 
    893 		uvmexp.pgswapout++;
    894 		mutex_exit(&uvm_pageqlock);
    895 
    896 		/*
    897 		 * add the new page to the cluster.
    898 		 */
    899 
    900 		if (swapcluster_add(&swc, p)) {
    901 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    902 			UVM_PAGE_OWN(p, NULL);
    903 			mutex_enter(&uvm_pageqlock);
    904 			dirtyreacts++;
    905 			uvm_pageactivate(p);
    906 			mutex_exit(slock);
    907 			continue;
    908 		}
    909 		mutex_exit(slock);
    910 
    911 		swapcluster_flush(&swc, false);
    912 		mutex_enter(&uvm_pageqlock);
    913 
    914 		/*
    915 		 * the pageout is in progress.  bump counters and set up
    916 		 * for the next loop.
    917 		 */
    918 
    919 		uvmexp.pdpending++;
    920 
    921 #else /* defined(VMSWAP) */
    922 		uvm_pageactivate(p);
    923 		mutex_exit(slock);
    924 #endif /* defined(VMSWAP) */
    925 	}
    926 
    927 #if defined(VMSWAP)
    928 	mutex_exit(&uvm_pageqlock);
    929 	swapcluster_flush(&swc, true);
    930 	mutex_enter(&uvm_pageqlock);
    931 #endif /* defined(VMSWAP) */
    932 }
    933 
    934 /*
    935  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    936  *
    937  * => called with pageq's locked
    938  */
    939 
    940 static void
    941 uvmpd_scan(void)
    942 {
    943 	int swap_shortage, pages_freed;
    944 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    945 
    946 	uvmexp.pdrevs++;
    947 
    948 	/*
    949 	 * work on meeting our targets.   first we work on our free target
    950 	 * by converting inactive pages into free pages.  then we work on
    951 	 * meeting our inactive target by converting active pages to
    952 	 * inactive ones.
    953 	 */
    954 
    955 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    956 
    957 	pages_freed = uvmexp.pdfreed;
    958 	uvmpd_scan_queue();
    959 	pages_freed = uvmexp.pdfreed - pages_freed;
    960 
    961 	/*
    962 	 * detect if we're not going to be able to page anything out
    963 	 * until we free some swap resources from active pages.
    964 	 */
    965 
    966 	swap_shortage = 0;
    967 	if (uvmexp.free < uvmexp.freetarg &&
    968 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    969 	    !uvm_swapisfull() &&
    970 	    pages_freed == 0) {
    971 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    972 	}
    973 
    974 	uvmpdpol_balancequeue(swap_shortage);
    975 
    976 	/*
    977 	 * if still below the minimum target, try unloading kernel
    978 	 * modules.
    979 	 */
    980 
    981 	if (uvmexp.free < uvmexp.freemin) {
    982 		module_thread_kick();
    983 	}
    984 }
    985 
    986 /*
    987  * uvm_reclaimable: decide whether to wait for pagedaemon.
    988  *
    989  * => return true if it seems to be worth to do uvm_wait.
    990  *
    991  * XXX should be tunable.
    992  * XXX should consider pools, etc?
    993  */
    994 
    995 bool
    996 uvm_reclaimable(void)
    997 {
    998 	int filepages;
    999 	int active, inactive;
   1000 
   1001 	/*
   1002 	 * if swap is not full, no problem.
   1003 	 */
   1004 
   1005 	if (!uvm_swapisfull()) {
   1006 		return true;
   1007 	}
   1008 
   1009 	/*
   1010 	 * file-backed pages can be reclaimed even when swap is full.
   1011 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
   1012 	 *
   1013 	 * XXX assume the worst case, ie. all wired pages are file-backed.
   1014 	 *
   1015 	 * XXX should consider about other reclaimable memory.
   1016 	 * XXX ie. pools, traditional buffer cache.
   1017 	 */
   1018 
   1019 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
   1020 	uvm_estimatepageable(&active, &inactive);
   1021 	if (filepages >= MIN((active + inactive) >> 4,
   1022 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
   1023 		return true;
   1024 	}
   1025 
   1026 	/*
   1027 	 * kill the process, fail allocation, etc..
   1028 	 */
   1029 
   1030 	return false;
   1031 }
   1032 
   1033 void
   1034 uvm_estimatepageable(int *active, int *inactive)
   1035 {
   1036 
   1037 	uvmpdpol_estimatepageable(active, inactive);
   1038 }
   1039 
   1040 void
   1041 uvm_reclaim_init(void)
   1042 {
   1043 
   1044 	/* Initialize UVM reclaim hooks. */
   1045 	mutex_init(&uvm_reclaim_lock, MUTEX_DEFAULT, IPL_NONE);
   1046 	SLIST_INIT(&uvm_reclaim_list);
   1047 }
   1048 
   1049 void
   1050 uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook)
   1051 {
   1052 
   1053 	KASSERT(hook != NULL);
   1054 
   1055 	mutex_enter(&uvm_reclaim_lock);
   1056 	SLIST_INSERT_HEAD(&uvm_reclaim_list, hook, uvm_reclaim_next);
   1057 	mutex_exit(&uvm_reclaim_lock);
   1058 }
   1059 
   1060 void
   1061 uvm_reclaim_hook_del(struct uvm_reclaim_hook *hook_entry)
   1062 {
   1063 	struct uvm_reclaim_hook *hook;
   1064 
   1065 	KASSERT(hook_entry != NULL);
   1066 
   1067 	mutex_enter(&uvm_reclaim_lock);
   1068 	SLIST_FOREACH(hook, &uvm_reclaim_list, uvm_reclaim_next) {
   1069 		if (hook != hook_entry) {
   1070 			continue;
   1071 		}
   1072 
   1073 		SLIST_REMOVE(&uvm_reclaim_list, hook, uvm_reclaim_hook,
   1074 		    uvm_reclaim_next);
   1075 		break;
   1076 	}
   1077 
   1078 	mutex_exit(&uvm_reclaim_lock);
   1079 }
   1080