Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.106
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.106 2012/06/05 22:51:47 jym Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     37  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_pdaemon.c: the page daemon
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.106 2012/06/05 22:51:47 jym Exp $");
     70 
     71 #include "opt_uvmhist.h"
     72 #include "opt_readahead.h"
     73 
     74 #include <sys/param.h>
     75 #include <sys/proc.h>
     76 #include <sys/systm.h>
     77 #include <sys/kernel.h>
     78 #include <sys/pool.h>
     79 #include <sys/buf.h>
     80 #include <sys/module.h>
     81 #include <sys/atomic.h>
     82 
     83 #include <uvm/uvm.h>
     84 #include <uvm/uvm_pdpolicy.h>
     85 
     86 /*
     87  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     88  * in a pass thru the inactive list when swap is full.  the value should be
     89  * "small"... if it's too large we'll cycle the active pages thru the inactive
     90  * queue too quickly to for them to be referenced and avoid being freed.
     91  */
     92 
     93 #define	UVMPD_NUMDIRTYREACTS	16
     94 
     95 #define	UVMPD_NUMTRYLOCKOWNER	16
     96 
     97 /*
     98  * local prototypes
     99  */
    100 
    101 static void	uvmpd_scan(void);
    102 static void	uvmpd_scan_queue(void);
    103 static void	uvmpd_tune(void);
    104 
    105 static unsigned int uvm_pagedaemon_waiters;
    106 
    107 /*
    108  * XXX hack to avoid hangs when large processes fork.
    109  */
    110 u_int uvm_extrapages;
    111 
    112 /*
    113  * uvm_wait: wait (sleep) for the page daemon to free some pages
    114  *
    115  * => should be called with all locks released
    116  * => should _not_ be called by the page daemon (to avoid deadlock)
    117  */
    118 
    119 void
    120 uvm_wait(const char *wmsg)
    121 {
    122 	int timo = 0;
    123 
    124 	mutex_spin_enter(&uvm_fpageqlock);
    125 
    126 	/*
    127 	 * check for page daemon going to sleep (waiting for itself)
    128 	 */
    129 
    130 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    131 		/*
    132 		 * now we have a problem: the pagedaemon wants to go to
    133 		 * sleep until it frees more memory.   but how can it
    134 		 * free more memory if it is asleep?  that is a deadlock.
    135 		 * we have two options:
    136 		 *  [1] panic now
    137 		 *  [2] put a timeout on the sleep, thus causing the
    138 		 *      pagedaemon to only pause (rather than sleep forever)
    139 		 *
    140 		 * note that option [2] will only help us if we get lucky
    141 		 * and some other process on the system breaks the deadlock
    142 		 * by exiting or freeing memory (thus allowing the pagedaemon
    143 		 * to continue).  for now we panic if DEBUG is defined,
    144 		 * otherwise we hope for the best with option [2] (better
    145 		 * yet, this should never happen in the first place!).
    146 		 */
    147 
    148 		printf("pagedaemon: deadlock detected!\n");
    149 		timo = hz >> 3;		/* set timeout */
    150 #if defined(DEBUG)
    151 		/* DEBUG: panic so we can debug it */
    152 		panic("pagedaemon deadlock");
    153 #endif
    154 	}
    155 
    156 	uvm_pagedaemon_waiters++;
    157 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    158 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
    159 }
    160 
    161 /*
    162  * uvm_kick_pdaemon: perform checks to determine if we need to
    163  * give the pagedaemon a nudge, and do so if necessary.
    164  *
    165  * => called with uvm_fpageqlock held.
    166  */
    167 
    168 void
    169 uvm_kick_pdaemon(void)
    170 {
    171 
    172 	KASSERT(mutex_owned(&uvm_fpageqlock));
    173 
    174 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    175 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    176 	     uvmpdpol_needsscan_p()) ||
    177 	     uvm_km_va_starved_p()) {
    178 		wakeup(&uvm.pagedaemon);
    179 	}
    180 }
    181 
    182 /*
    183  * uvmpd_tune: tune paging parameters
    184  *
    185  * => called when ever memory is added (or removed?) to the system
    186  * => caller must call with page queues locked
    187  */
    188 
    189 static void
    190 uvmpd_tune(void)
    191 {
    192 	int val;
    193 
    194 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    195 
    196 	/*
    197 	 * try to keep 0.5% of available RAM free, but limit to between
    198 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
    199 	 */
    200 	val = uvmexp.npages / 200;
    201 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
    202 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
    203 	val *= ncpu;
    204 
    205 	/* Make sure there's always a user page free. */
    206 	if (val < uvmexp.reserve_kernel + 1)
    207 		val = uvmexp.reserve_kernel + 1;
    208 	uvmexp.freemin = val;
    209 
    210 	/* Calculate free target. */
    211 	val = (uvmexp.freemin * 4) / 3;
    212 	if (val <= uvmexp.freemin)
    213 		val = uvmexp.freemin + 1;
    214 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
    215 
    216 	uvmexp.wiredmax = uvmexp.npages / 3;
    217 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    218 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    219 }
    220 
    221 /*
    222  * uvm_pageout: the main loop for the pagedaemon
    223  */
    224 
    225 void
    226 uvm_pageout(void *arg)
    227 {
    228 	int bufcnt, npages = 0;
    229 	int extrapages = 0;
    230 	struct pool *pp;
    231 
    232 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    233 
    234 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    235 
    236 	/*
    237 	 * ensure correct priority and set paging parameters...
    238 	 */
    239 
    240 	uvm.pagedaemon_lwp = curlwp;
    241 	mutex_enter(&uvm_pageqlock);
    242 	npages = uvmexp.npages;
    243 	uvmpd_tune();
    244 	mutex_exit(&uvm_pageqlock);
    245 
    246 	/*
    247 	 * main loop
    248 	 */
    249 
    250 	for (;;) {
    251 		bool needsscan, needsfree, kmem_va_starved;
    252 
    253 		kmem_va_starved = uvm_km_va_starved_p();
    254 
    255 		mutex_spin_enter(&uvm_fpageqlock);
    256 		if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
    257 		    !kmem_va_starved) {
    258 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    259 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    260 			    &uvm_fpageqlock, false, "pgdaemon", 0);
    261 			uvmexp.pdwoke++;
    262 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    263 		} else {
    264 			mutex_spin_exit(&uvm_fpageqlock);
    265 		}
    266 
    267 		/*
    268 		 * now lock page queues and recompute inactive count
    269 		 */
    270 
    271 		mutex_enter(&uvm_pageqlock);
    272 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    273 			npages = uvmexp.npages;
    274 			extrapages = uvm_extrapages;
    275 			mutex_spin_enter(&uvm_fpageqlock);
    276 			uvmpd_tune();
    277 			mutex_spin_exit(&uvm_fpageqlock);
    278 		}
    279 
    280 		uvmpdpol_tune();
    281 
    282 		/*
    283 		 * Estimate a hint.  Note that bufmem are returned to
    284 		 * system only when entire pool page is empty.
    285 		 */
    286 		mutex_spin_enter(&uvm_fpageqlock);
    287 		bufcnt = uvmexp.freetarg - uvmexp.free;
    288 		if (bufcnt < 0)
    289 			bufcnt = 0;
    290 
    291 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d",
    292 		    uvmexp.free, uvmexp.freetarg, 0,0);
    293 
    294 		needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
    295 		needsscan = needsfree || uvmpdpol_needsscan_p();
    296 
    297 		/*
    298 		 * scan if needed
    299 		 */
    300 		if (needsscan) {
    301 			mutex_spin_exit(&uvm_fpageqlock);
    302 			uvmpd_scan();
    303 			mutex_spin_enter(&uvm_fpageqlock);
    304 		}
    305 
    306 		/*
    307 		 * if there's any free memory to be had,
    308 		 * wake up any waiters.
    309 		 */
    310 		if (uvmexp.free > uvmexp.reserve_kernel ||
    311 		    uvmexp.paging == 0) {
    312 			wakeup(&uvmexp.free);
    313 			uvm_pagedaemon_waiters = 0;
    314 		}
    315 		mutex_spin_exit(&uvm_fpageqlock);
    316 
    317 		/*
    318 		 * scan done.  unlock page queues (the only lock we are holding)
    319 		 */
    320 		mutex_exit(&uvm_pageqlock);
    321 
    322 		/*
    323 		 * if we don't need free memory, we're done.
    324 		 */
    325 
    326 		if (!needsfree && !kmem_va_starved)
    327 			continue;
    328 
    329 		/*
    330 		 * kill unused metadata buffers.
    331 		 */
    332 		mutex_enter(&bufcache_lock);
    333 		buf_drain(bufcnt << PAGE_SHIFT);
    334 		mutex_exit(&bufcache_lock);
    335 
    336 		/*
    337 		 * drain the pools.
    338 		 */
    339 		pool_drain(&pp);
    340 	}
    341 	/*NOTREACHED*/
    342 }
    343 
    344 
    345 /*
    346  * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
    347  */
    348 
    349 void
    350 uvm_aiodone_worker(struct work *wk, void *dummy)
    351 {
    352 	struct buf *bp = (void *)wk;
    353 
    354 	KASSERT(&bp->b_work == wk);
    355 
    356 	/*
    357 	 * process an i/o that's done.
    358 	 */
    359 
    360 	(*bp->b_iodone)(bp);
    361 }
    362 
    363 void
    364 uvm_pageout_start(int npages)
    365 {
    366 
    367 	mutex_spin_enter(&uvm_fpageqlock);
    368 	uvmexp.paging += npages;
    369 	mutex_spin_exit(&uvm_fpageqlock);
    370 }
    371 
    372 void
    373 uvm_pageout_done(int npages)
    374 {
    375 
    376 	mutex_spin_enter(&uvm_fpageqlock);
    377 	KASSERT(uvmexp.paging >= npages);
    378 	uvmexp.paging -= npages;
    379 
    380 	/*
    381 	 * wake up either of pagedaemon or LWPs waiting for it.
    382 	 */
    383 
    384 	if (uvmexp.free <= uvmexp.reserve_kernel) {
    385 		wakeup(&uvm.pagedaemon);
    386 	} else {
    387 		wakeup(&uvmexp.free);
    388 		uvm_pagedaemon_waiters = 0;
    389 	}
    390 	mutex_spin_exit(&uvm_fpageqlock);
    391 }
    392 
    393 /*
    394  * uvmpd_trylockowner: trylock the page's owner.
    395  *
    396  * => called with pageq locked.
    397  * => resolve orphaned O->A loaned page.
    398  * => return the locked mutex on success.  otherwise, return NULL.
    399  */
    400 
    401 kmutex_t *
    402 uvmpd_trylockowner(struct vm_page *pg)
    403 {
    404 	struct uvm_object *uobj = pg->uobject;
    405 	kmutex_t *slock;
    406 
    407 	KASSERT(mutex_owned(&uvm_pageqlock));
    408 
    409 	if (uobj != NULL) {
    410 		slock = uobj->vmobjlock;
    411 	} else {
    412 		struct vm_anon *anon = pg->uanon;
    413 
    414 		KASSERT(anon != NULL);
    415 		slock = anon->an_lock;
    416 	}
    417 
    418 	if (!mutex_tryenter(slock)) {
    419 		return NULL;
    420 	}
    421 
    422 	if (uobj == NULL) {
    423 
    424 		/*
    425 		 * set PQ_ANON if it isn't set already.
    426 		 */
    427 
    428 		if ((pg->pqflags & PQ_ANON) == 0) {
    429 			KASSERT(pg->loan_count > 0);
    430 			pg->loan_count--;
    431 			pg->pqflags |= PQ_ANON;
    432 			/* anon now owns it */
    433 		}
    434 	}
    435 
    436 	return slock;
    437 }
    438 
    439 #if defined(VMSWAP)
    440 struct swapcluster {
    441 	int swc_slot;
    442 	int swc_nallocated;
    443 	int swc_nused;
    444 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    445 };
    446 
    447 static void
    448 swapcluster_init(struct swapcluster *swc)
    449 {
    450 
    451 	swc->swc_slot = 0;
    452 	swc->swc_nused = 0;
    453 }
    454 
    455 static int
    456 swapcluster_allocslots(struct swapcluster *swc)
    457 {
    458 	int slot;
    459 	int npages;
    460 
    461 	if (swc->swc_slot != 0) {
    462 		return 0;
    463 	}
    464 
    465 	/* Even with strange MAXPHYS, the shift
    466 	   implicitly rounds down to a page. */
    467 	npages = MAXPHYS >> PAGE_SHIFT;
    468 	slot = uvm_swap_alloc(&npages, true);
    469 	if (slot == 0) {
    470 		return ENOMEM;
    471 	}
    472 	swc->swc_slot = slot;
    473 	swc->swc_nallocated = npages;
    474 	swc->swc_nused = 0;
    475 
    476 	return 0;
    477 }
    478 
    479 static int
    480 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    481 {
    482 	int slot;
    483 	struct uvm_object *uobj;
    484 
    485 	KASSERT(swc->swc_slot != 0);
    486 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    487 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
    488 
    489 	slot = swc->swc_slot + swc->swc_nused;
    490 	uobj = pg->uobject;
    491 	if (uobj == NULL) {
    492 		KASSERT(mutex_owned(pg->uanon->an_lock));
    493 		pg->uanon->an_swslot = slot;
    494 	} else {
    495 		int result;
    496 
    497 		KASSERT(mutex_owned(uobj->vmobjlock));
    498 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    499 		if (result == -1) {
    500 			return ENOMEM;
    501 		}
    502 	}
    503 	swc->swc_pages[swc->swc_nused] = pg;
    504 	swc->swc_nused++;
    505 
    506 	return 0;
    507 }
    508 
    509 static void
    510 swapcluster_flush(struct swapcluster *swc, bool now)
    511 {
    512 	int slot;
    513 	int nused;
    514 	int nallocated;
    515 	int error;
    516 
    517 	if (swc->swc_slot == 0) {
    518 		return;
    519 	}
    520 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    521 
    522 	slot = swc->swc_slot;
    523 	nused = swc->swc_nused;
    524 	nallocated = swc->swc_nallocated;
    525 
    526 	/*
    527 	 * if this is the final pageout we could have a few
    528 	 * unused swap blocks.  if so, free them now.
    529 	 */
    530 
    531 	if (nused < nallocated) {
    532 		if (!now) {
    533 			return;
    534 		}
    535 		uvm_swap_free(slot + nused, nallocated - nused);
    536 	}
    537 
    538 	/*
    539 	 * now start the pageout.
    540 	 */
    541 
    542 	if (nused > 0) {
    543 		uvmexp.pdpageouts++;
    544 		uvm_pageout_start(nused);
    545 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    546 		KASSERT(error == 0 || error == ENOMEM);
    547 	}
    548 
    549 	/*
    550 	 * zero swslot to indicate that we are
    551 	 * no longer building a swap-backed cluster.
    552 	 */
    553 
    554 	swc->swc_slot = 0;
    555 	swc->swc_nused = 0;
    556 }
    557 
    558 static int
    559 swapcluster_nused(struct swapcluster *swc)
    560 {
    561 
    562 	return swc->swc_nused;
    563 }
    564 
    565 /*
    566  * uvmpd_dropswap: free any swap allocated to this page.
    567  *
    568  * => called with owner locked.
    569  * => return true if a page had an associated slot.
    570  */
    571 
    572 static bool
    573 uvmpd_dropswap(struct vm_page *pg)
    574 {
    575 	bool result = false;
    576 	struct vm_anon *anon = pg->uanon;
    577 
    578 	if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
    579 		uvm_swap_free(anon->an_swslot, 1);
    580 		anon->an_swslot = 0;
    581 		pg->flags &= ~PG_CLEAN;
    582 		result = true;
    583 	} else if (pg->pqflags & PQ_AOBJ) {
    584 		int slot = uao_set_swslot(pg->uobject,
    585 		    pg->offset >> PAGE_SHIFT, 0);
    586 		if (slot) {
    587 			uvm_swap_free(slot, 1);
    588 			pg->flags &= ~PG_CLEAN;
    589 			result = true;
    590 		}
    591 	}
    592 
    593 	return result;
    594 }
    595 
    596 /*
    597  * uvmpd_trydropswap: try to free any swap allocated to this page.
    598  *
    599  * => return true if a slot is successfully freed.
    600  */
    601 
    602 bool
    603 uvmpd_trydropswap(struct vm_page *pg)
    604 {
    605 	kmutex_t *slock;
    606 	bool result;
    607 
    608 	if ((pg->flags & PG_BUSY) != 0) {
    609 		return false;
    610 	}
    611 
    612 	/*
    613 	 * lock the page's owner.
    614 	 */
    615 
    616 	slock = uvmpd_trylockowner(pg);
    617 	if (slock == NULL) {
    618 		return false;
    619 	}
    620 
    621 	/*
    622 	 * skip this page if it's busy.
    623 	 */
    624 
    625 	if ((pg->flags & PG_BUSY) != 0) {
    626 		mutex_exit(slock);
    627 		return false;
    628 	}
    629 
    630 	result = uvmpd_dropswap(pg);
    631 
    632 	mutex_exit(slock);
    633 
    634 	return result;
    635 }
    636 
    637 #endif /* defined(VMSWAP) */
    638 
    639 /*
    640  * uvmpd_scan_queue: scan an replace candidate list for pages
    641  * to clean or free.
    642  *
    643  * => called with page queues locked
    644  * => we work on meeting our free target by converting inactive pages
    645  *    into free pages.
    646  * => we handle the building of swap-backed clusters
    647  */
    648 
    649 static void
    650 uvmpd_scan_queue(void)
    651 {
    652 	struct vm_page *p;
    653 	struct uvm_object *uobj;
    654 	struct vm_anon *anon;
    655 #if defined(VMSWAP)
    656 	struct swapcluster swc;
    657 #endif /* defined(VMSWAP) */
    658 	int dirtyreacts;
    659 	int lockownerfail;
    660 	kmutex_t *slock;
    661 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    662 
    663 	/*
    664 	 * swslot is non-zero if we are building a swap cluster.  we want
    665 	 * to stay in the loop while we have a page to scan or we have
    666 	 * a swap-cluster to build.
    667 	 */
    668 
    669 #if defined(VMSWAP)
    670 	swapcluster_init(&swc);
    671 #endif /* defined(VMSWAP) */
    672 
    673 	dirtyreacts = 0;
    674 	lockownerfail = 0;
    675 	uvmpdpol_scaninit();
    676 
    677 	while (/* CONSTCOND */ 1) {
    678 
    679 		/*
    680 		 * see if we've met the free target.
    681 		 */
    682 
    683 		if (uvmexp.free + uvmexp.paging
    684 #if defined(VMSWAP)
    685 		    + swapcluster_nused(&swc)
    686 #endif /* defined(VMSWAP) */
    687 		    >= uvmexp.freetarg << 2 ||
    688 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    689 			UVMHIST_LOG(pdhist,"  met free target: "
    690 				    "exit loop", 0, 0, 0, 0);
    691 			break;
    692 		}
    693 
    694 		p = uvmpdpol_selectvictim();
    695 		if (p == NULL) {
    696 			break;
    697 		}
    698 		KASSERT(uvmpdpol_pageisqueued_p(p));
    699 		KASSERT(p->wire_count == 0);
    700 
    701 		/*
    702 		 * we are below target and have a new page to consider.
    703 		 */
    704 
    705 		anon = p->uanon;
    706 		uobj = p->uobject;
    707 
    708 		/*
    709 		 * first we attempt to lock the object that this page
    710 		 * belongs to.  if our attempt fails we skip on to
    711 		 * the next page (no harm done).  it is important to
    712 		 * "try" locking the object as we are locking in the
    713 		 * wrong order (pageq -> object) and we don't want to
    714 		 * deadlock.
    715 		 *
    716 		 * the only time we expect to see an ownerless page
    717 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
    718 		 * anon has loaned a page from a uvm_object and the
    719 		 * uvm_object has dropped the ownership.  in that
    720 		 * case, the anon can "take over" the loaned page
    721 		 * and make it its own.
    722 		 */
    723 
    724 		slock = uvmpd_trylockowner(p);
    725 		if (slock == NULL) {
    726 			/*
    727 			 * yield cpu to make a chance for an LWP holding
    728 			 * the lock run.  otherwise we can busy-loop too long
    729 			 * if the page queue is filled with a lot of pages
    730 			 * from few objects.
    731 			 */
    732 			lockownerfail++;
    733 			if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
    734 				mutex_exit(&uvm_pageqlock);
    735 				/* XXX Better than yielding but inadequate. */
    736 				kpause("livelock", false, 1, NULL);
    737 				mutex_enter(&uvm_pageqlock);
    738 				lockownerfail = 0;
    739 			}
    740 			continue;
    741 		}
    742 		if (p->flags & PG_BUSY) {
    743 			mutex_exit(slock);
    744 			uvmexp.pdbusy++;
    745 			continue;
    746 		}
    747 
    748 		/* does the page belong to an object? */
    749 		if (uobj != NULL) {
    750 			uvmexp.pdobscan++;
    751 		} else {
    752 #if defined(VMSWAP)
    753 			KASSERT(anon != NULL);
    754 			uvmexp.pdanscan++;
    755 #else /* defined(VMSWAP) */
    756 			panic("%s: anon", __func__);
    757 #endif /* defined(VMSWAP) */
    758 		}
    759 
    760 
    761 		/*
    762 		 * we now have the object and the page queues locked.
    763 		 * if the page is not swap-backed, call the object's
    764 		 * pager to flush and free the page.
    765 		 */
    766 
    767 #if defined(READAHEAD_STATS)
    768 		if ((p->pqflags & PQ_READAHEAD) != 0) {
    769 			p->pqflags &= ~PQ_READAHEAD;
    770 			uvm_ra_miss.ev_count++;
    771 		}
    772 #endif /* defined(READAHEAD_STATS) */
    773 
    774 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    775 			KASSERT(uobj != NULL);
    776 			mutex_exit(&uvm_pageqlock);
    777 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    778 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    779 			mutex_enter(&uvm_pageqlock);
    780 			continue;
    781 		}
    782 
    783 		/*
    784 		 * the page is swap-backed.  remove all the permissions
    785 		 * from the page so we can sync the modified info
    786 		 * without any race conditions.  if the page is clean
    787 		 * we can free it now and continue.
    788 		 */
    789 
    790 		pmap_page_protect(p, VM_PROT_NONE);
    791 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    792 			p->flags &= ~(PG_CLEAN);
    793 		}
    794 		if (p->flags & PG_CLEAN) {
    795 			int slot;
    796 			int pageidx;
    797 
    798 			pageidx = p->offset >> PAGE_SHIFT;
    799 			uvm_pagefree(p);
    800 			uvmexp.pdfreed++;
    801 
    802 			/*
    803 			 * for anons, we need to remove the page
    804 			 * from the anon ourselves.  for aobjs,
    805 			 * pagefree did that for us.
    806 			 */
    807 
    808 			if (anon) {
    809 				KASSERT(anon->an_swslot != 0);
    810 				anon->an_page = NULL;
    811 				slot = anon->an_swslot;
    812 			} else {
    813 				slot = uao_find_swslot(uobj, pageidx);
    814 			}
    815 			mutex_exit(slock);
    816 
    817 			if (slot > 0) {
    818 				/* this page is now only in swap. */
    819 				mutex_enter(&uvm_swap_data_lock);
    820 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    821 				uvmexp.swpgonly++;
    822 				mutex_exit(&uvm_swap_data_lock);
    823 			}
    824 			continue;
    825 		}
    826 
    827 #if defined(VMSWAP)
    828 		/*
    829 		 * this page is dirty, skip it if we'll have met our
    830 		 * free target when all the current pageouts complete.
    831 		 */
    832 
    833 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    834 			mutex_exit(slock);
    835 			continue;
    836 		}
    837 
    838 		/*
    839 		 * free any swap space allocated to the page since
    840 		 * we'll have to write it again with its new data.
    841 		 */
    842 
    843 		uvmpd_dropswap(p);
    844 
    845 		/*
    846 		 * start new swap pageout cluster (if necessary).
    847 		 *
    848 		 * if swap is full reactivate this page so that
    849 		 * we eventually cycle all pages through the
    850 		 * inactive queue.
    851 		 */
    852 
    853 		if (swapcluster_allocslots(&swc)) {
    854 			dirtyreacts++;
    855 			uvm_pageactivate(p);
    856 			mutex_exit(slock);
    857 			continue;
    858 		}
    859 
    860 		/*
    861 		 * at this point, we're definitely going reuse this
    862 		 * page.  mark the page busy and delayed-free.
    863 		 * we should remove the page from the page queues
    864 		 * so we don't ever look at it again.
    865 		 * adjust counters and such.
    866 		 */
    867 
    868 		p->flags |= PG_BUSY;
    869 		UVM_PAGE_OWN(p, "scan_queue");
    870 
    871 		p->flags |= PG_PAGEOUT;
    872 		uvm_pagedequeue(p);
    873 
    874 		uvmexp.pgswapout++;
    875 		mutex_exit(&uvm_pageqlock);
    876 
    877 		/*
    878 		 * add the new page to the cluster.
    879 		 */
    880 
    881 		if (swapcluster_add(&swc, p)) {
    882 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    883 			UVM_PAGE_OWN(p, NULL);
    884 			mutex_enter(&uvm_pageqlock);
    885 			dirtyreacts++;
    886 			uvm_pageactivate(p);
    887 			mutex_exit(slock);
    888 			continue;
    889 		}
    890 		mutex_exit(slock);
    891 
    892 		swapcluster_flush(&swc, false);
    893 		mutex_enter(&uvm_pageqlock);
    894 
    895 		/*
    896 		 * the pageout is in progress.  bump counters and set up
    897 		 * for the next loop.
    898 		 */
    899 
    900 		uvmexp.pdpending++;
    901 
    902 #else /* defined(VMSWAP) */
    903 		uvm_pageactivate(p);
    904 		mutex_exit(slock);
    905 #endif /* defined(VMSWAP) */
    906 	}
    907 
    908 #if defined(VMSWAP)
    909 	mutex_exit(&uvm_pageqlock);
    910 	swapcluster_flush(&swc, true);
    911 	mutex_enter(&uvm_pageqlock);
    912 #endif /* defined(VMSWAP) */
    913 }
    914 
    915 /*
    916  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    917  *
    918  * => called with pageq's locked
    919  */
    920 
    921 static void
    922 uvmpd_scan(void)
    923 {
    924 	int swap_shortage, pages_freed;
    925 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    926 
    927 	uvmexp.pdrevs++;
    928 
    929 	/*
    930 	 * work on meeting our targets.   first we work on our free target
    931 	 * by converting inactive pages into free pages.  then we work on
    932 	 * meeting our inactive target by converting active pages to
    933 	 * inactive ones.
    934 	 */
    935 
    936 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    937 
    938 	pages_freed = uvmexp.pdfreed;
    939 	uvmpd_scan_queue();
    940 	pages_freed = uvmexp.pdfreed - pages_freed;
    941 
    942 	/*
    943 	 * detect if we're not going to be able to page anything out
    944 	 * until we free some swap resources from active pages.
    945 	 */
    946 
    947 	swap_shortage = 0;
    948 	if (uvmexp.free < uvmexp.freetarg &&
    949 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    950 	    !uvm_swapisfull() &&
    951 	    pages_freed == 0) {
    952 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    953 	}
    954 
    955 	uvmpdpol_balancequeue(swap_shortage);
    956 
    957 	/*
    958 	 * if still below the minimum target, try unloading kernel
    959 	 * modules.
    960 	 */
    961 
    962 	if (uvmexp.free < uvmexp.freemin) {
    963 		module_thread_kick();
    964 	}
    965 }
    966 
    967 /*
    968  * uvm_reclaimable: decide whether to wait for pagedaemon.
    969  *
    970  * => return true if it seems to be worth to do uvm_wait.
    971  *
    972  * XXX should be tunable.
    973  * XXX should consider pools, etc?
    974  */
    975 
    976 bool
    977 uvm_reclaimable(void)
    978 {
    979 	int filepages;
    980 	int active, inactive;
    981 
    982 	/*
    983 	 * if swap is not full, no problem.
    984 	 */
    985 
    986 	if (!uvm_swapisfull()) {
    987 		return true;
    988 	}
    989 
    990 	/*
    991 	 * file-backed pages can be reclaimed even when swap is full.
    992 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    993 	 *
    994 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    995 	 *
    996 	 * XXX should consider about other reclaimable memory.
    997 	 * XXX ie. pools, traditional buffer cache.
    998 	 */
    999 
   1000 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
   1001 	uvm_estimatepageable(&active, &inactive);
   1002 	if (filepages >= MIN((active + inactive) >> 4,
   1003 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
   1004 		return true;
   1005 	}
   1006 
   1007 	/*
   1008 	 * kill the process, fail allocation, etc..
   1009 	 */
   1010 
   1011 	return false;
   1012 }
   1013 
   1014 void
   1015 uvm_estimatepageable(int *active, int *inactive)
   1016 {
   1017 
   1018 	uvmpdpol_estimatepageable(active, inactive);
   1019 }
   1020 
   1021