Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.103.2.1
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.103.2.1 2011/11/02 21:54:01 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     37  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_pdaemon.c: the page daemon
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.103.2.1 2011/11/02 21:54:01 yamt Exp $");
     70 
     71 #include "opt_uvmhist.h"
     72 #include "opt_readahead.h"
     73 
     74 #include <sys/param.h>
     75 #include <sys/proc.h>
     76 #include <sys/systm.h>
     77 #include <sys/kernel.h>
     78 #include <sys/pool.h>
     79 #include <sys/buf.h>
     80 #include <sys/module.h>
     81 #include <sys/atomic.h>
     82 
     83 #include <uvm/uvm.h>
     84 #include <uvm/uvm_pdpolicy.h>
     85 
     86 /*
     87  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     88  * in a pass thru the inactive list when swap is full.  the value should be
     89  * "small"... if it's too large we'll cycle the active pages thru the inactive
     90  * queue too quickly to for them to be referenced and avoid being freed.
     91  */
     92 
     93 #define	UVMPD_NUMDIRTYREACTS	16
     94 
     95 #define	UVMPD_NUMTRYLOCKOWNER	16
     96 
     97 /*
     98  * local prototypes
     99  */
    100 
    101 static void	uvmpd_scan(void);
    102 static void	uvmpd_scan_queue(void);
    103 static void	uvmpd_tune(void);
    104 
    105 static unsigned int uvm_pagedaemon_waiters;
    106 
    107 /*
    108  * XXX hack to avoid hangs when large processes fork.
    109  */
    110 u_int uvm_extrapages;
    111 
    112 static kmutex_t uvm_reclaim_lock;
    113 
    114 SLIST_HEAD(uvm_reclaim_hooks, uvm_reclaim_hook) uvm_reclaim_list;
    115 
    116 /*
    117  * uvm_wait: wait (sleep) for the page daemon to free some pages
    118  *
    119  * => should be called with all locks released
    120  * => should _not_ be called by the page daemon (to avoid deadlock)
    121  */
    122 
    123 void
    124 uvm_wait(const char *wmsg)
    125 {
    126 	int timo = 0;
    127 
    128 	mutex_spin_enter(&uvm_fpageqlock);
    129 
    130 	/*
    131 	 * check for page daemon going to sleep (waiting for itself)
    132 	 */
    133 
    134 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    135 		/*
    136 		 * now we have a problem: the pagedaemon wants to go to
    137 		 * sleep until it frees more memory.   but how can it
    138 		 * free more memory if it is asleep?  that is a deadlock.
    139 		 * we have two options:
    140 		 *  [1] panic now
    141 		 *  [2] put a timeout on the sleep, thus causing the
    142 		 *      pagedaemon to only pause (rather than sleep forever)
    143 		 *
    144 		 * note that option [2] will only help us if we get lucky
    145 		 * and some other process on the system breaks the deadlock
    146 		 * by exiting or freeing memory (thus allowing the pagedaemon
    147 		 * to continue).  for now we panic if DEBUG is defined,
    148 		 * otherwise we hope for the best with option [2] (better
    149 		 * yet, this should never happen in the first place!).
    150 		 */
    151 
    152 		printf("pagedaemon: deadlock detected!\n");
    153 		timo = hz >> 3;		/* set timeout */
    154 #if defined(DEBUG)
    155 		/* DEBUG: panic so we can debug it */
    156 		panic("pagedaemon deadlock");
    157 #endif
    158 	}
    159 
    160 	uvm_pagedaemon_waiters++;
    161 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    162 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
    163 }
    164 
    165 /*
    166  * uvm_kick_pdaemon: perform checks to determine if we need to
    167  * give the pagedaemon a nudge, and do so if necessary.
    168  *
    169  * => called with uvm_fpageqlock held.
    170  */
    171 
    172 void
    173 uvm_kick_pdaemon(void)
    174 {
    175 
    176 	KASSERT(mutex_owned(&uvm_fpageqlock));
    177 
    178 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    179 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    180 	     uvmpdpol_needsscan_p())) {
    181 		wakeup(&uvm.pagedaemon);
    182 	}
    183 }
    184 
    185 /*
    186  * uvmpd_tune: tune paging parameters
    187  *
    188  * => called when ever memory is added (or removed?) to the system
    189  * => caller must call with page queues locked
    190  */
    191 
    192 static void
    193 uvmpd_tune(void)
    194 {
    195 	int val;
    196 
    197 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    198 
    199 	/*
    200 	 * try to keep 0.5% of available RAM free, but limit to between
    201 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
    202 	 */
    203 	val = uvmexp.npages / 200;
    204 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
    205 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
    206 	val *= ncpu;
    207 
    208 	/* Make sure there's always a user page free. */
    209 	if (val < uvmexp.reserve_kernel + 1)
    210 		val = uvmexp.reserve_kernel + 1;
    211 	uvmexp.freemin = val;
    212 
    213 	/* Calculate free target. */
    214 	val = (uvmexp.freemin * 4) / 3;
    215 	if (val <= uvmexp.freemin)
    216 		val = uvmexp.freemin + 1;
    217 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
    218 
    219 	uvmexp.wiredmax = uvmexp.npages / 3;
    220 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    221 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    222 }
    223 
    224 /*
    225  * uvm_pageout: the main loop for the pagedaemon
    226  */
    227 
    228 void
    229 uvm_pageout(void *arg)
    230 {
    231 	int bufcnt, npages = 0;
    232 	int extrapages = 0;
    233 	struct pool *pp;
    234 	uint64_t where;
    235 	struct uvm_reclaim_hook *hook;
    236 
    237 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    238 
    239 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    240 
    241 	/*
    242 	 * ensure correct priority and set paging parameters...
    243 	 */
    244 
    245 	uvm.pagedaemon_lwp = curlwp;
    246 	mutex_enter(&uvm_pageqlock);
    247 	npages = uvmexp.npages;
    248 	uvmpd_tune();
    249 	mutex_exit(&uvm_pageqlock);
    250 
    251 	/*
    252 	 * main loop
    253 	 */
    254 
    255 	for (;;) {
    256 		bool needsscan, needsfree;
    257 
    258 		mutex_spin_enter(&uvm_fpageqlock);
    259 		if (uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) {
    260 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    261 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    262 			    &uvm_fpageqlock, false, "pgdaemon", 0);
    263 			uvmexp.pdwoke++;
    264 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    265 		} else {
    266 			mutex_spin_exit(&uvm_fpageqlock);
    267 		}
    268 
    269 		/*
    270 		 * now lock page queues and recompute inactive count
    271 		 */
    272 
    273 		mutex_enter(&uvm_pageqlock);
    274 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    275 			npages = uvmexp.npages;
    276 			extrapages = uvm_extrapages;
    277 			mutex_spin_enter(&uvm_fpageqlock);
    278 			uvmpd_tune();
    279 			mutex_spin_exit(&uvm_fpageqlock);
    280 		}
    281 
    282 		uvmpdpol_tune();
    283 
    284 		/*
    285 		 * Estimate a hint.  Note that bufmem are returned to
    286 		 * system only when entire pool page is empty.
    287 		 */
    288 		mutex_spin_enter(&uvm_fpageqlock);
    289 		bufcnt = uvmexp.freetarg - uvmexp.free;
    290 		if (bufcnt < 0)
    291 			bufcnt = 0;
    292 
    293 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d",
    294 		    uvmexp.free, uvmexp.freetarg, 0,0);
    295 
    296 		needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
    297 		needsscan = needsfree || uvmpdpol_needsscan_p();
    298 
    299 		/*
    300 		 * scan if needed
    301 		 */
    302 		if (needsscan) {
    303 			mutex_spin_exit(&uvm_fpageqlock);
    304 			uvmpd_scan();
    305 			mutex_spin_enter(&uvm_fpageqlock);
    306 		}
    307 
    308 		/*
    309 		 * if there's any free memory to be had,
    310 		 * wake up any waiters.
    311 		 */
    312 		if (uvmexp.free > uvmexp.reserve_kernel ||
    313 		    uvmexp.paging == 0) {
    314 			wakeup(&uvmexp.free);
    315 			uvm_pagedaemon_waiters = 0;
    316 		}
    317 		mutex_spin_exit(&uvm_fpageqlock);
    318 
    319 		/*
    320 		 * scan done.  unlock page queues (the only lock we are holding)
    321 		 */
    322 		mutex_exit(&uvm_pageqlock);
    323 
    324 		/*
    325 		 * if we don't need free memory, we're done.
    326 		 */
    327 
    328 		if (!needsfree)
    329 			continue;
    330 
    331 		/*
    332 		 * start draining pool resources now that we're not
    333 		 * holding any locks.
    334 		 */
    335 		pool_drain_start(&pp, &where);
    336 
    337 		/*
    338 		 * kill unused metadata buffers.
    339 		 */
    340 		mutex_enter(&bufcache_lock);
    341 		buf_drain(bufcnt << PAGE_SHIFT);
    342 		mutex_exit(&bufcache_lock);
    343 
    344 		mutex_enter(&uvm_reclaim_lock);
    345 		SLIST_FOREACH(hook, &uvm_reclaim_list, uvm_reclaim_next) {
    346 			(*hook->uvm_reclaim_hook)();
    347 		}
    348 		mutex_exit(&uvm_reclaim_lock);
    349 
    350 		/*
    351 		 * complete draining the pools.
    352 		 */
    353 		pool_drain_end(pp, where);
    354 	}
    355 	/*NOTREACHED*/
    356 }
    357 
    358 
    359 /*
    360  * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
    361  */
    362 
    363 void
    364 uvm_aiodone_worker(struct work *wk, void *dummy)
    365 {
    366 	struct buf *bp = (void *)wk;
    367 
    368 	KASSERT(&bp->b_work == wk);
    369 
    370 	/*
    371 	 * process an i/o that's done.
    372 	 */
    373 
    374 	(*bp->b_iodone)(bp);
    375 }
    376 
    377 void
    378 uvm_pageout_start(int npages)
    379 {
    380 
    381 	mutex_spin_enter(&uvm_fpageqlock);
    382 	uvmexp.paging += npages;
    383 	mutex_spin_exit(&uvm_fpageqlock);
    384 }
    385 
    386 void
    387 uvm_pageout_done(int npages)
    388 {
    389 
    390 	mutex_spin_enter(&uvm_fpageqlock);
    391 	KASSERT(uvmexp.paging >= npages);
    392 	uvmexp.paging -= npages;
    393 
    394 	/*
    395 	 * wake up either of pagedaemon or LWPs waiting for it.
    396 	 */
    397 
    398 	if (uvmexp.free <= uvmexp.reserve_kernel) {
    399 		wakeup(&uvm.pagedaemon);
    400 	} else {
    401 		wakeup(&uvmexp.free);
    402 		uvm_pagedaemon_waiters = 0;
    403 	}
    404 	mutex_spin_exit(&uvm_fpageqlock);
    405 }
    406 
    407 /*
    408  * uvmpd_trylockowner: trylock the page's owner.
    409  *
    410  * => called with pageq locked.
    411  * => resolve orphaned O->A loaned page.
    412  * => return the locked mutex on success.  otherwise, return NULL.
    413  */
    414 
    415 kmutex_t *
    416 uvmpd_trylockowner(struct vm_page *pg)
    417 {
    418 	struct uvm_object *uobj = pg->uobject;
    419 	kmutex_t *slock;
    420 
    421 	KASSERT(mutex_owned(&uvm_pageqlock));
    422 
    423 	if (uobj != NULL) {
    424 		slock = uobj->vmobjlock;
    425 	} else {
    426 		struct vm_anon *anon = pg->uanon;
    427 
    428 		KASSERT(anon != NULL);
    429 		slock = anon->an_lock;
    430 	}
    431 
    432 	if (!mutex_tryenter(slock)) {
    433 		return NULL;
    434 	}
    435 
    436 	if (uobj == NULL) {
    437 
    438 		/*
    439 		 * set PQ_ANON if it isn't set already.
    440 		 */
    441 
    442 		if ((pg->pqflags & PQ_ANON) == 0) {
    443 			KASSERT(pg->loan_count > 0);
    444 			pg->loan_count--;
    445 			pg->pqflags |= PQ_ANON;
    446 			/* anon now owns it */
    447 		}
    448 	}
    449 
    450 	return slock;
    451 }
    452 
    453 #if defined(VMSWAP)
    454 struct swapcluster {
    455 	int swc_slot;
    456 	int swc_nallocated;
    457 	int swc_nused;
    458 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    459 };
    460 
    461 static void
    462 swapcluster_init(struct swapcluster *swc)
    463 {
    464 
    465 	swc->swc_slot = 0;
    466 	swc->swc_nused = 0;
    467 }
    468 
    469 static int
    470 swapcluster_allocslots(struct swapcluster *swc)
    471 {
    472 	int slot;
    473 	int npages;
    474 
    475 	if (swc->swc_slot != 0) {
    476 		return 0;
    477 	}
    478 
    479 	/* Even with strange MAXPHYS, the shift
    480 	   implicitly rounds down to a page. */
    481 	npages = MAXPHYS >> PAGE_SHIFT;
    482 	slot = uvm_swap_alloc(&npages, true);
    483 	if (slot == 0) {
    484 		return ENOMEM;
    485 	}
    486 	swc->swc_slot = slot;
    487 	swc->swc_nallocated = npages;
    488 	swc->swc_nused = 0;
    489 
    490 	return 0;
    491 }
    492 
    493 static int
    494 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    495 {
    496 	int slot;
    497 	struct uvm_object *uobj;
    498 
    499 	KASSERT(swc->swc_slot != 0);
    500 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    501 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
    502 
    503 	slot = swc->swc_slot + swc->swc_nused;
    504 	uobj = pg->uobject;
    505 	if (uobj == NULL) {
    506 		KASSERT(mutex_owned(pg->uanon->an_lock));
    507 		pg->uanon->an_swslot = slot;
    508 	} else {
    509 		int result;
    510 
    511 		KASSERT(mutex_owned(uobj->vmobjlock));
    512 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    513 		if (result == -1) {
    514 			return ENOMEM;
    515 		}
    516 	}
    517 	swc->swc_pages[swc->swc_nused] = pg;
    518 	swc->swc_nused++;
    519 
    520 	return 0;
    521 }
    522 
    523 static void
    524 swapcluster_flush(struct swapcluster *swc, bool now)
    525 {
    526 	int slot;
    527 	int nused;
    528 	int nallocated;
    529 	int error;
    530 
    531 	if (swc->swc_slot == 0) {
    532 		return;
    533 	}
    534 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    535 
    536 	slot = swc->swc_slot;
    537 	nused = swc->swc_nused;
    538 	nallocated = swc->swc_nallocated;
    539 
    540 	/*
    541 	 * if this is the final pageout we could have a few
    542 	 * unused swap blocks.  if so, free them now.
    543 	 */
    544 
    545 	if (nused < nallocated) {
    546 		if (!now) {
    547 			return;
    548 		}
    549 		uvm_swap_free(slot + nused, nallocated - nused);
    550 	}
    551 
    552 	/*
    553 	 * now start the pageout.
    554 	 */
    555 
    556 	if (nused > 0) {
    557 		uvmexp.pdpageouts++;
    558 		uvm_pageout_start(nused);
    559 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    560 		KASSERT(error == 0 || error == ENOMEM);
    561 	}
    562 
    563 	/*
    564 	 * zero swslot to indicate that we are
    565 	 * no longer building a swap-backed cluster.
    566 	 */
    567 
    568 	swc->swc_slot = 0;
    569 	swc->swc_nused = 0;
    570 }
    571 
    572 static int
    573 swapcluster_nused(struct swapcluster *swc)
    574 {
    575 
    576 	return swc->swc_nused;
    577 }
    578 
    579 /*
    580  * uvmpd_dropswap: free any swap allocated to this page.
    581  *
    582  * => called with owner locked.
    583  * => return true if a page had an associated slot.
    584  */
    585 
    586 static bool
    587 uvmpd_dropswap(struct vm_page *pg)
    588 {
    589 	bool result = false;
    590 	struct vm_anon *anon = pg->uanon;
    591 
    592 	if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
    593 		uvm_swap_free(anon->an_swslot, 1);
    594 		anon->an_swslot = 0;
    595 		uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    596 		result = true;
    597 	} else if (pg->pqflags & PQ_AOBJ) {
    598 		int slot = uao_set_swslot(pg->uobject,
    599 		    pg->offset >> PAGE_SHIFT, 0);
    600 		if (slot) {
    601 			uvm_swap_free(slot, 1);
    602 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    603 			result = true;
    604 		}
    605 	}
    606 
    607 	return result;
    608 }
    609 
    610 /*
    611  * uvmpd_trydropswap: try to free any swap allocated to this page.
    612  *
    613  * => return true if a slot is successfully freed.
    614  */
    615 
    616 bool
    617 uvmpd_trydropswap(struct vm_page *pg)
    618 {
    619 	kmutex_t *slock;
    620 	bool result;
    621 
    622 	if ((pg->flags & PG_BUSY) != 0) {
    623 		return false;
    624 	}
    625 
    626 	/*
    627 	 * lock the page's owner.
    628 	 */
    629 
    630 	slock = uvmpd_trylockowner(pg);
    631 	if (slock == NULL) {
    632 		return false;
    633 	}
    634 
    635 	/*
    636 	 * skip this page if it's busy.
    637 	 */
    638 
    639 	if ((pg->flags & PG_BUSY) != 0) {
    640 		mutex_exit(slock);
    641 		return false;
    642 	}
    643 
    644 	result = uvmpd_dropswap(pg);
    645 
    646 	mutex_exit(slock);
    647 
    648 	return result;
    649 }
    650 
    651 #endif /* defined(VMSWAP) */
    652 
    653 /*
    654  * uvmpd_scan_queue: scan an replace candidate list for pages
    655  * to clean or free.
    656  *
    657  * => called with page queues locked
    658  * => we work on meeting our free target by converting inactive pages
    659  *    into free pages.
    660  * => we handle the building of swap-backed clusters
    661  */
    662 
    663 static void
    664 uvmpd_scan_queue(void)
    665 {
    666 	struct vm_page *p;
    667 	struct uvm_object *uobj;
    668 	struct vm_anon *anon;
    669 #if defined(VMSWAP)
    670 	struct swapcluster swc;
    671 #endif /* defined(VMSWAP) */
    672 	int dirtyreacts;
    673 	int lockownerfail;
    674 	kmutex_t *slock;
    675 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    676 
    677 #if defined(VMSWAP)
    678 	swapcluster_init(&swc);
    679 #endif /* defined(VMSWAP) */
    680 
    681 	dirtyreacts = 0;
    682 	lockownerfail = 0;
    683 	uvmpdpol_scaninit();
    684 
    685 	while (/* CONSTCOND */ 1) {
    686 
    687 		/*
    688 		 * see if we've met the free target.
    689 		 */
    690 
    691 		if (uvmexp.free + uvmexp.paging
    692 #if defined(VMSWAP)
    693 		    + swapcluster_nused(&swc)
    694 #endif /* defined(VMSWAP) */
    695 		    >= uvmexp.freetarg << 2 ||
    696 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    697 			UVMHIST_LOG(pdhist,"  met free target: "
    698 				    "exit loop", 0, 0, 0, 0);
    699 			break;
    700 		}
    701 
    702 		p = uvmpdpol_selectvictim();
    703 		if (p == NULL) {
    704 			break;
    705 		}
    706 		KASSERT(uvmpdpol_pageisqueued_p(p));
    707 		KASSERT(p->wire_count == 0);
    708 
    709 		/*
    710 		 * we are below target and have a new page to consider.
    711 		 */
    712 
    713 		anon = p->uanon;
    714 		uobj = p->uobject;
    715 
    716 		/*
    717 		 * first we attempt to lock the object that this page
    718 		 * belongs to.  if our attempt fails we skip on to
    719 		 * the next page (no harm done).  it is important to
    720 		 * "try" locking the object as we are locking in the
    721 		 * wrong order (pageq -> object) and we don't want to
    722 		 * deadlock.
    723 		 *
    724 		 * the only time we expect to see an ownerless page
    725 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
    726 		 * anon has loaned a page from a uvm_object and the
    727 		 * uvm_object has dropped the ownership.  in that
    728 		 * case, the anon can "take over" the loaned page
    729 		 * and make it its own.
    730 		 */
    731 
    732 		slock = uvmpd_trylockowner(p);
    733 		if (slock == NULL) {
    734 			/*
    735 			 * yield cpu to make a chance for an LWP holding
    736 			 * the lock run.  otherwise we can busy-loop too long
    737 			 * if the page queue is filled with a lot of pages
    738 			 * from few objects.
    739 			 */
    740 			lockownerfail++;
    741 			if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
    742 				mutex_exit(&uvm_pageqlock);
    743 				/* XXX Better than yielding but inadequate. */
    744 				kpause("livelock", false, 1, NULL);
    745 				mutex_enter(&uvm_pageqlock);
    746 				lockownerfail = 0;
    747 			}
    748 			continue;
    749 		}
    750 		if (p->flags & PG_BUSY) {
    751 			mutex_exit(slock);
    752 			uvmexp.pdbusy++;
    753 			continue;
    754 		}
    755 
    756 		/* does the page belong to an object? */
    757 		if (uobj != NULL) {
    758 			uvmexp.pdobscan++;
    759 		} else {
    760 #if defined(VMSWAP)
    761 			KASSERT(anon != NULL);
    762 			uvmexp.pdanscan++;
    763 #else /* defined(VMSWAP) */
    764 			panic("%s: anon", __func__);
    765 #endif /* defined(VMSWAP) */
    766 		}
    767 
    768 
    769 		/*
    770 		 * we now have the object and the page queues locked.
    771 		 * if the page is not swap-backed, call the object's
    772 		 * pager to flush and free the page.
    773 		 */
    774 
    775 #if defined(READAHEAD_STATS)
    776 		if ((p->pqflags & PQ_READAHEAD) != 0) {
    777 			p->pqflags &= ~PQ_READAHEAD;
    778 			uvm_ra_miss.ev_count++;
    779 		}
    780 #endif /* defined(READAHEAD_STATS) */
    781 
    782 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    783 			KASSERT(uobj != NULL);
    784 			mutex_exit(&uvm_pageqlock);
    785 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    786 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    787 			mutex_enter(&uvm_pageqlock);
    788 			continue;
    789 		}
    790 
    791 		/*
    792 		 * the page is swap-backed.  remove all the permissions
    793 		 * from the page so we can sync the modified info
    794 		 * without any race conditions.  if the page is clean
    795 		 * we can free it now and continue.
    796 		 */
    797 
    798 		pmap_page_protect(p, VM_PROT_NONE);
    799 		if (uvm_pagegetdirty(p) == UVM_PAGE_STATUS_UNKNOWN) {
    800 			if (pmap_clear_modify(p)) {
    801 				uvm_pagemarkdirty(p, UVM_PAGE_STATUS_DIRTY);
    802 			} else {
    803 				uvm_pagemarkdirty(p, UVM_PAGE_STATUS_CLEAN);
    804 			}
    805 		}
    806 		if (uvm_pagegetdirty(p) != UVM_PAGE_STATUS_DIRTY) {
    807 			int slot;
    808 			int pageidx;
    809 
    810 			pageidx = p->offset >> PAGE_SHIFT;
    811 			uvm_pagefree(p);
    812 			uvmexp.pdfreed++;
    813 
    814 			/*
    815 			 * for anons, we need to remove the page
    816 			 * from the anon ourselves.  for aobjs,
    817 			 * pagefree did that for us.
    818 			 */
    819 
    820 			if (anon) {
    821 				KASSERT(anon->an_swslot != 0);
    822 				anon->an_page = NULL;
    823 				slot = anon->an_swslot;
    824 			} else {
    825 				slot = uao_find_swslot(uobj, pageidx);
    826 			}
    827 			mutex_exit(slock);
    828 
    829 			if (slot > 0) {
    830 				/* this page is now only in swap. */
    831 				mutex_enter(&uvm_swap_data_lock);
    832 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    833 				uvmexp.swpgonly++;
    834 				mutex_exit(&uvm_swap_data_lock);
    835 			}
    836 			continue;
    837 		}
    838 
    839 #if defined(VMSWAP)
    840 		/*
    841 		 * this page is dirty, skip it if we'll have met our
    842 		 * free target when all the current pageouts complete.
    843 		 */
    844 
    845 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    846 			mutex_exit(slock);
    847 			continue;
    848 		}
    849 
    850 		/*
    851 		 * free any swap space allocated to the page since
    852 		 * we'll have to write it again with its new data.
    853 		 */
    854 
    855 		uvmpd_dropswap(p);
    856 
    857 		/*
    858 		 * start new swap pageout cluster (if necessary).
    859 		 *
    860 		 * if swap is full reactivate this page so that
    861 		 * we eventually cycle all pages through the
    862 		 * inactive queue.
    863 		 */
    864 
    865 		if (swapcluster_allocslots(&swc)) {
    866 			dirtyreacts++;
    867 			uvm_pageactivate(p);
    868 			mutex_exit(slock);
    869 			continue;
    870 		}
    871 
    872 		/*
    873 		 * at this point, we're definitely going reuse this
    874 		 * page.  mark the page busy and delayed-free.
    875 		 * we should remove the page from the page queues
    876 		 * so we don't ever look at it again.
    877 		 * adjust counters and such.
    878 		 */
    879 
    880 		p->flags |= PG_BUSY;
    881 		UVM_PAGE_OWN(p, "scan_queue");
    882 
    883 		p->flags |= PG_PAGEOUT;
    884 		uvm_pagedequeue(p);
    885 
    886 		uvmexp.pgswapout++;
    887 		mutex_exit(&uvm_pageqlock);
    888 
    889 		/*
    890 		 * add the new page to the cluster.
    891 		 */
    892 
    893 		if (swapcluster_add(&swc, p)) {
    894 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    895 			UVM_PAGE_OWN(p, NULL);
    896 			mutex_enter(&uvm_pageqlock);
    897 			dirtyreacts++;
    898 			uvm_pageactivate(p);
    899 			mutex_exit(slock);
    900 			continue;
    901 		}
    902 		mutex_exit(slock);
    903 
    904 		swapcluster_flush(&swc, false);
    905 		mutex_enter(&uvm_pageqlock);
    906 
    907 		/*
    908 		 * the pageout is in progress.  bump counters and set up
    909 		 * for the next loop.
    910 		 */
    911 
    912 		uvmexp.pdpending++;
    913 
    914 #else /* defined(VMSWAP) */
    915 		uvm_pageactivate(p);
    916 		mutex_exit(slock);
    917 #endif /* defined(VMSWAP) */
    918 	}
    919 
    920 #if defined(VMSWAP)
    921 	mutex_exit(&uvm_pageqlock);
    922 	swapcluster_flush(&swc, true);
    923 	mutex_enter(&uvm_pageqlock);
    924 #endif /* defined(VMSWAP) */
    925 }
    926 
    927 /*
    928  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    929  *
    930  * => called with pageq's locked
    931  */
    932 
    933 static void
    934 uvmpd_scan(void)
    935 {
    936 	int swap_shortage, pages_freed;
    937 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    938 
    939 	uvmexp.pdrevs++;
    940 
    941 	/*
    942 	 * work on meeting our targets.   first we work on our free target
    943 	 * by converting inactive pages into free pages.  then we work on
    944 	 * meeting our inactive target by converting active pages to
    945 	 * inactive ones.
    946 	 */
    947 
    948 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    949 
    950 	pages_freed = uvmexp.pdfreed;
    951 	uvmpd_scan_queue();
    952 	pages_freed = uvmexp.pdfreed - pages_freed;
    953 
    954 	/*
    955 	 * detect if we're not going to be able to page anything out
    956 	 * until we free some swap resources from active pages.
    957 	 */
    958 
    959 	swap_shortage = 0;
    960 	if (uvmexp.free < uvmexp.freetarg &&
    961 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    962 	    !uvm_swapisfull() &&
    963 	    pages_freed == 0) {
    964 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    965 	}
    966 
    967 	uvmpdpol_balancequeue(swap_shortage);
    968 
    969 	/*
    970 	 * if still below the minimum target, try unloading kernel
    971 	 * modules.
    972 	 */
    973 
    974 	if (uvmexp.free < uvmexp.freemin) {
    975 		module_thread_kick();
    976 	}
    977 }
    978 
    979 /*
    980  * uvm_reclaimable: decide whether to wait for pagedaemon.
    981  *
    982  * => return true if it seems to be worth to do uvm_wait.
    983  *
    984  * XXX should be tunable.
    985  * XXX should consider pools, etc?
    986  */
    987 
    988 bool
    989 uvm_reclaimable(void)
    990 {
    991 	int filepages;
    992 	int active, inactive;
    993 
    994 	/*
    995 	 * if swap is not full, no problem.
    996 	 */
    997 
    998 	if (!uvm_swapisfull()) {
    999 		return true;
   1000 	}
   1001 
   1002 	/*
   1003 	 * file-backed pages can be reclaimed even when swap is full.
   1004 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
   1005 	 *
   1006 	 * XXX assume the worst case, ie. all wired pages are file-backed.
   1007 	 *
   1008 	 * XXX should consider about other reclaimable memory.
   1009 	 * XXX ie. pools, traditional buffer cache.
   1010 	 */
   1011 
   1012 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
   1013 	uvm_estimatepageable(&active, &inactive);
   1014 	if (filepages >= MIN((active + inactive) >> 4,
   1015 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
   1016 		return true;
   1017 	}
   1018 
   1019 	/*
   1020 	 * kill the process, fail allocation, etc..
   1021 	 */
   1022 
   1023 	return false;
   1024 }
   1025 
   1026 void
   1027 uvm_estimatepageable(int *active, int *inactive)
   1028 {
   1029 
   1030 	uvmpdpol_estimatepageable(active, inactive);
   1031 }
   1032 
   1033 void
   1034 uvm_reclaim_init(void)
   1035 {
   1036 
   1037 	/* Initialize UVM reclaim hooks. */
   1038 	mutex_init(&uvm_reclaim_lock, MUTEX_DEFAULT, IPL_NONE);
   1039 	SLIST_INIT(&uvm_reclaim_list);
   1040 }
   1041 
   1042 void
   1043 uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook)
   1044 {
   1045 
   1046 	KASSERT(hook != NULL);
   1047 
   1048 	mutex_enter(&uvm_reclaim_lock);
   1049 	SLIST_INSERT_HEAD(&uvm_reclaim_list, hook, uvm_reclaim_next);
   1050 	mutex_exit(&uvm_reclaim_lock);
   1051 }
   1052 
   1053 void
   1054 uvm_reclaim_hook_del(struct uvm_reclaim_hook *hook_entry)
   1055 {
   1056 	struct uvm_reclaim_hook *hook;
   1057 
   1058 	KASSERT(hook_entry != NULL);
   1059 
   1060 	mutex_enter(&uvm_reclaim_lock);
   1061 	SLIST_FOREACH(hook, &uvm_reclaim_list, uvm_reclaim_next) {
   1062 		if (hook != hook_entry) {
   1063 			continue;
   1064 		}
   1065 
   1066 		SLIST_REMOVE(&uvm_reclaim_list, hook, uvm_reclaim_hook,
   1067 		    uvm_reclaim_next);
   1068 		break;
   1069 	}
   1070 
   1071 	mutex_exit(&uvm_reclaim_lock);
   1072 }
   1073