uvm_pdaemon.c revision 1.106 1 /* $NetBSD: uvm_pdaemon.c,v 1.106 2012/06/05 22:51:47 jym Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
37 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_pdaemon.c: the page daemon
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.106 2012/06/05 22:51:47 jym Exp $");
70
71 #include "opt_uvmhist.h"
72 #include "opt_readahead.h"
73
74 #include <sys/param.h>
75 #include <sys/proc.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/pool.h>
79 #include <sys/buf.h>
80 #include <sys/module.h>
81 #include <sys/atomic.h>
82
83 #include <uvm/uvm.h>
84 #include <uvm/uvm_pdpolicy.h>
85
86 /*
87 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
88 * in a pass thru the inactive list when swap is full. the value should be
89 * "small"... if it's too large we'll cycle the active pages thru the inactive
90 * queue too quickly to for them to be referenced and avoid being freed.
91 */
92
93 #define UVMPD_NUMDIRTYREACTS 16
94
95 #define UVMPD_NUMTRYLOCKOWNER 16
96
97 /*
98 * local prototypes
99 */
100
101 static void uvmpd_scan(void);
102 static void uvmpd_scan_queue(void);
103 static void uvmpd_tune(void);
104
105 static unsigned int uvm_pagedaemon_waiters;
106
107 /*
108 * XXX hack to avoid hangs when large processes fork.
109 */
110 u_int uvm_extrapages;
111
112 /*
113 * uvm_wait: wait (sleep) for the page daemon to free some pages
114 *
115 * => should be called with all locks released
116 * => should _not_ be called by the page daemon (to avoid deadlock)
117 */
118
119 void
120 uvm_wait(const char *wmsg)
121 {
122 int timo = 0;
123
124 mutex_spin_enter(&uvm_fpageqlock);
125
126 /*
127 * check for page daemon going to sleep (waiting for itself)
128 */
129
130 if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
131 /*
132 * now we have a problem: the pagedaemon wants to go to
133 * sleep until it frees more memory. but how can it
134 * free more memory if it is asleep? that is a deadlock.
135 * we have two options:
136 * [1] panic now
137 * [2] put a timeout on the sleep, thus causing the
138 * pagedaemon to only pause (rather than sleep forever)
139 *
140 * note that option [2] will only help us if we get lucky
141 * and some other process on the system breaks the deadlock
142 * by exiting or freeing memory (thus allowing the pagedaemon
143 * to continue). for now we panic if DEBUG is defined,
144 * otherwise we hope for the best with option [2] (better
145 * yet, this should never happen in the first place!).
146 */
147
148 printf("pagedaemon: deadlock detected!\n");
149 timo = hz >> 3; /* set timeout */
150 #if defined(DEBUG)
151 /* DEBUG: panic so we can debug it */
152 panic("pagedaemon deadlock");
153 #endif
154 }
155
156 uvm_pagedaemon_waiters++;
157 wakeup(&uvm.pagedaemon); /* wake the daemon! */
158 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
159 }
160
161 /*
162 * uvm_kick_pdaemon: perform checks to determine if we need to
163 * give the pagedaemon a nudge, and do so if necessary.
164 *
165 * => called with uvm_fpageqlock held.
166 */
167
168 void
169 uvm_kick_pdaemon(void)
170 {
171
172 KASSERT(mutex_owned(&uvm_fpageqlock));
173
174 if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
175 (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
176 uvmpdpol_needsscan_p()) ||
177 uvm_km_va_starved_p()) {
178 wakeup(&uvm.pagedaemon);
179 }
180 }
181
182 /*
183 * uvmpd_tune: tune paging parameters
184 *
185 * => called when ever memory is added (or removed?) to the system
186 * => caller must call with page queues locked
187 */
188
189 static void
190 uvmpd_tune(void)
191 {
192 int val;
193
194 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
195
196 /*
197 * try to keep 0.5% of available RAM free, but limit to between
198 * 128k and 1024k per-CPU. XXX: what are these values good for?
199 */
200 val = uvmexp.npages / 200;
201 val = MAX(val, (128*1024) >> PAGE_SHIFT);
202 val = MIN(val, (1024*1024) >> PAGE_SHIFT);
203 val *= ncpu;
204
205 /* Make sure there's always a user page free. */
206 if (val < uvmexp.reserve_kernel + 1)
207 val = uvmexp.reserve_kernel + 1;
208 uvmexp.freemin = val;
209
210 /* Calculate free target. */
211 val = (uvmexp.freemin * 4) / 3;
212 if (val <= uvmexp.freemin)
213 val = uvmexp.freemin + 1;
214 uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
215
216 uvmexp.wiredmax = uvmexp.npages / 3;
217 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
218 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
219 }
220
221 /*
222 * uvm_pageout: the main loop for the pagedaemon
223 */
224
225 void
226 uvm_pageout(void *arg)
227 {
228 int bufcnt, npages = 0;
229 int extrapages = 0;
230 struct pool *pp;
231
232 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
233
234 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
235
236 /*
237 * ensure correct priority and set paging parameters...
238 */
239
240 uvm.pagedaemon_lwp = curlwp;
241 mutex_enter(&uvm_pageqlock);
242 npages = uvmexp.npages;
243 uvmpd_tune();
244 mutex_exit(&uvm_pageqlock);
245
246 /*
247 * main loop
248 */
249
250 for (;;) {
251 bool needsscan, needsfree, kmem_va_starved;
252
253 kmem_va_starved = uvm_km_va_starved_p();
254
255 mutex_spin_enter(&uvm_fpageqlock);
256 if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
257 !kmem_va_starved) {
258 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
259 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
260 &uvm_fpageqlock, false, "pgdaemon", 0);
261 uvmexp.pdwoke++;
262 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
263 } else {
264 mutex_spin_exit(&uvm_fpageqlock);
265 }
266
267 /*
268 * now lock page queues and recompute inactive count
269 */
270
271 mutex_enter(&uvm_pageqlock);
272 if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
273 npages = uvmexp.npages;
274 extrapages = uvm_extrapages;
275 mutex_spin_enter(&uvm_fpageqlock);
276 uvmpd_tune();
277 mutex_spin_exit(&uvm_fpageqlock);
278 }
279
280 uvmpdpol_tune();
281
282 /*
283 * Estimate a hint. Note that bufmem are returned to
284 * system only when entire pool page is empty.
285 */
286 mutex_spin_enter(&uvm_fpageqlock);
287 bufcnt = uvmexp.freetarg - uvmexp.free;
288 if (bufcnt < 0)
289 bufcnt = 0;
290
291 UVMHIST_LOG(pdhist," free/ftarg=%d/%d",
292 uvmexp.free, uvmexp.freetarg, 0,0);
293
294 needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
295 needsscan = needsfree || uvmpdpol_needsscan_p();
296
297 /*
298 * scan if needed
299 */
300 if (needsscan) {
301 mutex_spin_exit(&uvm_fpageqlock);
302 uvmpd_scan();
303 mutex_spin_enter(&uvm_fpageqlock);
304 }
305
306 /*
307 * if there's any free memory to be had,
308 * wake up any waiters.
309 */
310 if (uvmexp.free > uvmexp.reserve_kernel ||
311 uvmexp.paging == 0) {
312 wakeup(&uvmexp.free);
313 uvm_pagedaemon_waiters = 0;
314 }
315 mutex_spin_exit(&uvm_fpageqlock);
316
317 /*
318 * scan done. unlock page queues (the only lock we are holding)
319 */
320 mutex_exit(&uvm_pageqlock);
321
322 /*
323 * if we don't need free memory, we're done.
324 */
325
326 if (!needsfree && !kmem_va_starved)
327 continue;
328
329 /*
330 * kill unused metadata buffers.
331 */
332 mutex_enter(&bufcache_lock);
333 buf_drain(bufcnt << PAGE_SHIFT);
334 mutex_exit(&bufcache_lock);
335
336 /*
337 * drain the pools.
338 */
339 pool_drain(&pp);
340 }
341 /*NOTREACHED*/
342 }
343
344
345 /*
346 * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
347 */
348
349 void
350 uvm_aiodone_worker(struct work *wk, void *dummy)
351 {
352 struct buf *bp = (void *)wk;
353
354 KASSERT(&bp->b_work == wk);
355
356 /*
357 * process an i/o that's done.
358 */
359
360 (*bp->b_iodone)(bp);
361 }
362
363 void
364 uvm_pageout_start(int npages)
365 {
366
367 mutex_spin_enter(&uvm_fpageqlock);
368 uvmexp.paging += npages;
369 mutex_spin_exit(&uvm_fpageqlock);
370 }
371
372 void
373 uvm_pageout_done(int npages)
374 {
375
376 mutex_spin_enter(&uvm_fpageqlock);
377 KASSERT(uvmexp.paging >= npages);
378 uvmexp.paging -= npages;
379
380 /*
381 * wake up either of pagedaemon or LWPs waiting for it.
382 */
383
384 if (uvmexp.free <= uvmexp.reserve_kernel) {
385 wakeup(&uvm.pagedaemon);
386 } else {
387 wakeup(&uvmexp.free);
388 uvm_pagedaemon_waiters = 0;
389 }
390 mutex_spin_exit(&uvm_fpageqlock);
391 }
392
393 /*
394 * uvmpd_trylockowner: trylock the page's owner.
395 *
396 * => called with pageq locked.
397 * => resolve orphaned O->A loaned page.
398 * => return the locked mutex on success. otherwise, return NULL.
399 */
400
401 kmutex_t *
402 uvmpd_trylockowner(struct vm_page *pg)
403 {
404 struct uvm_object *uobj = pg->uobject;
405 kmutex_t *slock;
406
407 KASSERT(mutex_owned(&uvm_pageqlock));
408
409 if (uobj != NULL) {
410 slock = uobj->vmobjlock;
411 } else {
412 struct vm_anon *anon = pg->uanon;
413
414 KASSERT(anon != NULL);
415 slock = anon->an_lock;
416 }
417
418 if (!mutex_tryenter(slock)) {
419 return NULL;
420 }
421
422 if (uobj == NULL) {
423
424 /*
425 * set PQ_ANON if it isn't set already.
426 */
427
428 if ((pg->pqflags & PQ_ANON) == 0) {
429 KASSERT(pg->loan_count > 0);
430 pg->loan_count--;
431 pg->pqflags |= PQ_ANON;
432 /* anon now owns it */
433 }
434 }
435
436 return slock;
437 }
438
439 #if defined(VMSWAP)
440 struct swapcluster {
441 int swc_slot;
442 int swc_nallocated;
443 int swc_nused;
444 struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
445 };
446
447 static void
448 swapcluster_init(struct swapcluster *swc)
449 {
450
451 swc->swc_slot = 0;
452 swc->swc_nused = 0;
453 }
454
455 static int
456 swapcluster_allocslots(struct swapcluster *swc)
457 {
458 int slot;
459 int npages;
460
461 if (swc->swc_slot != 0) {
462 return 0;
463 }
464
465 /* Even with strange MAXPHYS, the shift
466 implicitly rounds down to a page. */
467 npages = MAXPHYS >> PAGE_SHIFT;
468 slot = uvm_swap_alloc(&npages, true);
469 if (slot == 0) {
470 return ENOMEM;
471 }
472 swc->swc_slot = slot;
473 swc->swc_nallocated = npages;
474 swc->swc_nused = 0;
475
476 return 0;
477 }
478
479 static int
480 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
481 {
482 int slot;
483 struct uvm_object *uobj;
484
485 KASSERT(swc->swc_slot != 0);
486 KASSERT(swc->swc_nused < swc->swc_nallocated);
487 KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
488
489 slot = swc->swc_slot + swc->swc_nused;
490 uobj = pg->uobject;
491 if (uobj == NULL) {
492 KASSERT(mutex_owned(pg->uanon->an_lock));
493 pg->uanon->an_swslot = slot;
494 } else {
495 int result;
496
497 KASSERT(mutex_owned(uobj->vmobjlock));
498 result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
499 if (result == -1) {
500 return ENOMEM;
501 }
502 }
503 swc->swc_pages[swc->swc_nused] = pg;
504 swc->swc_nused++;
505
506 return 0;
507 }
508
509 static void
510 swapcluster_flush(struct swapcluster *swc, bool now)
511 {
512 int slot;
513 int nused;
514 int nallocated;
515 int error;
516
517 if (swc->swc_slot == 0) {
518 return;
519 }
520 KASSERT(swc->swc_nused <= swc->swc_nallocated);
521
522 slot = swc->swc_slot;
523 nused = swc->swc_nused;
524 nallocated = swc->swc_nallocated;
525
526 /*
527 * if this is the final pageout we could have a few
528 * unused swap blocks. if so, free them now.
529 */
530
531 if (nused < nallocated) {
532 if (!now) {
533 return;
534 }
535 uvm_swap_free(slot + nused, nallocated - nused);
536 }
537
538 /*
539 * now start the pageout.
540 */
541
542 if (nused > 0) {
543 uvmexp.pdpageouts++;
544 uvm_pageout_start(nused);
545 error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
546 KASSERT(error == 0 || error == ENOMEM);
547 }
548
549 /*
550 * zero swslot to indicate that we are
551 * no longer building a swap-backed cluster.
552 */
553
554 swc->swc_slot = 0;
555 swc->swc_nused = 0;
556 }
557
558 static int
559 swapcluster_nused(struct swapcluster *swc)
560 {
561
562 return swc->swc_nused;
563 }
564
565 /*
566 * uvmpd_dropswap: free any swap allocated to this page.
567 *
568 * => called with owner locked.
569 * => return true if a page had an associated slot.
570 */
571
572 static bool
573 uvmpd_dropswap(struct vm_page *pg)
574 {
575 bool result = false;
576 struct vm_anon *anon = pg->uanon;
577
578 if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
579 uvm_swap_free(anon->an_swslot, 1);
580 anon->an_swslot = 0;
581 pg->flags &= ~PG_CLEAN;
582 result = true;
583 } else if (pg->pqflags & PQ_AOBJ) {
584 int slot = uao_set_swslot(pg->uobject,
585 pg->offset >> PAGE_SHIFT, 0);
586 if (slot) {
587 uvm_swap_free(slot, 1);
588 pg->flags &= ~PG_CLEAN;
589 result = true;
590 }
591 }
592
593 return result;
594 }
595
596 /*
597 * uvmpd_trydropswap: try to free any swap allocated to this page.
598 *
599 * => return true if a slot is successfully freed.
600 */
601
602 bool
603 uvmpd_trydropswap(struct vm_page *pg)
604 {
605 kmutex_t *slock;
606 bool result;
607
608 if ((pg->flags & PG_BUSY) != 0) {
609 return false;
610 }
611
612 /*
613 * lock the page's owner.
614 */
615
616 slock = uvmpd_trylockowner(pg);
617 if (slock == NULL) {
618 return false;
619 }
620
621 /*
622 * skip this page if it's busy.
623 */
624
625 if ((pg->flags & PG_BUSY) != 0) {
626 mutex_exit(slock);
627 return false;
628 }
629
630 result = uvmpd_dropswap(pg);
631
632 mutex_exit(slock);
633
634 return result;
635 }
636
637 #endif /* defined(VMSWAP) */
638
639 /*
640 * uvmpd_scan_queue: scan an replace candidate list for pages
641 * to clean or free.
642 *
643 * => called with page queues locked
644 * => we work on meeting our free target by converting inactive pages
645 * into free pages.
646 * => we handle the building of swap-backed clusters
647 */
648
649 static void
650 uvmpd_scan_queue(void)
651 {
652 struct vm_page *p;
653 struct uvm_object *uobj;
654 struct vm_anon *anon;
655 #if defined(VMSWAP)
656 struct swapcluster swc;
657 #endif /* defined(VMSWAP) */
658 int dirtyreacts;
659 int lockownerfail;
660 kmutex_t *slock;
661 UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
662
663 /*
664 * swslot is non-zero if we are building a swap cluster. we want
665 * to stay in the loop while we have a page to scan or we have
666 * a swap-cluster to build.
667 */
668
669 #if defined(VMSWAP)
670 swapcluster_init(&swc);
671 #endif /* defined(VMSWAP) */
672
673 dirtyreacts = 0;
674 lockownerfail = 0;
675 uvmpdpol_scaninit();
676
677 while (/* CONSTCOND */ 1) {
678
679 /*
680 * see if we've met the free target.
681 */
682
683 if (uvmexp.free + uvmexp.paging
684 #if defined(VMSWAP)
685 + swapcluster_nused(&swc)
686 #endif /* defined(VMSWAP) */
687 >= uvmexp.freetarg << 2 ||
688 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
689 UVMHIST_LOG(pdhist," met free target: "
690 "exit loop", 0, 0, 0, 0);
691 break;
692 }
693
694 p = uvmpdpol_selectvictim();
695 if (p == NULL) {
696 break;
697 }
698 KASSERT(uvmpdpol_pageisqueued_p(p));
699 KASSERT(p->wire_count == 0);
700
701 /*
702 * we are below target and have a new page to consider.
703 */
704
705 anon = p->uanon;
706 uobj = p->uobject;
707
708 /*
709 * first we attempt to lock the object that this page
710 * belongs to. if our attempt fails we skip on to
711 * the next page (no harm done). it is important to
712 * "try" locking the object as we are locking in the
713 * wrong order (pageq -> object) and we don't want to
714 * deadlock.
715 *
716 * the only time we expect to see an ownerless page
717 * (i.e. a page with no uobject and !PQ_ANON) is if an
718 * anon has loaned a page from a uvm_object and the
719 * uvm_object has dropped the ownership. in that
720 * case, the anon can "take over" the loaned page
721 * and make it its own.
722 */
723
724 slock = uvmpd_trylockowner(p);
725 if (slock == NULL) {
726 /*
727 * yield cpu to make a chance for an LWP holding
728 * the lock run. otherwise we can busy-loop too long
729 * if the page queue is filled with a lot of pages
730 * from few objects.
731 */
732 lockownerfail++;
733 if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
734 mutex_exit(&uvm_pageqlock);
735 /* XXX Better than yielding but inadequate. */
736 kpause("livelock", false, 1, NULL);
737 mutex_enter(&uvm_pageqlock);
738 lockownerfail = 0;
739 }
740 continue;
741 }
742 if (p->flags & PG_BUSY) {
743 mutex_exit(slock);
744 uvmexp.pdbusy++;
745 continue;
746 }
747
748 /* does the page belong to an object? */
749 if (uobj != NULL) {
750 uvmexp.pdobscan++;
751 } else {
752 #if defined(VMSWAP)
753 KASSERT(anon != NULL);
754 uvmexp.pdanscan++;
755 #else /* defined(VMSWAP) */
756 panic("%s: anon", __func__);
757 #endif /* defined(VMSWAP) */
758 }
759
760
761 /*
762 * we now have the object and the page queues locked.
763 * if the page is not swap-backed, call the object's
764 * pager to flush and free the page.
765 */
766
767 #if defined(READAHEAD_STATS)
768 if ((p->pqflags & PQ_READAHEAD) != 0) {
769 p->pqflags &= ~PQ_READAHEAD;
770 uvm_ra_miss.ev_count++;
771 }
772 #endif /* defined(READAHEAD_STATS) */
773
774 if ((p->pqflags & PQ_SWAPBACKED) == 0) {
775 KASSERT(uobj != NULL);
776 mutex_exit(&uvm_pageqlock);
777 (void) (uobj->pgops->pgo_put)(uobj, p->offset,
778 p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
779 mutex_enter(&uvm_pageqlock);
780 continue;
781 }
782
783 /*
784 * the page is swap-backed. remove all the permissions
785 * from the page so we can sync the modified info
786 * without any race conditions. if the page is clean
787 * we can free it now and continue.
788 */
789
790 pmap_page_protect(p, VM_PROT_NONE);
791 if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
792 p->flags &= ~(PG_CLEAN);
793 }
794 if (p->flags & PG_CLEAN) {
795 int slot;
796 int pageidx;
797
798 pageidx = p->offset >> PAGE_SHIFT;
799 uvm_pagefree(p);
800 uvmexp.pdfreed++;
801
802 /*
803 * for anons, we need to remove the page
804 * from the anon ourselves. for aobjs,
805 * pagefree did that for us.
806 */
807
808 if (anon) {
809 KASSERT(anon->an_swslot != 0);
810 anon->an_page = NULL;
811 slot = anon->an_swslot;
812 } else {
813 slot = uao_find_swslot(uobj, pageidx);
814 }
815 mutex_exit(slock);
816
817 if (slot > 0) {
818 /* this page is now only in swap. */
819 mutex_enter(&uvm_swap_data_lock);
820 KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
821 uvmexp.swpgonly++;
822 mutex_exit(&uvm_swap_data_lock);
823 }
824 continue;
825 }
826
827 #if defined(VMSWAP)
828 /*
829 * this page is dirty, skip it if we'll have met our
830 * free target when all the current pageouts complete.
831 */
832
833 if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
834 mutex_exit(slock);
835 continue;
836 }
837
838 /*
839 * free any swap space allocated to the page since
840 * we'll have to write it again with its new data.
841 */
842
843 uvmpd_dropswap(p);
844
845 /*
846 * start new swap pageout cluster (if necessary).
847 *
848 * if swap is full reactivate this page so that
849 * we eventually cycle all pages through the
850 * inactive queue.
851 */
852
853 if (swapcluster_allocslots(&swc)) {
854 dirtyreacts++;
855 uvm_pageactivate(p);
856 mutex_exit(slock);
857 continue;
858 }
859
860 /*
861 * at this point, we're definitely going reuse this
862 * page. mark the page busy and delayed-free.
863 * we should remove the page from the page queues
864 * so we don't ever look at it again.
865 * adjust counters and such.
866 */
867
868 p->flags |= PG_BUSY;
869 UVM_PAGE_OWN(p, "scan_queue");
870
871 p->flags |= PG_PAGEOUT;
872 uvm_pagedequeue(p);
873
874 uvmexp.pgswapout++;
875 mutex_exit(&uvm_pageqlock);
876
877 /*
878 * add the new page to the cluster.
879 */
880
881 if (swapcluster_add(&swc, p)) {
882 p->flags &= ~(PG_BUSY|PG_PAGEOUT);
883 UVM_PAGE_OWN(p, NULL);
884 mutex_enter(&uvm_pageqlock);
885 dirtyreacts++;
886 uvm_pageactivate(p);
887 mutex_exit(slock);
888 continue;
889 }
890 mutex_exit(slock);
891
892 swapcluster_flush(&swc, false);
893 mutex_enter(&uvm_pageqlock);
894
895 /*
896 * the pageout is in progress. bump counters and set up
897 * for the next loop.
898 */
899
900 uvmexp.pdpending++;
901
902 #else /* defined(VMSWAP) */
903 uvm_pageactivate(p);
904 mutex_exit(slock);
905 #endif /* defined(VMSWAP) */
906 }
907
908 #if defined(VMSWAP)
909 mutex_exit(&uvm_pageqlock);
910 swapcluster_flush(&swc, true);
911 mutex_enter(&uvm_pageqlock);
912 #endif /* defined(VMSWAP) */
913 }
914
915 /*
916 * uvmpd_scan: scan the page queues and attempt to meet our targets.
917 *
918 * => called with pageq's locked
919 */
920
921 static void
922 uvmpd_scan(void)
923 {
924 int swap_shortage, pages_freed;
925 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
926
927 uvmexp.pdrevs++;
928
929 /*
930 * work on meeting our targets. first we work on our free target
931 * by converting inactive pages into free pages. then we work on
932 * meeting our inactive target by converting active pages to
933 * inactive ones.
934 */
935
936 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
937
938 pages_freed = uvmexp.pdfreed;
939 uvmpd_scan_queue();
940 pages_freed = uvmexp.pdfreed - pages_freed;
941
942 /*
943 * detect if we're not going to be able to page anything out
944 * until we free some swap resources from active pages.
945 */
946
947 swap_shortage = 0;
948 if (uvmexp.free < uvmexp.freetarg &&
949 uvmexp.swpginuse >= uvmexp.swpgavail &&
950 !uvm_swapisfull() &&
951 pages_freed == 0) {
952 swap_shortage = uvmexp.freetarg - uvmexp.free;
953 }
954
955 uvmpdpol_balancequeue(swap_shortage);
956
957 /*
958 * if still below the minimum target, try unloading kernel
959 * modules.
960 */
961
962 if (uvmexp.free < uvmexp.freemin) {
963 module_thread_kick();
964 }
965 }
966
967 /*
968 * uvm_reclaimable: decide whether to wait for pagedaemon.
969 *
970 * => return true if it seems to be worth to do uvm_wait.
971 *
972 * XXX should be tunable.
973 * XXX should consider pools, etc?
974 */
975
976 bool
977 uvm_reclaimable(void)
978 {
979 int filepages;
980 int active, inactive;
981
982 /*
983 * if swap is not full, no problem.
984 */
985
986 if (!uvm_swapisfull()) {
987 return true;
988 }
989
990 /*
991 * file-backed pages can be reclaimed even when swap is full.
992 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
993 *
994 * XXX assume the worst case, ie. all wired pages are file-backed.
995 *
996 * XXX should consider about other reclaimable memory.
997 * XXX ie. pools, traditional buffer cache.
998 */
999
1000 filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
1001 uvm_estimatepageable(&active, &inactive);
1002 if (filepages >= MIN((active + inactive) >> 4,
1003 5 * 1024 * 1024 >> PAGE_SHIFT)) {
1004 return true;
1005 }
1006
1007 /*
1008 * kill the process, fail allocation, etc..
1009 */
1010
1011 return false;
1012 }
1013
1014 void
1015 uvm_estimatepageable(int *active, int *inactive)
1016 {
1017
1018 uvmpdpol_estimatepageable(active, inactive);
1019 }
1020
1021