uvm_pdaemon.c revision 1.103.2.6 1 /* $NetBSD: uvm_pdaemon.c,v 1.103.2.6 2014/05/22 11:41:19 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
37 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_pdaemon.c: the page daemon
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.103.2.6 2014/05/22 11:41:19 yamt Exp $");
70
71 #include "opt_uvmhist.h"
72 #include "opt_readahead.h"
73
74 #include <sys/param.h>
75 #include <sys/proc.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/pool.h>
79 #include <sys/buf.h>
80 #include <sys/module.h>
81 #include <sys/atomic.h>
82
83 #include <uvm/uvm.h>
84 #include <uvm/uvm_pdpolicy.h>
85
86 #ifdef UVMHIST
87 UVMHIST_DEFINE(pdhist);
88 #endif
89
90 /*
91 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
92 * in a pass thru the inactive list when swap is full. the value should be
93 * "small"... if it's too large we'll cycle the active pages thru the inactive
94 * queue too quickly to for them to be referenced and avoid being freed.
95 */
96
97 #define UVMPD_NUMDIRTYREACTS 16
98
99 #define UVMPD_NUMTRYLOCKOWNER 16
100
101 /*
102 * local prototypes
103 */
104
105 static void uvmpd_scan(void);
106 static void uvmpd_scan_queue(void);
107 static void uvmpd_tune(void);
108
109 static unsigned int uvm_pagedaemon_waiters;
110
111 /*
112 * XXX hack to avoid hangs when large processes fork.
113 */
114 u_int uvm_extrapages;
115
116 /*
117 * uvm_wait: wait (sleep) for the page daemon to free some pages
118 *
119 * => should be called with all locks released
120 * => should _not_ be called by the page daemon (to avoid deadlock)
121 */
122
123 void
124 uvm_wait(const char *wmsg)
125 {
126 int timo = 0;
127
128 mutex_spin_enter(&uvm_fpageqlock);
129
130 /*
131 * check for page daemon going to sleep (waiting for itself)
132 */
133
134 if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
135 /*
136 * now we have a problem: the pagedaemon wants to go to
137 * sleep until it frees more memory. but how can it
138 * free more memory if it is asleep? that is a deadlock.
139 * we have two options:
140 * [1] panic now
141 * [2] put a timeout on the sleep, thus causing the
142 * pagedaemon to only pause (rather than sleep forever)
143 *
144 * note that option [2] will only help us if we get lucky
145 * and some other process on the system breaks the deadlock
146 * by exiting or freeing memory (thus allowing the pagedaemon
147 * to continue). for now we panic if DEBUG is defined,
148 * otherwise we hope for the best with option [2] (better
149 * yet, this should never happen in the first place!).
150 */
151
152 printf("pagedaemon: deadlock detected!\n");
153 timo = hz >> 3; /* set timeout */
154 #if defined(DEBUG)
155 /* DEBUG: panic so we can debug it */
156 panic("pagedaemon deadlock");
157 #endif
158 }
159
160 uvm_pagedaemon_waiters++;
161 wakeup(&uvm.pagedaemon); /* wake the daemon! */
162 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
163 }
164
165 /*
166 * uvm_kick_pdaemon: perform checks to determine if we need to
167 * give the pagedaemon a nudge, and do so if necessary.
168 *
169 * => called with uvm_fpageqlock held.
170 */
171
172 void
173 uvm_kick_pdaemon(void)
174 {
175
176 KASSERT(mutex_owned(&uvm_fpageqlock));
177
178 if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
179 (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
180 uvmpdpol_needsscan_p()) ||
181 uvm_km_va_starved_p()) {
182 wakeup(&uvm.pagedaemon);
183 }
184 }
185
186 /*
187 * uvmpd_tune: tune paging parameters
188 *
189 * => called when ever memory is added (or removed?) to the system
190 * => caller must call with page queues locked
191 */
192
193 static void
194 uvmpd_tune(void)
195 {
196 int val;
197
198 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
199
200 /*
201 * try to keep 0.5% of available RAM free, but limit to between
202 * 128k and 1024k per-CPU. XXX: what are these values good for?
203 */
204 val = uvmexp.npages / 200;
205 val = MAX(val, (128*1024) >> PAGE_SHIFT);
206 val = MIN(val, (1024*1024) >> PAGE_SHIFT);
207 val *= ncpu;
208
209 /* Make sure there's always a user page free. */
210 if (val < uvmexp.reserve_kernel + 1)
211 val = uvmexp.reserve_kernel + 1;
212 uvmexp.freemin = val;
213
214 /* Calculate free target. */
215 val = (uvmexp.freemin * 4) / 3;
216 if (val <= uvmexp.freemin)
217 val = uvmexp.freemin + 1;
218 uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
219
220 uvmexp.wiredmax = uvmexp.npages / 3;
221 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
222 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
223 }
224
225 /*
226 * uvm_pageout: the main loop for the pagedaemon
227 */
228
229 void
230 uvm_pageout(void *arg)
231 {
232 int bufcnt, npages = 0;
233 int extrapages = 0;
234 struct pool *pp;
235
236 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
237
238 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
239
240 /*
241 * ensure correct priority and set paging parameters...
242 */
243
244 uvm.pagedaemon_lwp = curlwp;
245 mutex_enter(&uvm_pageqlock);
246 npages = uvmexp.npages;
247 uvmpd_tune();
248 mutex_exit(&uvm_pageqlock);
249
250 /*
251 * main loop
252 */
253
254 for (;;) {
255 bool needsscan, needsfree, kmem_va_starved;
256
257 kmem_va_starved = uvm_km_va_starved_p();
258
259 mutex_spin_enter(&uvm_fpageqlock);
260 if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
261 !kmem_va_starved) {
262 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
263 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
264 &uvm_fpageqlock, false, "pgdaemon", 0);
265 uvmexp.pdwoke++;
266 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
267 } else {
268 mutex_spin_exit(&uvm_fpageqlock);
269 }
270
271 /*
272 * now lock page queues and recompute inactive count
273 */
274
275 mutex_enter(&uvm_pageqlock);
276 if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
277 npages = uvmexp.npages;
278 extrapages = uvm_extrapages;
279 mutex_spin_enter(&uvm_fpageqlock);
280 uvmpd_tune();
281 mutex_spin_exit(&uvm_fpageqlock);
282 }
283
284 uvmpdpol_tune();
285
286 /*
287 * Estimate a hint. Note that bufmem are returned to
288 * system only when entire pool page is empty.
289 */
290 mutex_spin_enter(&uvm_fpageqlock);
291 bufcnt = uvmexp.freetarg - uvmexp.free;
292 if (bufcnt < 0)
293 bufcnt = 0;
294
295 UVMHIST_LOG(pdhist," free/ftarg=%d/%d",
296 uvmexp.free, uvmexp.freetarg, 0,0);
297
298 needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
299 needsscan = needsfree || uvmpdpol_needsscan_p();
300
301 /*
302 * scan if needed
303 */
304 if (needsscan) {
305 mutex_spin_exit(&uvm_fpageqlock);
306 uvmpd_scan();
307 mutex_spin_enter(&uvm_fpageqlock);
308 }
309
310 /*
311 * if there's any free memory to be had,
312 * wake up any waiters.
313 */
314 if (uvmexp.free > uvmexp.reserve_kernel ||
315 uvmexp.paging == 0) {
316 wakeup(&uvmexp.free);
317 uvm_pagedaemon_waiters = 0;
318 }
319 mutex_spin_exit(&uvm_fpageqlock);
320
321 /*
322 * scan done. unlock page queues (the only lock we are holding)
323 */
324 mutex_exit(&uvm_pageqlock);
325
326 /*
327 * if we don't need free memory, we're done.
328 */
329
330 if (!needsfree && !kmem_va_starved)
331 continue;
332
333 /*
334 * kill unused metadata buffers.
335 */
336 mutex_enter(&bufcache_lock);
337 buf_drain(bufcnt << PAGE_SHIFT);
338 mutex_exit(&bufcache_lock);
339
340 /*
341 * drain the pools.
342 */
343 pool_drain(&pp);
344 }
345 /*NOTREACHED*/
346 }
347
348
349 /*
350 * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
351 */
352
353 void
354 uvm_aiodone_worker(struct work *wk, void *dummy)
355 {
356 struct buf *bp = (void *)wk;
357
358 KASSERT(&bp->b_work == wk);
359
360 /*
361 * process an i/o that's done.
362 */
363
364 (*bp->b_iodone)(bp);
365 }
366
367 void
368 uvm_pageout_start(int npages)
369 {
370
371 mutex_spin_enter(&uvm_fpageqlock);
372 uvmexp.paging += npages;
373 mutex_spin_exit(&uvm_fpageqlock);
374 }
375
376 void
377 uvm_pageout_done(int npages)
378 {
379
380 mutex_spin_enter(&uvm_fpageqlock);
381 KASSERT(uvmexp.paging >= npages);
382 uvmexp.paging -= npages;
383
384 /*
385 * wake up either of pagedaemon or LWPs waiting for it.
386 */
387
388 if (uvmexp.free <= uvmexp.reserve_kernel) {
389 wakeup(&uvm.pagedaemon);
390 } else {
391 wakeup(&uvmexp.free);
392 uvm_pagedaemon_waiters = 0;
393 }
394 mutex_spin_exit(&uvm_fpageqlock);
395 }
396
397 /*
398 * uvmpd_trylockowner: trylock the page's owner.
399 *
400 * => called with pageq locked.
401 * => resolve orphaned O->A loaned page.
402 * => return the locked mutex on success. otherwise, return NULL.
403 */
404
405 kmutex_t *
406 uvmpd_trylockowner(struct vm_page *pg)
407 {
408 kmutex_t *lock;
409
410 KASSERT(mutex_owned(&uvm_pageqlock));
411 lock = uvm_page_getlock(pg);
412 KASSERT(lock != NULL);
413 if (!mutex_tryenter(lock)) {
414 return NULL;
415 }
416 uvm_loan_resolve_orphan(pg, true);
417 return lock;
418 }
419
420 #if defined(VMSWAP)
421 struct swapcluster {
422 int swc_slot;
423 int swc_nallocated;
424 int swc_nused;
425 struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
426 };
427
428 static void
429 swapcluster_init(struct swapcluster *swc)
430 {
431
432 swc->swc_slot = 0;
433 swc->swc_nused = 0;
434 }
435
436 static int
437 swapcluster_allocslots(struct swapcluster *swc)
438 {
439 int slot;
440 int npages;
441
442 if (swc->swc_slot != 0) {
443 return 0;
444 }
445
446 /* Even with strange MAXPHYS, the shift
447 implicitly rounds down to a page. */
448 npages = MAXPHYS >> PAGE_SHIFT;
449 slot = uvm_swap_alloc(&npages, true);
450 if (slot == 0) {
451 return ENOMEM;
452 }
453 swc->swc_slot = slot;
454 swc->swc_nallocated = npages;
455 swc->swc_nused = 0;
456
457 return 0;
458 }
459
460 static int
461 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
462 {
463 int slot;
464 struct uvm_object *uobj;
465
466 KASSERT(swc->swc_slot != 0);
467 KASSERT(swc->swc_nused < swc->swc_nallocated);
468 KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
469
470 slot = swc->swc_slot + swc->swc_nused;
471 uobj = pg->uobject;
472 if (uobj == NULL) {
473 KASSERT(mutex_owned(pg->uanon->an_lock));
474 pg->uanon->an_swslot = slot;
475 } else {
476 int result;
477
478 KASSERT(mutex_owned(uobj->vmobjlock));
479 result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
480 if (result == -1) {
481 return ENOMEM;
482 }
483 }
484 swc->swc_pages[swc->swc_nused] = pg;
485 swc->swc_nused++;
486
487 return 0;
488 }
489
490 static void
491 swapcluster_flush(struct swapcluster *swc, bool now)
492 {
493 int slot;
494 int nused;
495 int nallocated;
496 int error __diagused;
497
498 if (swc->swc_slot == 0) {
499 return;
500 }
501 KASSERT(swc->swc_nused <= swc->swc_nallocated);
502
503 slot = swc->swc_slot;
504 nused = swc->swc_nused;
505 nallocated = swc->swc_nallocated;
506
507 /*
508 * if this is the final pageout we could have a few
509 * unused swap blocks. if so, free them now.
510 */
511
512 if (nused < nallocated) {
513 if (!now) {
514 return;
515 }
516 uvm_swap_free(slot + nused, nallocated - nused);
517 }
518
519 /*
520 * now start the pageout.
521 */
522
523 if (nused > 0) {
524 uvmexp.pdpageouts++;
525 uvm_pageout_start(nused);
526 error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
527 KASSERT(error == 0 || error == ENOMEM);
528 }
529
530 /*
531 * zero swslot to indicate that we are
532 * no longer building a swap-backed cluster.
533 */
534
535 swc->swc_slot = 0;
536 swc->swc_nused = 0;
537 }
538
539 static int
540 swapcluster_nused(struct swapcluster *swc)
541 {
542
543 return swc->swc_nused;
544 }
545
546 /*
547 * uvmpd_dropswap: free any swap allocated to this page.
548 *
549 * => called with owner locked.
550 * => return true if a page had an associated slot.
551 */
552
553 static bool
554 uvmpd_dropswap(struct vm_page *pg)
555 {
556 bool result = false;
557 struct vm_anon *anon = pg->uanon;
558
559 if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
560 uvm_swap_free(anon->an_swslot, 1);
561 anon->an_swslot = 0;
562 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
563 result = true;
564 } else if (pg->pqflags & PQ_AOBJ) {
565 int slot = uao_set_swslot(pg->uobject,
566 pg->offset >> PAGE_SHIFT, 0);
567 if (slot) {
568 uvm_swap_free(slot, 1);
569 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
570 result = true;
571 }
572 }
573
574 return result;
575 }
576
577 /*
578 * uvmpd_trydropswap: try to free any swap allocated to this page.
579 *
580 * => return true if a slot is successfully freed.
581 */
582
583 bool
584 uvmpd_trydropswap(struct vm_page *pg)
585 {
586 kmutex_t *slock;
587 bool result;
588
589 if ((pg->flags & PG_BUSY) != 0) {
590 return false;
591 }
592
593 /*
594 * lock the page's owner.
595 */
596
597 slock = uvmpd_trylockowner(pg);
598 if (slock == NULL) {
599 return false;
600 }
601
602 /*
603 * skip this page if it's busy.
604 */
605
606 if ((pg->flags & PG_BUSY) != 0) {
607 mutex_exit(slock);
608 return false;
609 }
610
611 result = uvmpd_dropswap(pg);
612
613 mutex_exit(slock);
614
615 return result;
616 }
617
618 #endif /* defined(VMSWAP) */
619
620 /*
621 * uvmpd_scan_queue: scan an replace candidate list for pages
622 * to clean or free.
623 *
624 * => called with page queues locked
625 * => we work on meeting our free target by converting inactive pages
626 * into free pages.
627 * => we handle the building of swap-backed clusters
628 */
629
630 static void
631 uvmpd_scan_queue(void)
632 {
633 struct vm_page *p;
634 struct uvm_object *uobj;
635 struct vm_anon *anon;
636 #if defined(VMSWAP)
637 struct swapcluster swc;
638 #endif /* defined(VMSWAP) */
639 int dirtyreacts;
640 int lockownerfail;
641 kmutex_t *slock;
642 UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
643
644 #if defined(VMSWAP)
645 swapcluster_init(&swc);
646 #endif /* defined(VMSWAP) */
647
648 dirtyreacts = 0;
649 lockownerfail = 0;
650 uvmpdpol_scaninit();
651
652 while (/* CONSTCOND */ 1) {
653
654 /*
655 * see if we've met the free target.
656 */
657
658 if (uvmexp.free + uvmexp.paging
659 #if defined(VMSWAP)
660 + swapcluster_nused(&swc)
661 #endif /* defined(VMSWAP) */
662 >= uvmexp.freetarg << 2 ||
663 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
664 UVMHIST_LOG(pdhist," met free target: "
665 "exit loop", 0, 0, 0, 0);
666 break;
667 }
668
669 p = uvmpdpol_selectvictim();
670 if (p == NULL) {
671 break;
672 }
673 KASSERT(uvmpdpol_pageisqueued_p(p));
674 KASSERT(p->wire_count == 0);
675
676 /*
677 * we are below target and have a new page to consider.
678 */
679
680 anon = p->uanon;
681 uobj = p->uobject;
682
683 /*
684 * first we attempt to lock the object that this page
685 * belongs to. if our attempt fails we skip on to
686 * the next page (no harm done). it is important to
687 * "try" locking the object as we are locking in the
688 * wrong order (pageq -> object) and we don't want to
689 * deadlock.
690 *
691 * the only time we expect to see an ownerless page
692 * (i.e. a page with no uobject and !PQ_ANON) is if an
693 * anon has loaned a page from a uvm_object and the
694 * uvm_object has dropped the ownership. in that
695 * case, the anon can "take over" the loaned page
696 * and make it its own.
697 */
698
699 slock = uvmpd_trylockowner(p);
700 if (slock == NULL) {
701 /*
702 * yield cpu to make a chance for an LWP holding
703 * the lock run. otherwise we can busy-loop too long
704 * if the page queue is filled with a lot of pages
705 * from few objects.
706 */
707 lockownerfail++;
708 if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
709 mutex_obj_pause(uvm_page_getlock(p),
710 &uvm_pageqlock);
711 lockownerfail = 0;
712 }
713 continue;
714 }
715 if (p->flags & PG_BUSY) {
716 mutex_exit(slock);
717 uvmexp.pdbusy++;
718 continue;
719 }
720
721 /* does the page belong to an object? */
722 if (uobj != NULL) {
723 uvmexp.pdobscan++;
724 } else {
725 #if defined(VMSWAP)
726 KASSERT(anon != NULL);
727 uvmexp.pdanscan++;
728 #else /* defined(VMSWAP) */
729 panic("%s: anon", __func__);
730 #endif /* defined(VMSWAP) */
731 }
732
733
734 /*
735 * we now have the object and the page queues locked.
736 * if the page is not swap-backed, call the object's
737 * pager to flush and free the page.
738 */
739
740 #if defined(READAHEAD_STATS)
741 if ((p->pqflags & PQ_READAHEAD) != 0) {
742 p->pqflags &= ~PQ_READAHEAD;
743 uvm_ra_miss.ev_count++;
744 }
745 #endif /* defined(READAHEAD_STATS) */
746
747 if ((p->pqflags & PQ_SWAPBACKED) == 0) {
748 KASSERT(uobj != NULL);
749 mutex_exit(&uvm_pageqlock);
750 (void) (uobj->pgops->pgo_put)(uobj, p->offset,
751 p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
752 mutex_enter(&uvm_pageqlock);
753 continue;
754 }
755
756 /*
757 * the page is swap-backed. remove all the permissions
758 * from the page so we can sync the modified info
759 * without any race conditions. if the page is clean
760 * we can free it now and continue.
761 */
762
763 pmap_page_protect(p, VM_PROT_NONE);
764 if (uvm_pagegetdirty(p) == UVM_PAGE_STATUS_UNKNOWN) {
765 if (pmap_clear_modify(p)) {
766 uvm_pagemarkdirty(p, UVM_PAGE_STATUS_DIRTY);
767 } else {
768 uvm_pagemarkdirty(p, UVM_PAGE_STATUS_CLEAN);
769 }
770 }
771 if (uvm_pagegetdirty(p) != UVM_PAGE_STATUS_DIRTY) {
772 int slot;
773 int pageidx;
774
775 pageidx = p->offset >> PAGE_SHIFT;
776 uvm_pagefree(p);
777 uvmexp.pdfreed++;
778
779 /*
780 * for anons, we need to remove the page
781 * from the anon ourselves. for aobjs,
782 * pagefree did that for us.
783 */
784
785 if (anon) {
786 KASSERT(anon->an_swslot != 0);
787 anon->an_page = NULL;
788 slot = anon->an_swslot;
789 } else {
790 slot = uao_find_swslot(uobj, pageidx);
791 }
792 mutex_exit(slock);
793
794 if (slot > 0) {
795 /* this page is now only in swap. */
796 mutex_enter(&uvm_swap_data_lock);
797 KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
798 uvmexp.swpgonly++;
799 mutex_exit(&uvm_swap_data_lock);
800 }
801 continue;
802 }
803
804 #if defined(VMSWAP)
805 /*
806 * this page is dirty, skip it if we'll have met our
807 * free target when all the current pageouts complete.
808 */
809
810 if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
811 mutex_exit(slock);
812 continue;
813 }
814
815 /*
816 * free any swap space allocated to the page since
817 * we'll have to write it again with its new data.
818 */
819
820 uvmpd_dropswap(p);
821
822 /*
823 * start new swap pageout cluster (if necessary).
824 *
825 * if swap is full reactivate this page so that
826 * we eventually cycle all pages through the
827 * inactive queue.
828 */
829
830 if (swapcluster_allocslots(&swc)) {
831 dirtyreacts++;
832 uvm_pageactivate(p);
833 mutex_exit(slock);
834 continue;
835 }
836
837 /*
838 * at this point, we're definitely going reuse this
839 * page. mark the page busy and delayed-free.
840 * we should remove the page from the page queues
841 * so we don't ever look at it again.
842 * adjust counters and such.
843 */
844
845 p->flags |= PG_BUSY;
846 UVM_PAGE_OWN(p, "scan_queue");
847
848 p->flags |= PG_PAGEOUT;
849 uvm_pagedequeue(p);
850
851 uvmexp.pgswapout++;
852 mutex_exit(&uvm_pageqlock);
853
854 /*
855 * add the new page to the cluster.
856 */
857
858 if (swapcluster_add(&swc, p)) {
859 p->flags &= ~(PG_BUSY|PG_PAGEOUT);
860 UVM_PAGE_OWN(p, NULL);
861 mutex_enter(&uvm_pageqlock);
862 dirtyreacts++;
863 uvm_pageactivate(p);
864 mutex_exit(slock);
865 continue;
866 }
867 mutex_exit(slock);
868
869 swapcluster_flush(&swc, false);
870 mutex_enter(&uvm_pageqlock);
871
872 /*
873 * the pageout is in progress. bump counters and set up
874 * for the next loop.
875 */
876
877 uvmexp.pdpending++;
878
879 #else /* defined(VMSWAP) */
880 uvm_pageactivate(p);
881 mutex_exit(slock);
882 #endif /* defined(VMSWAP) */
883 }
884
885 #if defined(VMSWAP)
886 mutex_exit(&uvm_pageqlock);
887 swapcluster_flush(&swc, true);
888 mutex_enter(&uvm_pageqlock);
889 #endif /* defined(VMSWAP) */
890 }
891
892 /*
893 * uvmpd_scan: scan the page queues and attempt to meet our targets.
894 *
895 * => called with pageq's locked
896 */
897
898 static void
899 uvmpd_scan(void)
900 {
901 int swap_shortage, pages_freed;
902 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
903
904 uvmexp.pdrevs++;
905
906 /*
907 * work on meeting our targets. first we work on our free target
908 * by converting inactive pages into free pages. then we work on
909 * meeting our inactive target by converting active pages to
910 * inactive ones.
911 */
912
913 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
914
915 pages_freed = uvmexp.pdfreed;
916 uvmpd_scan_queue();
917 pages_freed = uvmexp.pdfreed - pages_freed;
918
919 /*
920 * detect if we're not going to be able to page anything out
921 * until we free some swap resources from active pages.
922 */
923
924 swap_shortage = 0;
925 if (uvmexp.free < uvmexp.freetarg &&
926 uvmexp.swpginuse >= uvmexp.swpgavail &&
927 !uvm_swapisfull() &&
928 pages_freed == 0) {
929 swap_shortage = uvmexp.freetarg - uvmexp.free;
930 }
931
932 uvmpdpol_balancequeue(swap_shortage);
933
934 /*
935 * if still below the minimum target, try unloading kernel
936 * modules.
937 */
938
939 if (uvmexp.free < uvmexp.freemin) {
940 module_thread_kick();
941 }
942 }
943
944 /*
945 * uvm_reclaimable: decide whether to wait for pagedaemon.
946 *
947 * => return true if it seems to be worth to do uvm_wait.
948 *
949 * XXX should be tunable.
950 * XXX should consider pools, etc?
951 */
952
953 bool
954 uvm_reclaimable(void)
955 {
956 int filepages;
957 int active, inactive;
958
959 /*
960 * if swap is not full, no problem.
961 */
962
963 if (!uvm_swapisfull()) {
964 return true;
965 }
966
967 /*
968 * file-backed pages can be reclaimed even when swap is full.
969 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
970 *
971 * XXX assume the worst case, ie. all wired pages are file-backed.
972 *
973 * XXX should consider about other reclaimable memory.
974 * XXX ie. pools, traditional buffer cache.
975 */
976
977 filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
978 uvm_estimatepageable(&active, &inactive);
979 if (filepages >= MIN((active + inactive) >> 4,
980 5 * 1024 * 1024 >> PAGE_SHIFT)) {
981 return true;
982 }
983
984 /*
985 * kill the process, fail allocation, etc..
986 */
987
988 return false;
989 }
990
991 void
992 uvm_estimatepageable(int *active, int *inactive)
993 {
994
995 uvmpdpol_estimatepageable(active, inactive);
996 }
997
998