Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.103.2.4
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.103.2.4 2012/04/17 00:09:00 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     37  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_pdaemon.c: the page daemon
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.103.2.4 2012/04/17 00:09:00 yamt Exp $");
     70 
     71 #include "opt_uvmhist.h"
     72 #include "opt_readahead.h"
     73 
     74 #include <sys/param.h>
     75 #include <sys/proc.h>
     76 #include <sys/systm.h>
     77 #include <sys/kernel.h>
     78 #include <sys/pool.h>
     79 #include <sys/buf.h>
     80 #include <sys/module.h>
     81 #include <sys/atomic.h>
     82 
     83 #include <uvm/uvm.h>
     84 #include <uvm/uvm_pdpolicy.h>
     85 
     86 /*
     87  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     88  * in a pass thru the inactive list when swap is full.  the value should be
     89  * "small"... if it's too large we'll cycle the active pages thru the inactive
     90  * queue too quickly to for them to be referenced and avoid being freed.
     91  */
     92 
     93 #define	UVMPD_NUMDIRTYREACTS	16
     94 
     95 #define	UVMPD_NUMTRYLOCKOWNER	16
     96 
     97 /*
     98  * local prototypes
     99  */
    100 
    101 static void	uvmpd_scan(void);
    102 static void	uvmpd_scan_queue(void);
    103 static void	uvmpd_tune(void);
    104 
    105 static unsigned int uvm_pagedaemon_waiters;
    106 
    107 /*
    108  * XXX hack to avoid hangs when large processes fork.
    109  */
    110 u_int uvm_extrapages;
    111 
    112 /*
    113  * uvm_wait: wait (sleep) for the page daemon to free some pages
    114  *
    115  * => should be called with all locks released
    116  * => should _not_ be called by the page daemon (to avoid deadlock)
    117  */
    118 
    119 void
    120 uvm_wait(const char *wmsg)
    121 {
    122 	int timo = 0;
    123 
    124 	mutex_spin_enter(&uvm_fpageqlock);
    125 
    126 	/*
    127 	 * check for page daemon going to sleep (waiting for itself)
    128 	 */
    129 
    130 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    131 		/*
    132 		 * now we have a problem: the pagedaemon wants to go to
    133 		 * sleep until it frees more memory.   but how can it
    134 		 * free more memory if it is asleep?  that is a deadlock.
    135 		 * we have two options:
    136 		 *  [1] panic now
    137 		 *  [2] put a timeout on the sleep, thus causing the
    138 		 *      pagedaemon to only pause (rather than sleep forever)
    139 		 *
    140 		 * note that option [2] will only help us if we get lucky
    141 		 * and some other process on the system breaks the deadlock
    142 		 * by exiting or freeing memory (thus allowing the pagedaemon
    143 		 * to continue).  for now we panic if DEBUG is defined,
    144 		 * otherwise we hope for the best with option [2] (better
    145 		 * yet, this should never happen in the first place!).
    146 		 */
    147 
    148 		printf("pagedaemon: deadlock detected!\n");
    149 		timo = hz >> 3;		/* set timeout */
    150 #if defined(DEBUG)
    151 		/* DEBUG: panic so we can debug it */
    152 		panic("pagedaemon deadlock");
    153 #endif
    154 	}
    155 
    156 	uvm_pagedaemon_waiters++;
    157 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    158 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
    159 }
    160 
    161 /*
    162  * uvm_kick_pdaemon: perform checks to determine if we need to
    163  * give the pagedaemon a nudge, and do so if necessary.
    164  *
    165  * => called with uvm_fpageqlock held.
    166  */
    167 
    168 void
    169 uvm_kick_pdaemon(void)
    170 {
    171 
    172 	KASSERT(mutex_owned(&uvm_fpageqlock));
    173 
    174 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    175 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    176 	     uvmpdpol_needsscan_p()) ||
    177 	     uvm_km_va_starved_p()) {
    178 		wakeup(&uvm.pagedaemon);
    179 	}
    180 }
    181 
    182 /*
    183  * uvmpd_tune: tune paging parameters
    184  *
    185  * => called when ever memory is added (or removed?) to the system
    186  * => caller must call with page queues locked
    187  */
    188 
    189 static void
    190 uvmpd_tune(void)
    191 {
    192 	int val;
    193 
    194 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    195 
    196 	/*
    197 	 * try to keep 0.5% of available RAM free, but limit to between
    198 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
    199 	 */
    200 	val = uvmexp.npages / 200;
    201 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
    202 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
    203 	val *= ncpu;
    204 
    205 	/* Make sure there's always a user page free. */
    206 	if (val < uvmexp.reserve_kernel + 1)
    207 		val = uvmexp.reserve_kernel + 1;
    208 	uvmexp.freemin = val;
    209 
    210 	/* Calculate free target. */
    211 	val = (uvmexp.freemin * 4) / 3;
    212 	if (val <= uvmexp.freemin)
    213 		val = uvmexp.freemin + 1;
    214 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
    215 
    216 	uvmexp.wiredmax = uvmexp.npages / 3;
    217 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    218 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    219 }
    220 
    221 /*
    222  * uvm_pageout: the main loop for the pagedaemon
    223  */
    224 
    225 void
    226 uvm_pageout(void *arg)
    227 {
    228 	int bufcnt, npages = 0;
    229 	int extrapages = 0;
    230 	struct pool *pp;
    231 	uint64_t where;
    232 
    233 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    234 
    235 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    236 
    237 	/*
    238 	 * ensure correct priority and set paging parameters...
    239 	 */
    240 
    241 	uvm.pagedaemon_lwp = curlwp;
    242 	mutex_enter(&uvm_pageqlock);
    243 	npages = uvmexp.npages;
    244 	uvmpd_tune();
    245 	mutex_exit(&uvm_pageqlock);
    246 
    247 	/*
    248 	 * main loop
    249 	 */
    250 
    251 	for (;;) {
    252 		bool needsscan, needsfree, kmem_va_starved;
    253 
    254 		kmem_va_starved = uvm_km_va_starved_p();
    255 
    256 		mutex_spin_enter(&uvm_fpageqlock);
    257 		if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
    258 		    !kmem_va_starved) {
    259 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    260 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    261 			    &uvm_fpageqlock, false, "pgdaemon", 0);
    262 			uvmexp.pdwoke++;
    263 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    264 		} else {
    265 			mutex_spin_exit(&uvm_fpageqlock);
    266 		}
    267 
    268 		/*
    269 		 * now lock page queues and recompute inactive count
    270 		 */
    271 
    272 		mutex_enter(&uvm_pageqlock);
    273 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    274 			npages = uvmexp.npages;
    275 			extrapages = uvm_extrapages;
    276 			mutex_spin_enter(&uvm_fpageqlock);
    277 			uvmpd_tune();
    278 			mutex_spin_exit(&uvm_fpageqlock);
    279 		}
    280 
    281 		uvmpdpol_tune();
    282 
    283 		/*
    284 		 * Estimate a hint.  Note that bufmem are returned to
    285 		 * system only when entire pool page is empty.
    286 		 */
    287 		mutex_spin_enter(&uvm_fpageqlock);
    288 		bufcnt = uvmexp.freetarg - uvmexp.free;
    289 		if (bufcnt < 0)
    290 			bufcnt = 0;
    291 
    292 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d",
    293 		    uvmexp.free, uvmexp.freetarg, 0,0);
    294 
    295 		needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
    296 		needsscan = needsfree || uvmpdpol_needsscan_p();
    297 
    298 		/*
    299 		 * scan if needed
    300 		 */
    301 		if (needsscan) {
    302 			mutex_spin_exit(&uvm_fpageqlock);
    303 			uvmpd_scan();
    304 			mutex_spin_enter(&uvm_fpageqlock);
    305 		}
    306 
    307 		/*
    308 		 * if there's any free memory to be had,
    309 		 * wake up any waiters.
    310 		 */
    311 		if (uvmexp.free > uvmexp.reserve_kernel ||
    312 		    uvmexp.paging == 0) {
    313 			wakeup(&uvmexp.free);
    314 			uvm_pagedaemon_waiters = 0;
    315 		}
    316 		mutex_spin_exit(&uvm_fpageqlock);
    317 
    318 		/*
    319 		 * scan done.  unlock page queues (the only lock we are holding)
    320 		 */
    321 		mutex_exit(&uvm_pageqlock);
    322 
    323 		/*
    324 		 * if we don't need free memory, we're done.
    325 		 */
    326 
    327 		if (!needsfree && !kmem_va_starved)
    328 			continue;
    329 
    330 		/*
    331 		 * start draining pool resources now that we're not
    332 		 * holding any locks.
    333 		 */
    334 		pool_drain_start(&pp, &where);
    335 
    336 		/*
    337 		 * kill unused metadata buffers.
    338 		 */
    339 		mutex_enter(&bufcache_lock);
    340 		buf_drain(bufcnt << PAGE_SHIFT);
    341 		mutex_exit(&bufcache_lock);
    342 
    343 		/*
    344 		 * complete draining the pools.
    345 		 */
    346 		pool_drain_end(pp, where);
    347 	}
    348 	/*NOTREACHED*/
    349 }
    350 
    351 
    352 /*
    353  * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
    354  */
    355 
    356 void
    357 uvm_aiodone_worker(struct work *wk, void *dummy)
    358 {
    359 	struct buf *bp = (void *)wk;
    360 
    361 	KASSERT(&bp->b_work == wk);
    362 
    363 	/*
    364 	 * process an i/o that's done.
    365 	 */
    366 
    367 	(*bp->b_iodone)(bp);
    368 }
    369 
    370 void
    371 uvm_pageout_start(int npages)
    372 {
    373 
    374 	mutex_spin_enter(&uvm_fpageqlock);
    375 	uvmexp.paging += npages;
    376 	mutex_spin_exit(&uvm_fpageqlock);
    377 }
    378 
    379 void
    380 uvm_pageout_done(int npages)
    381 {
    382 
    383 	mutex_spin_enter(&uvm_fpageqlock);
    384 	KASSERT(uvmexp.paging >= npages);
    385 	uvmexp.paging -= npages;
    386 
    387 	/*
    388 	 * wake up either of pagedaemon or LWPs waiting for it.
    389 	 */
    390 
    391 	if (uvmexp.free <= uvmexp.reserve_kernel) {
    392 		wakeup(&uvm.pagedaemon);
    393 	} else {
    394 		wakeup(&uvmexp.free);
    395 		uvm_pagedaemon_waiters = 0;
    396 	}
    397 	mutex_spin_exit(&uvm_fpageqlock);
    398 }
    399 
    400 /*
    401  * uvmpd_trylockowner: trylock the page's owner.
    402  *
    403  * => called with pageq locked.
    404  * => resolve orphaned O->A loaned page.
    405  * => return the locked mutex on success.  otherwise, return NULL.
    406  */
    407 
    408 kmutex_t *
    409 uvmpd_trylockowner(struct vm_page *pg)
    410 {
    411 	kmutex_t *lock;
    412 
    413 	KASSERT(mutex_owned(&uvm_pageqlock));
    414 	lock = uvm_page_getlock(pg);
    415 	KASSERT(lock != NULL);
    416 	if (!mutex_tryenter(lock)) {
    417 		return NULL;
    418 	}
    419 	uvm_loan_resolve_orphan(pg, true);
    420 	return lock;
    421 }
    422 
    423 #if defined(VMSWAP)
    424 struct swapcluster {
    425 	int swc_slot;
    426 	int swc_nallocated;
    427 	int swc_nused;
    428 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    429 };
    430 
    431 static void
    432 swapcluster_init(struct swapcluster *swc)
    433 {
    434 
    435 	swc->swc_slot = 0;
    436 	swc->swc_nused = 0;
    437 }
    438 
    439 static int
    440 swapcluster_allocslots(struct swapcluster *swc)
    441 {
    442 	int slot;
    443 	int npages;
    444 
    445 	if (swc->swc_slot != 0) {
    446 		return 0;
    447 	}
    448 
    449 	/* Even with strange MAXPHYS, the shift
    450 	   implicitly rounds down to a page. */
    451 	npages = MAXPHYS >> PAGE_SHIFT;
    452 	slot = uvm_swap_alloc(&npages, true);
    453 	if (slot == 0) {
    454 		return ENOMEM;
    455 	}
    456 	swc->swc_slot = slot;
    457 	swc->swc_nallocated = npages;
    458 	swc->swc_nused = 0;
    459 
    460 	return 0;
    461 }
    462 
    463 static int
    464 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    465 {
    466 	int slot;
    467 	struct uvm_object *uobj;
    468 
    469 	KASSERT(swc->swc_slot != 0);
    470 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    471 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
    472 
    473 	slot = swc->swc_slot + swc->swc_nused;
    474 	uobj = pg->uobject;
    475 	if (uobj == NULL) {
    476 		KASSERT(mutex_owned(pg->uanon->an_lock));
    477 		pg->uanon->an_swslot = slot;
    478 	} else {
    479 		int result;
    480 
    481 		KASSERT(mutex_owned(uobj->vmobjlock));
    482 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    483 		if (result == -1) {
    484 			return ENOMEM;
    485 		}
    486 	}
    487 	swc->swc_pages[swc->swc_nused] = pg;
    488 	swc->swc_nused++;
    489 
    490 	return 0;
    491 }
    492 
    493 static void
    494 swapcluster_flush(struct swapcluster *swc, bool now)
    495 {
    496 	int slot;
    497 	int nused;
    498 	int nallocated;
    499 	int error;
    500 
    501 	if (swc->swc_slot == 0) {
    502 		return;
    503 	}
    504 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    505 
    506 	slot = swc->swc_slot;
    507 	nused = swc->swc_nused;
    508 	nallocated = swc->swc_nallocated;
    509 
    510 	/*
    511 	 * if this is the final pageout we could have a few
    512 	 * unused swap blocks.  if so, free them now.
    513 	 */
    514 
    515 	if (nused < nallocated) {
    516 		if (!now) {
    517 			return;
    518 		}
    519 		uvm_swap_free(slot + nused, nallocated - nused);
    520 	}
    521 
    522 	/*
    523 	 * now start the pageout.
    524 	 */
    525 
    526 	if (nused > 0) {
    527 		uvmexp.pdpageouts++;
    528 		uvm_pageout_start(nused);
    529 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    530 		KASSERT(error == 0 || error == ENOMEM);
    531 	}
    532 
    533 	/*
    534 	 * zero swslot to indicate that we are
    535 	 * no longer building a swap-backed cluster.
    536 	 */
    537 
    538 	swc->swc_slot = 0;
    539 	swc->swc_nused = 0;
    540 }
    541 
    542 static int
    543 swapcluster_nused(struct swapcluster *swc)
    544 {
    545 
    546 	return swc->swc_nused;
    547 }
    548 
    549 /*
    550  * uvmpd_dropswap: free any swap allocated to this page.
    551  *
    552  * => called with owner locked.
    553  * => return true if a page had an associated slot.
    554  */
    555 
    556 static bool
    557 uvmpd_dropswap(struct vm_page *pg)
    558 {
    559 	bool result = false;
    560 	struct vm_anon *anon = pg->uanon;
    561 
    562 	if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
    563 		uvm_swap_free(anon->an_swslot, 1);
    564 		anon->an_swslot = 0;
    565 		uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    566 		result = true;
    567 	} else if (pg->pqflags & PQ_AOBJ) {
    568 		int slot = uao_set_swslot(pg->uobject,
    569 		    pg->offset >> PAGE_SHIFT, 0);
    570 		if (slot) {
    571 			uvm_swap_free(slot, 1);
    572 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    573 			result = true;
    574 		}
    575 	}
    576 
    577 	return result;
    578 }
    579 
    580 /*
    581  * uvmpd_trydropswap: try to free any swap allocated to this page.
    582  *
    583  * => return true if a slot is successfully freed.
    584  */
    585 
    586 bool
    587 uvmpd_trydropswap(struct vm_page *pg)
    588 {
    589 	kmutex_t *slock;
    590 	bool result;
    591 
    592 	if ((pg->flags & PG_BUSY) != 0) {
    593 		return false;
    594 	}
    595 
    596 	/*
    597 	 * lock the page's owner.
    598 	 */
    599 
    600 	slock = uvmpd_trylockowner(pg);
    601 	if (slock == NULL) {
    602 		return false;
    603 	}
    604 
    605 	/*
    606 	 * skip this page if it's busy.
    607 	 */
    608 
    609 	if ((pg->flags & PG_BUSY) != 0) {
    610 		mutex_exit(slock);
    611 		return false;
    612 	}
    613 
    614 	result = uvmpd_dropswap(pg);
    615 
    616 	mutex_exit(slock);
    617 
    618 	return result;
    619 }
    620 
    621 #endif /* defined(VMSWAP) */
    622 
    623 /*
    624  * uvmpd_scan_queue: scan an replace candidate list for pages
    625  * to clean or free.
    626  *
    627  * => called with page queues locked
    628  * => we work on meeting our free target by converting inactive pages
    629  *    into free pages.
    630  * => we handle the building of swap-backed clusters
    631  */
    632 
    633 static void
    634 uvmpd_scan_queue(void)
    635 {
    636 	struct vm_page *p;
    637 	struct uvm_object *uobj;
    638 	struct vm_anon *anon;
    639 #if defined(VMSWAP)
    640 	struct swapcluster swc;
    641 #endif /* defined(VMSWAP) */
    642 	int dirtyreacts;
    643 	int lockownerfail;
    644 	kmutex_t *slock;
    645 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    646 
    647 #if defined(VMSWAP)
    648 	swapcluster_init(&swc);
    649 #endif /* defined(VMSWAP) */
    650 
    651 	dirtyreacts = 0;
    652 	lockownerfail = 0;
    653 	uvmpdpol_scaninit();
    654 
    655 	while (/* CONSTCOND */ 1) {
    656 
    657 		/*
    658 		 * see if we've met the free target.
    659 		 */
    660 
    661 		if (uvmexp.free + uvmexp.paging
    662 #if defined(VMSWAP)
    663 		    + swapcluster_nused(&swc)
    664 #endif /* defined(VMSWAP) */
    665 		    >= uvmexp.freetarg << 2 ||
    666 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    667 			UVMHIST_LOG(pdhist,"  met free target: "
    668 				    "exit loop", 0, 0, 0, 0);
    669 			break;
    670 		}
    671 
    672 		p = uvmpdpol_selectvictim();
    673 		if (p == NULL) {
    674 			break;
    675 		}
    676 		KASSERT(uvmpdpol_pageisqueued_p(p));
    677 		KASSERT(p->wire_count == 0);
    678 
    679 		/*
    680 		 * we are below target and have a new page to consider.
    681 		 */
    682 
    683 		anon = p->uanon;
    684 		uobj = p->uobject;
    685 
    686 		/*
    687 		 * first we attempt to lock the object that this page
    688 		 * belongs to.  if our attempt fails we skip on to
    689 		 * the next page (no harm done).  it is important to
    690 		 * "try" locking the object as we are locking in the
    691 		 * wrong order (pageq -> object) and we don't want to
    692 		 * deadlock.
    693 		 *
    694 		 * the only time we expect to see an ownerless page
    695 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
    696 		 * anon has loaned a page from a uvm_object and the
    697 		 * uvm_object has dropped the ownership.  in that
    698 		 * case, the anon can "take over" the loaned page
    699 		 * and make it its own.
    700 		 */
    701 
    702 		slock = uvmpd_trylockowner(p);
    703 		if (slock == NULL) {
    704 			/*
    705 			 * yield cpu to make a chance for an LWP holding
    706 			 * the lock run.  otherwise we can busy-loop too long
    707 			 * if the page queue is filled with a lot of pages
    708 			 * from few objects.
    709 			 */
    710 			lockownerfail++;
    711 			if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
    712 				mutex_obj_pause(uvm_page_getlock(p),
    713 				    &uvm_pageqlock);
    714 				lockownerfail = 0;
    715 			}
    716 			continue;
    717 		}
    718 		if (p->flags & PG_BUSY) {
    719 			mutex_exit(slock);
    720 			uvmexp.pdbusy++;
    721 			continue;
    722 		}
    723 
    724 		/* does the page belong to an object? */
    725 		if (uobj != NULL) {
    726 			uvmexp.pdobscan++;
    727 		} else {
    728 #if defined(VMSWAP)
    729 			KASSERT(anon != NULL);
    730 			uvmexp.pdanscan++;
    731 #else /* defined(VMSWAP) */
    732 			panic("%s: anon", __func__);
    733 #endif /* defined(VMSWAP) */
    734 		}
    735 
    736 
    737 		/*
    738 		 * we now have the object and the page queues locked.
    739 		 * if the page is not swap-backed, call the object's
    740 		 * pager to flush and free the page.
    741 		 */
    742 
    743 #if defined(READAHEAD_STATS)
    744 		if ((p->pqflags & PQ_READAHEAD) != 0) {
    745 			p->pqflags &= ~PQ_READAHEAD;
    746 			uvm_ra_miss.ev_count++;
    747 		}
    748 #endif /* defined(READAHEAD_STATS) */
    749 
    750 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    751 			KASSERT(uobj != NULL);
    752 			mutex_exit(&uvm_pageqlock);
    753 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    754 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    755 			mutex_enter(&uvm_pageqlock);
    756 			continue;
    757 		}
    758 
    759 		/*
    760 		 * the page is swap-backed.  remove all the permissions
    761 		 * from the page so we can sync the modified info
    762 		 * without any race conditions.  if the page is clean
    763 		 * we can free it now and continue.
    764 		 */
    765 
    766 		pmap_page_protect(p, VM_PROT_NONE);
    767 		if (uvm_pagegetdirty(p) == UVM_PAGE_STATUS_UNKNOWN) {
    768 			if (pmap_clear_modify(p)) {
    769 				uvm_pagemarkdirty(p, UVM_PAGE_STATUS_DIRTY);
    770 			} else {
    771 				uvm_pagemarkdirty(p, UVM_PAGE_STATUS_CLEAN);
    772 			}
    773 		}
    774 		if (uvm_pagegetdirty(p) != UVM_PAGE_STATUS_DIRTY) {
    775 			int slot;
    776 			int pageidx;
    777 
    778 			pageidx = p->offset >> PAGE_SHIFT;
    779 			uvm_pagefree(p);
    780 			uvmexp.pdfreed++;
    781 
    782 			/*
    783 			 * for anons, we need to remove the page
    784 			 * from the anon ourselves.  for aobjs,
    785 			 * pagefree did that for us.
    786 			 */
    787 
    788 			if (anon) {
    789 				KASSERT(anon->an_swslot != 0);
    790 				anon->an_page = NULL;
    791 				slot = anon->an_swslot;
    792 			} else {
    793 				slot = uao_find_swslot(uobj, pageidx);
    794 			}
    795 			mutex_exit(slock);
    796 
    797 			if (slot > 0) {
    798 				/* this page is now only in swap. */
    799 				mutex_enter(&uvm_swap_data_lock);
    800 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    801 				uvmexp.swpgonly++;
    802 				mutex_exit(&uvm_swap_data_lock);
    803 			}
    804 			continue;
    805 		}
    806 
    807 #if defined(VMSWAP)
    808 		/*
    809 		 * this page is dirty, skip it if we'll have met our
    810 		 * free target when all the current pageouts complete.
    811 		 */
    812 
    813 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    814 			mutex_exit(slock);
    815 			continue;
    816 		}
    817 
    818 		/*
    819 		 * free any swap space allocated to the page since
    820 		 * we'll have to write it again with its new data.
    821 		 */
    822 
    823 		uvmpd_dropswap(p);
    824 
    825 		/*
    826 		 * start new swap pageout cluster (if necessary).
    827 		 *
    828 		 * if swap is full reactivate this page so that
    829 		 * we eventually cycle all pages through the
    830 		 * inactive queue.
    831 		 */
    832 
    833 		if (swapcluster_allocslots(&swc)) {
    834 			dirtyreacts++;
    835 			uvm_pageactivate(p);
    836 			mutex_exit(slock);
    837 			continue;
    838 		}
    839 
    840 		/*
    841 		 * at this point, we're definitely going reuse this
    842 		 * page.  mark the page busy and delayed-free.
    843 		 * we should remove the page from the page queues
    844 		 * so we don't ever look at it again.
    845 		 * adjust counters and such.
    846 		 */
    847 
    848 		p->flags |= PG_BUSY;
    849 		UVM_PAGE_OWN(p, "scan_queue");
    850 
    851 		p->flags |= PG_PAGEOUT;
    852 		uvm_pagedequeue(p);
    853 
    854 		uvmexp.pgswapout++;
    855 		mutex_exit(&uvm_pageqlock);
    856 
    857 		/*
    858 		 * add the new page to the cluster.
    859 		 */
    860 
    861 		if (swapcluster_add(&swc, p)) {
    862 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    863 			UVM_PAGE_OWN(p, NULL);
    864 			mutex_enter(&uvm_pageqlock);
    865 			dirtyreacts++;
    866 			uvm_pageactivate(p);
    867 			mutex_exit(slock);
    868 			continue;
    869 		}
    870 		mutex_exit(slock);
    871 
    872 		swapcluster_flush(&swc, false);
    873 		mutex_enter(&uvm_pageqlock);
    874 
    875 		/*
    876 		 * the pageout is in progress.  bump counters and set up
    877 		 * for the next loop.
    878 		 */
    879 
    880 		uvmexp.pdpending++;
    881 
    882 #else /* defined(VMSWAP) */
    883 		uvm_pageactivate(p);
    884 		mutex_exit(slock);
    885 #endif /* defined(VMSWAP) */
    886 	}
    887 
    888 #if defined(VMSWAP)
    889 	mutex_exit(&uvm_pageqlock);
    890 	swapcluster_flush(&swc, true);
    891 	mutex_enter(&uvm_pageqlock);
    892 #endif /* defined(VMSWAP) */
    893 }
    894 
    895 /*
    896  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    897  *
    898  * => called with pageq's locked
    899  */
    900 
    901 static void
    902 uvmpd_scan(void)
    903 {
    904 	int swap_shortage, pages_freed;
    905 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    906 
    907 	uvmexp.pdrevs++;
    908 
    909 	/*
    910 	 * work on meeting our targets.   first we work on our free target
    911 	 * by converting inactive pages into free pages.  then we work on
    912 	 * meeting our inactive target by converting active pages to
    913 	 * inactive ones.
    914 	 */
    915 
    916 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    917 
    918 	pages_freed = uvmexp.pdfreed;
    919 	uvmpd_scan_queue();
    920 	pages_freed = uvmexp.pdfreed - pages_freed;
    921 
    922 	/*
    923 	 * detect if we're not going to be able to page anything out
    924 	 * until we free some swap resources from active pages.
    925 	 */
    926 
    927 	swap_shortage = 0;
    928 	if (uvmexp.free < uvmexp.freetarg &&
    929 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    930 	    !uvm_swapisfull() &&
    931 	    pages_freed == 0) {
    932 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    933 	}
    934 
    935 	uvmpdpol_balancequeue(swap_shortage);
    936 
    937 	/*
    938 	 * if still below the minimum target, try unloading kernel
    939 	 * modules.
    940 	 */
    941 
    942 	if (uvmexp.free < uvmexp.freemin) {
    943 		module_thread_kick();
    944 	}
    945 }
    946 
    947 /*
    948  * uvm_reclaimable: decide whether to wait for pagedaemon.
    949  *
    950  * => return true if it seems to be worth to do uvm_wait.
    951  *
    952  * XXX should be tunable.
    953  * XXX should consider pools, etc?
    954  */
    955 
    956 bool
    957 uvm_reclaimable(void)
    958 {
    959 	int filepages;
    960 	int active, inactive;
    961 
    962 	/*
    963 	 * if swap is not full, no problem.
    964 	 */
    965 
    966 	if (!uvm_swapisfull()) {
    967 		return true;
    968 	}
    969 
    970 	/*
    971 	 * file-backed pages can be reclaimed even when swap is full.
    972 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    973 	 *
    974 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    975 	 *
    976 	 * XXX should consider about other reclaimable memory.
    977 	 * XXX ie. pools, traditional buffer cache.
    978 	 */
    979 
    980 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
    981 	uvm_estimatepageable(&active, &inactive);
    982 	if (filepages >= MIN((active + inactive) >> 4,
    983 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
    984 		return true;
    985 	}
    986 
    987 	/*
    988 	 * kill the process, fail allocation, etc..
    989 	 */
    990 
    991 	return false;
    992 }
    993 
    994 void
    995 uvm_estimatepageable(int *active, int *inactive)
    996 {
    997 
    998 	uvmpdpol_estimatepageable(active, inactive);
    999 }
   1000 
   1001