Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.104
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.104 2012/01/27 19:48:42 para Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     37  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_pdaemon.c: the page daemon
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.104 2012/01/27 19:48:42 para Exp $");
     70 
     71 #include "opt_uvmhist.h"
     72 #include "opt_readahead.h"
     73 
     74 #include <sys/param.h>
     75 #include <sys/proc.h>
     76 #include <sys/systm.h>
     77 #include <sys/kernel.h>
     78 #include <sys/pool.h>
     79 #include <sys/buf.h>
     80 #include <sys/module.h>
     81 #include <sys/atomic.h>
     82 
     83 #include <uvm/uvm.h>
     84 #include <uvm/uvm_pdpolicy.h>
     85 
     86 /*
     87  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     88  * in a pass thru the inactive list when swap is full.  the value should be
     89  * "small"... if it's too large we'll cycle the active pages thru the inactive
     90  * queue too quickly to for them to be referenced and avoid being freed.
     91  */
     92 
     93 #define	UVMPD_NUMDIRTYREACTS	16
     94 
     95 #define	UVMPD_NUMTRYLOCKOWNER	16
     96 
     97 /*
     98  * local prototypes
     99  */
    100 
    101 static void	uvmpd_scan(void);
    102 static void	uvmpd_scan_queue(void);
    103 static void	uvmpd_tune(void);
    104 
    105 static unsigned int uvm_pagedaemon_waiters;
    106 
    107 /*
    108  * XXX hack to avoid hangs when large processes fork.
    109  */
    110 u_int uvm_extrapages;
    111 
    112 /*
    113  * uvm_wait: wait (sleep) for the page daemon to free some pages
    114  *
    115  * => should be called with all locks released
    116  * => should _not_ be called by the page daemon (to avoid deadlock)
    117  */
    118 
    119 void
    120 uvm_wait(const char *wmsg)
    121 {
    122 	int timo = 0;
    123 
    124 	mutex_spin_enter(&uvm_fpageqlock);
    125 
    126 	/*
    127 	 * check for page daemon going to sleep (waiting for itself)
    128 	 */
    129 
    130 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    131 		/*
    132 		 * now we have a problem: the pagedaemon wants to go to
    133 		 * sleep until it frees more memory.   but how can it
    134 		 * free more memory if it is asleep?  that is a deadlock.
    135 		 * we have two options:
    136 		 *  [1] panic now
    137 		 *  [2] put a timeout on the sleep, thus causing the
    138 		 *      pagedaemon to only pause (rather than sleep forever)
    139 		 *
    140 		 * note that option [2] will only help us if we get lucky
    141 		 * and some other process on the system breaks the deadlock
    142 		 * by exiting or freeing memory (thus allowing the pagedaemon
    143 		 * to continue).  for now we panic if DEBUG is defined,
    144 		 * otherwise we hope for the best with option [2] (better
    145 		 * yet, this should never happen in the first place!).
    146 		 */
    147 
    148 		printf("pagedaemon: deadlock detected!\n");
    149 		timo = hz >> 3;		/* set timeout */
    150 #if defined(DEBUG)
    151 		/* DEBUG: panic so we can debug it */
    152 		panic("pagedaemon deadlock");
    153 #endif
    154 	}
    155 
    156 	uvm_pagedaemon_waiters++;
    157 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    158 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
    159 }
    160 
    161 /*
    162  * uvm_kick_pdaemon: perform checks to determine if we need to
    163  * give the pagedaemon a nudge, and do so if necessary.
    164  *
    165  * => called with uvm_fpageqlock held.
    166  */
    167 
    168 void
    169 uvm_kick_pdaemon(void)
    170 {
    171 
    172 	KASSERT(mutex_owned(&uvm_fpageqlock));
    173 
    174 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    175 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    176 	     uvmpdpol_needsscan_p())) {
    177 		wakeup(&uvm.pagedaemon);
    178 	}
    179 }
    180 
    181 /*
    182  * uvmpd_tune: tune paging parameters
    183  *
    184  * => called when ever memory is added (or removed?) to the system
    185  * => caller must call with page queues locked
    186  */
    187 
    188 static void
    189 uvmpd_tune(void)
    190 {
    191 	int val;
    192 
    193 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    194 
    195 	/*
    196 	 * try to keep 0.5% of available RAM free, but limit to between
    197 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
    198 	 */
    199 	val = uvmexp.npages / 200;
    200 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
    201 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
    202 	val *= ncpu;
    203 
    204 	/* Make sure there's always a user page free. */
    205 	if (val < uvmexp.reserve_kernel + 1)
    206 		val = uvmexp.reserve_kernel + 1;
    207 	uvmexp.freemin = val;
    208 
    209 	/* Calculate free target. */
    210 	val = (uvmexp.freemin * 4) / 3;
    211 	if (val <= uvmexp.freemin)
    212 		val = uvmexp.freemin + 1;
    213 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
    214 
    215 	uvmexp.wiredmax = uvmexp.npages / 3;
    216 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    217 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    218 }
    219 
    220 /*
    221  * uvm_pageout: the main loop for the pagedaemon
    222  */
    223 
    224 void
    225 uvm_pageout(void *arg)
    226 {
    227 	int bufcnt, npages = 0;
    228 	int extrapages = 0;
    229 	struct pool *pp;
    230 	uint64_t where;
    231 
    232 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    233 
    234 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    235 
    236 	/*
    237 	 * ensure correct priority and set paging parameters...
    238 	 */
    239 
    240 	uvm.pagedaemon_lwp = curlwp;
    241 	mutex_enter(&uvm_pageqlock);
    242 	npages = uvmexp.npages;
    243 	uvmpd_tune();
    244 	mutex_exit(&uvm_pageqlock);
    245 
    246 	/*
    247 	 * main loop
    248 	 */
    249 
    250 	for (;;) {
    251 		bool needsscan, needsfree;
    252 
    253 		mutex_spin_enter(&uvm_fpageqlock);
    254 		if (uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) {
    255 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    256 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    257 			    &uvm_fpageqlock, false, "pgdaemon", 0);
    258 			uvmexp.pdwoke++;
    259 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    260 		} else {
    261 			mutex_spin_exit(&uvm_fpageqlock);
    262 		}
    263 
    264 		/*
    265 		 * now lock page queues and recompute inactive count
    266 		 */
    267 
    268 		mutex_enter(&uvm_pageqlock);
    269 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    270 			npages = uvmexp.npages;
    271 			extrapages = uvm_extrapages;
    272 			mutex_spin_enter(&uvm_fpageqlock);
    273 			uvmpd_tune();
    274 			mutex_spin_exit(&uvm_fpageqlock);
    275 		}
    276 
    277 		uvmpdpol_tune();
    278 
    279 		/*
    280 		 * Estimate a hint.  Note that bufmem are returned to
    281 		 * system only when entire pool page is empty.
    282 		 */
    283 		mutex_spin_enter(&uvm_fpageqlock);
    284 		bufcnt = uvmexp.freetarg - uvmexp.free;
    285 		if (bufcnt < 0)
    286 			bufcnt = 0;
    287 
    288 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d",
    289 		    uvmexp.free, uvmexp.freetarg, 0,0);
    290 
    291 		needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
    292 		needsscan = needsfree || uvmpdpol_needsscan_p();
    293 
    294 		/*
    295 		 * scan if needed
    296 		 */
    297 		if (needsscan) {
    298 			mutex_spin_exit(&uvm_fpageqlock);
    299 			uvmpd_scan();
    300 			mutex_spin_enter(&uvm_fpageqlock);
    301 		}
    302 
    303 		/*
    304 		 * if there's any free memory to be had,
    305 		 * wake up any waiters.
    306 		 */
    307 		if (uvmexp.free > uvmexp.reserve_kernel ||
    308 		    uvmexp.paging == 0) {
    309 			wakeup(&uvmexp.free);
    310 			uvm_pagedaemon_waiters = 0;
    311 		}
    312 		mutex_spin_exit(&uvm_fpageqlock);
    313 
    314 		/*
    315 		 * scan done.  unlock page queues (the only lock we are holding)
    316 		 */
    317 		mutex_exit(&uvm_pageqlock);
    318 
    319 		/*
    320 		 * if we don't need free memory, we're done.
    321 		 */
    322 
    323 		if (!needsfree && !uvm_km_va_starved_p())
    324 			continue;
    325 
    326 		/*
    327 		 * start draining pool resources now that we're not
    328 		 * holding any locks.
    329 		 */
    330 		pool_drain_start(&pp, &where);
    331 
    332 		/*
    333 		 * kill unused metadata buffers.
    334 		 */
    335 		mutex_enter(&bufcache_lock);
    336 		buf_drain(bufcnt << PAGE_SHIFT);
    337 		mutex_exit(&bufcache_lock);
    338 
    339 		/*
    340 		 * complete draining the pools.
    341 		 */
    342 		pool_drain_end(pp, where);
    343 	}
    344 	/*NOTREACHED*/
    345 }
    346 
    347 
    348 /*
    349  * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
    350  */
    351 
    352 void
    353 uvm_aiodone_worker(struct work *wk, void *dummy)
    354 {
    355 	struct buf *bp = (void *)wk;
    356 
    357 	KASSERT(&bp->b_work == wk);
    358 
    359 	/*
    360 	 * process an i/o that's done.
    361 	 */
    362 
    363 	(*bp->b_iodone)(bp);
    364 }
    365 
    366 void
    367 uvm_pageout_start(int npages)
    368 {
    369 
    370 	mutex_spin_enter(&uvm_fpageqlock);
    371 	uvmexp.paging += npages;
    372 	mutex_spin_exit(&uvm_fpageqlock);
    373 }
    374 
    375 void
    376 uvm_pageout_done(int npages)
    377 {
    378 
    379 	mutex_spin_enter(&uvm_fpageqlock);
    380 	KASSERT(uvmexp.paging >= npages);
    381 	uvmexp.paging -= npages;
    382 
    383 	/*
    384 	 * wake up either of pagedaemon or LWPs waiting for it.
    385 	 */
    386 
    387 	if (uvmexp.free <= uvmexp.reserve_kernel) {
    388 		wakeup(&uvm.pagedaemon);
    389 	} else {
    390 		wakeup(&uvmexp.free);
    391 		uvm_pagedaemon_waiters = 0;
    392 	}
    393 	mutex_spin_exit(&uvm_fpageqlock);
    394 }
    395 
    396 /*
    397  * uvmpd_trylockowner: trylock the page's owner.
    398  *
    399  * => called with pageq locked.
    400  * => resolve orphaned O->A loaned page.
    401  * => return the locked mutex on success.  otherwise, return NULL.
    402  */
    403 
    404 kmutex_t *
    405 uvmpd_trylockowner(struct vm_page *pg)
    406 {
    407 	struct uvm_object *uobj = pg->uobject;
    408 	kmutex_t *slock;
    409 
    410 	KASSERT(mutex_owned(&uvm_pageqlock));
    411 
    412 	if (uobj != NULL) {
    413 		slock = uobj->vmobjlock;
    414 	} else {
    415 		struct vm_anon *anon = pg->uanon;
    416 
    417 		KASSERT(anon != NULL);
    418 		slock = anon->an_lock;
    419 	}
    420 
    421 	if (!mutex_tryenter(slock)) {
    422 		return NULL;
    423 	}
    424 
    425 	if (uobj == NULL) {
    426 
    427 		/*
    428 		 * set PQ_ANON if it isn't set already.
    429 		 */
    430 
    431 		if ((pg->pqflags & PQ_ANON) == 0) {
    432 			KASSERT(pg->loan_count > 0);
    433 			pg->loan_count--;
    434 			pg->pqflags |= PQ_ANON;
    435 			/* anon now owns it */
    436 		}
    437 	}
    438 
    439 	return slock;
    440 }
    441 
    442 #if defined(VMSWAP)
    443 struct swapcluster {
    444 	int swc_slot;
    445 	int swc_nallocated;
    446 	int swc_nused;
    447 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    448 };
    449 
    450 static void
    451 swapcluster_init(struct swapcluster *swc)
    452 {
    453 
    454 	swc->swc_slot = 0;
    455 	swc->swc_nused = 0;
    456 }
    457 
    458 static int
    459 swapcluster_allocslots(struct swapcluster *swc)
    460 {
    461 	int slot;
    462 	int npages;
    463 
    464 	if (swc->swc_slot != 0) {
    465 		return 0;
    466 	}
    467 
    468 	/* Even with strange MAXPHYS, the shift
    469 	   implicitly rounds down to a page. */
    470 	npages = MAXPHYS >> PAGE_SHIFT;
    471 	slot = uvm_swap_alloc(&npages, true);
    472 	if (slot == 0) {
    473 		return ENOMEM;
    474 	}
    475 	swc->swc_slot = slot;
    476 	swc->swc_nallocated = npages;
    477 	swc->swc_nused = 0;
    478 
    479 	return 0;
    480 }
    481 
    482 static int
    483 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    484 {
    485 	int slot;
    486 	struct uvm_object *uobj;
    487 
    488 	KASSERT(swc->swc_slot != 0);
    489 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    490 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
    491 
    492 	slot = swc->swc_slot + swc->swc_nused;
    493 	uobj = pg->uobject;
    494 	if (uobj == NULL) {
    495 		KASSERT(mutex_owned(pg->uanon->an_lock));
    496 		pg->uanon->an_swslot = slot;
    497 	} else {
    498 		int result;
    499 
    500 		KASSERT(mutex_owned(uobj->vmobjlock));
    501 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    502 		if (result == -1) {
    503 			return ENOMEM;
    504 		}
    505 	}
    506 	swc->swc_pages[swc->swc_nused] = pg;
    507 	swc->swc_nused++;
    508 
    509 	return 0;
    510 }
    511 
    512 static void
    513 swapcluster_flush(struct swapcluster *swc, bool now)
    514 {
    515 	int slot;
    516 	int nused;
    517 	int nallocated;
    518 	int error;
    519 
    520 	if (swc->swc_slot == 0) {
    521 		return;
    522 	}
    523 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    524 
    525 	slot = swc->swc_slot;
    526 	nused = swc->swc_nused;
    527 	nallocated = swc->swc_nallocated;
    528 
    529 	/*
    530 	 * if this is the final pageout we could have a few
    531 	 * unused swap blocks.  if so, free them now.
    532 	 */
    533 
    534 	if (nused < nallocated) {
    535 		if (!now) {
    536 			return;
    537 		}
    538 		uvm_swap_free(slot + nused, nallocated - nused);
    539 	}
    540 
    541 	/*
    542 	 * now start the pageout.
    543 	 */
    544 
    545 	if (nused > 0) {
    546 		uvmexp.pdpageouts++;
    547 		uvm_pageout_start(nused);
    548 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    549 		KASSERT(error == 0 || error == ENOMEM);
    550 	}
    551 
    552 	/*
    553 	 * zero swslot to indicate that we are
    554 	 * no longer building a swap-backed cluster.
    555 	 */
    556 
    557 	swc->swc_slot = 0;
    558 	swc->swc_nused = 0;
    559 }
    560 
    561 static int
    562 swapcluster_nused(struct swapcluster *swc)
    563 {
    564 
    565 	return swc->swc_nused;
    566 }
    567 
    568 /*
    569  * uvmpd_dropswap: free any swap allocated to this page.
    570  *
    571  * => called with owner locked.
    572  * => return true if a page had an associated slot.
    573  */
    574 
    575 static bool
    576 uvmpd_dropswap(struct vm_page *pg)
    577 {
    578 	bool result = false;
    579 	struct vm_anon *anon = pg->uanon;
    580 
    581 	if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
    582 		uvm_swap_free(anon->an_swslot, 1);
    583 		anon->an_swslot = 0;
    584 		pg->flags &= ~PG_CLEAN;
    585 		result = true;
    586 	} else if (pg->pqflags & PQ_AOBJ) {
    587 		int slot = uao_set_swslot(pg->uobject,
    588 		    pg->offset >> PAGE_SHIFT, 0);
    589 		if (slot) {
    590 			uvm_swap_free(slot, 1);
    591 			pg->flags &= ~PG_CLEAN;
    592 			result = true;
    593 		}
    594 	}
    595 
    596 	return result;
    597 }
    598 
    599 /*
    600  * uvmpd_trydropswap: try to free any swap allocated to this page.
    601  *
    602  * => return true if a slot is successfully freed.
    603  */
    604 
    605 bool
    606 uvmpd_trydropswap(struct vm_page *pg)
    607 {
    608 	kmutex_t *slock;
    609 	bool result;
    610 
    611 	if ((pg->flags & PG_BUSY) != 0) {
    612 		return false;
    613 	}
    614 
    615 	/*
    616 	 * lock the page's owner.
    617 	 */
    618 
    619 	slock = uvmpd_trylockowner(pg);
    620 	if (slock == NULL) {
    621 		return false;
    622 	}
    623 
    624 	/*
    625 	 * skip this page if it's busy.
    626 	 */
    627 
    628 	if ((pg->flags & PG_BUSY) != 0) {
    629 		mutex_exit(slock);
    630 		return false;
    631 	}
    632 
    633 	result = uvmpd_dropswap(pg);
    634 
    635 	mutex_exit(slock);
    636 
    637 	return result;
    638 }
    639 
    640 #endif /* defined(VMSWAP) */
    641 
    642 /*
    643  * uvmpd_scan_queue: scan an replace candidate list for pages
    644  * to clean or free.
    645  *
    646  * => called with page queues locked
    647  * => we work on meeting our free target by converting inactive pages
    648  *    into free pages.
    649  * => we handle the building of swap-backed clusters
    650  */
    651 
    652 static void
    653 uvmpd_scan_queue(void)
    654 {
    655 	struct vm_page *p;
    656 	struct uvm_object *uobj;
    657 	struct vm_anon *anon;
    658 #if defined(VMSWAP)
    659 	struct swapcluster swc;
    660 #endif /* defined(VMSWAP) */
    661 	int dirtyreacts;
    662 	int lockownerfail;
    663 	kmutex_t *slock;
    664 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    665 
    666 	/*
    667 	 * swslot is non-zero if we are building a swap cluster.  we want
    668 	 * to stay in the loop while we have a page to scan or we have
    669 	 * a swap-cluster to build.
    670 	 */
    671 
    672 #if defined(VMSWAP)
    673 	swapcluster_init(&swc);
    674 #endif /* defined(VMSWAP) */
    675 
    676 	dirtyreacts = 0;
    677 	lockownerfail = 0;
    678 	uvmpdpol_scaninit();
    679 
    680 	while (/* CONSTCOND */ 1) {
    681 
    682 		/*
    683 		 * see if we've met the free target.
    684 		 */
    685 
    686 		if (uvmexp.free + uvmexp.paging
    687 #if defined(VMSWAP)
    688 		    + swapcluster_nused(&swc)
    689 #endif /* defined(VMSWAP) */
    690 		    >= uvmexp.freetarg << 2 ||
    691 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    692 			UVMHIST_LOG(pdhist,"  met free target: "
    693 				    "exit loop", 0, 0, 0, 0);
    694 			break;
    695 		}
    696 
    697 		p = uvmpdpol_selectvictim();
    698 		if (p == NULL) {
    699 			break;
    700 		}
    701 		KASSERT(uvmpdpol_pageisqueued_p(p));
    702 		KASSERT(p->wire_count == 0);
    703 
    704 		/*
    705 		 * we are below target and have a new page to consider.
    706 		 */
    707 
    708 		anon = p->uanon;
    709 		uobj = p->uobject;
    710 
    711 		/*
    712 		 * first we attempt to lock the object that this page
    713 		 * belongs to.  if our attempt fails we skip on to
    714 		 * the next page (no harm done).  it is important to
    715 		 * "try" locking the object as we are locking in the
    716 		 * wrong order (pageq -> object) and we don't want to
    717 		 * deadlock.
    718 		 *
    719 		 * the only time we expect to see an ownerless page
    720 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
    721 		 * anon has loaned a page from a uvm_object and the
    722 		 * uvm_object has dropped the ownership.  in that
    723 		 * case, the anon can "take over" the loaned page
    724 		 * and make it its own.
    725 		 */
    726 
    727 		slock = uvmpd_trylockowner(p);
    728 		if (slock == NULL) {
    729 			/*
    730 			 * yield cpu to make a chance for an LWP holding
    731 			 * the lock run.  otherwise we can busy-loop too long
    732 			 * if the page queue is filled with a lot of pages
    733 			 * from few objects.
    734 			 */
    735 			lockownerfail++;
    736 			if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
    737 				mutex_exit(&uvm_pageqlock);
    738 				/* XXX Better than yielding but inadequate. */
    739 				kpause("livelock", false, 1, NULL);
    740 				mutex_enter(&uvm_pageqlock);
    741 				lockownerfail = 0;
    742 			}
    743 			continue;
    744 		}
    745 		if (p->flags & PG_BUSY) {
    746 			mutex_exit(slock);
    747 			uvmexp.pdbusy++;
    748 			continue;
    749 		}
    750 
    751 		/* does the page belong to an object? */
    752 		if (uobj != NULL) {
    753 			uvmexp.pdobscan++;
    754 		} else {
    755 #if defined(VMSWAP)
    756 			KASSERT(anon != NULL);
    757 			uvmexp.pdanscan++;
    758 #else /* defined(VMSWAP) */
    759 			panic("%s: anon", __func__);
    760 #endif /* defined(VMSWAP) */
    761 		}
    762 
    763 
    764 		/*
    765 		 * we now have the object and the page queues locked.
    766 		 * if the page is not swap-backed, call the object's
    767 		 * pager to flush and free the page.
    768 		 */
    769 
    770 #if defined(READAHEAD_STATS)
    771 		if ((p->pqflags & PQ_READAHEAD) != 0) {
    772 			p->pqflags &= ~PQ_READAHEAD;
    773 			uvm_ra_miss.ev_count++;
    774 		}
    775 #endif /* defined(READAHEAD_STATS) */
    776 
    777 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    778 			KASSERT(uobj != NULL);
    779 			mutex_exit(&uvm_pageqlock);
    780 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    781 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    782 			mutex_enter(&uvm_pageqlock);
    783 			continue;
    784 		}
    785 
    786 		/*
    787 		 * the page is swap-backed.  remove all the permissions
    788 		 * from the page so we can sync the modified info
    789 		 * without any race conditions.  if the page is clean
    790 		 * we can free it now and continue.
    791 		 */
    792 
    793 		pmap_page_protect(p, VM_PROT_NONE);
    794 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    795 			p->flags &= ~(PG_CLEAN);
    796 		}
    797 		if (p->flags & PG_CLEAN) {
    798 			int slot;
    799 			int pageidx;
    800 
    801 			pageidx = p->offset >> PAGE_SHIFT;
    802 			uvm_pagefree(p);
    803 			uvmexp.pdfreed++;
    804 
    805 			/*
    806 			 * for anons, we need to remove the page
    807 			 * from the anon ourselves.  for aobjs,
    808 			 * pagefree did that for us.
    809 			 */
    810 
    811 			if (anon) {
    812 				KASSERT(anon->an_swslot != 0);
    813 				anon->an_page = NULL;
    814 				slot = anon->an_swslot;
    815 			} else {
    816 				slot = uao_find_swslot(uobj, pageidx);
    817 			}
    818 			mutex_exit(slock);
    819 
    820 			if (slot > 0) {
    821 				/* this page is now only in swap. */
    822 				mutex_enter(&uvm_swap_data_lock);
    823 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    824 				uvmexp.swpgonly++;
    825 				mutex_exit(&uvm_swap_data_lock);
    826 			}
    827 			continue;
    828 		}
    829 
    830 #if defined(VMSWAP)
    831 		/*
    832 		 * this page is dirty, skip it if we'll have met our
    833 		 * free target when all the current pageouts complete.
    834 		 */
    835 
    836 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    837 			mutex_exit(slock);
    838 			continue;
    839 		}
    840 
    841 		/*
    842 		 * free any swap space allocated to the page since
    843 		 * we'll have to write it again with its new data.
    844 		 */
    845 
    846 		uvmpd_dropswap(p);
    847 
    848 		/*
    849 		 * start new swap pageout cluster (if necessary).
    850 		 *
    851 		 * if swap is full reactivate this page so that
    852 		 * we eventually cycle all pages through the
    853 		 * inactive queue.
    854 		 */
    855 
    856 		if (swapcluster_allocslots(&swc)) {
    857 			dirtyreacts++;
    858 			uvm_pageactivate(p);
    859 			mutex_exit(slock);
    860 			continue;
    861 		}
    862 
    863 		/*
    864 		 * at this point, we're definitely going reuse this
    865 		 * page.  mark the page busy and delayed-free.
    866 		 * we should remove the page from the page queues
    867 		 * so we don't ever look at it again.
    868 		 * adjust counters and such.
    869 		 */
    870 
    871 		p->flags |= PG_BUSY;
    872 		UVM_PAGE_OWN(p, "scan_queue");
    873 
    874 		p->flags |= PG_PAGEOUT;
    875 		uvm_pagedequeue(p);
    876 
    877 		uvmexp.pgswapout++;
    878 		mutex_exit(&uvm_pageqlock);
    879 
    880 		/*
    881 		 * add the new page to the cluster.
    882 		 */
    883 
    884 		if (swapcluster_add(&swc, p)) {
    885 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    886 			UVM_PAGE_OWN(p, NULL);
    887 			mutex_enter(&uvm_pageqlock);
    888 			dirtyreacts++;
    889 			uvm_pageactivate(p);
    890 			mutex_exit(slock);
    891 			continue;
    892 		}
    893 		mutex_exit(slock);
    894 
    895 		swapcluster_flush(&swc, false);
    896 		mutex_enter(&uvm_pageqlock);
    897 
    898 		/*
    899 		 * the pageout is in progress.  bump counters and set up
    900 		 * for the next loop.
    901 		 */
    902 
    903 		uvmexp.pdpending++;
    904 
    905 #else /* defined(VMSWAP) */
    906 		uvm_pageactivate(p);
    907 		mutex_exit(slock);
    908 #endif /* defined(VMSWAP) */
    909 	}
    910 
    911 #if defined(VMSWAP)
    912 	mutex_exit(&uvm_pageqlock);
    913 	swapcluster_flush(&swc, true);
    914 	mutex_enter(&uvm_pageqlock);
    915 #endif /* defined(VMSWAP) */
    916 }
    917 
    918 /*
    919  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    920  *
    921  * => called with pageq's locked
    922  */
    923 
    924 static void
    925 uvmpd_scan(void)
    926 {
    927 	int swap_shortage, pages_freed;
    928 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    929 
    930 	uvmexp.pdrevs++;
    931 
    932 	/*
    933 	 * work on meeting our targets.   first we work on our free target
    934 	 * by converting inactive pages into free pages.  then we work on
    935 	 * meeting our inactive target by converting active pages to
    936 	 * inactive ones.
    937 	 */
    938 
    939 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    940 
    941 	pages_freed = uvmexp.pdfreed;
    942 	uvmpd_scan_queue();
    943 	pages_freed = uvmexp.pdfreed - pages_freed;
    944 
    945 	/*
    946 	 * detect if we're not going to be able to page anything out
    947 	 * until we free some swap resources from active pages.
    948 	 */
    949 
    950 	swap_shortage = 0;
    951 	if (uvmexp.free < uvmexp.freetarg &&
    952 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    953 	    !uvm_swapisfull() &&
    954 	    pages_freed == 0) {
    955 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    956 	}
    957 
    958 	uvmpdpol_balancequeue(swap_shortage);
    959 
    960 	/*
    961 	 * if still below the minimum target, try unloading kernel
    962 	 * modules.
    963 	 */
    964 
    965 	if (uvmexp.free < uvmexp.freemin) {
    966 		module_thread_kick();
    967 	}
    968 }
    969 
    970 /*
    971  * uvm_reclaimable: decide whether to wait for pagedaemon.
    972  *
    973  * => return true if it seems to be worth to do uvm_wait.
    974  *
    975  * XXX should be tunable.
    976  * XXX should consider pools, etc?
    977  */
    978 
    979 bool
    980 uvm_reclaimable(void)
    981 {
    982 	int filepages;
    983 	int active, inactive;
    984 
    985 	/*
    986 	 * if swap is not full, no problem.
    987 	 */
    988 
    989 	if (!uvm_swapisfull()) {
    990 		return true;
    991 	}
    992 
    993 	/*
    994 	 * file-backed pages can be reclaimed even when swap is full.
    995 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    996 	 *
    997 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    998 	 *
    999 	 * XXX should consider about other reclaimable memory.
   1000 	 * XXX ie. pools, traditional buffer cache.
   1001 	 */
   1002 
   1003 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
   1004 	uvm_estimatepageable(&active, &inactive);
   1005 	if (filepages >= MIN((active + inactive) >> 4,
   1006 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
   1007 		return true;
   1008 	}
   1009 
   1010 	/*
   1011 	 * kill the process, fail allocation, etc..
   1012 	 */
   1013 
   1014 	return false;
   1015 }
   1016 
   1017 void
   1018 uvm_estimatepageable(int *active, int *inactive)
   1019 {
   1020 
   1021 	uvmpdpol_estimatepageable(active, inactive);
   1022 }
   1023 
   1024