Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.108
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.108 2013/10/25 20:28:33 martin Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     37  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_pdaemon.c: the page daemon
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.108 2013/10/25 20:28:33 martin Exp $");
     70 
     71 #include "opt_uvmhist.h"
     72 #include "opt_readahead.h"
     73 
     74 #include <sys/param.h>
     75 #include <sys/proc.h>
     76 #include <sys/systm.h>
     77 #include <sys/kernel.h>
     78 #include <sys/pool.h>
     79 #include <sys/buf.h>
     80 #include <sys/module.h>
     81 #include <sys/atomic.h>
     82 
     83 #include <uvm/uvm.h>
     84 #include <uvm/uvm_pdpolicy.h>
     85 
     86 #ifdef UVMHIST
     87 UVMHIST_DEFINE(pdhist);
     88 #endif
     89 
     90 /*
     91  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     92  * in a pass thru the inactive list when swap is full.  the value should be
     93  * "small"... if it's too large we'll cycle the active pages thru the inactive
     94  * queue too quickly to for them to be referenced and avoid being freed.
     95  */
     96 
     97 #define	UVMPD_NUMDIRTYREACTS	16
     98 
     99 #define	UVMPD_NUMTRYLOCKOWNER	16
    100 
    101 /*
    102  * local prototypes
    103  */
    104 
    105 static void	uvmpd_scan(void);
    106 static void	uvmpd_scan_queue(void);
    107 static void	uvmpd_tune(void);
    108 
    109 static unsigned int uvm_pagedaemon_waiters;
    110 
    111 /*
    112  * XXX hack to avoid hangs when large processes fork.
    113  */
    114 u_int uvm_extrapages;
    115 
    116 /*
    117  * uvm_wait: wait (sleep) for the page daemon to free some pages
    118  *
    119  * => should be called with all locks released
    120  * => should _not_ be called by the page daemon (to avoid deadlock)
    121  */
    122 
    123 void
    124 uvm_wait(const char *wmsg)
    125 {
    126 	int timo = 0;
    127 
    128 	mutex_spin_enter(&uvm_fpageqlock);
    129 
    130 	/*
    131 	 * check for page daemon going to sleep (waiting for itself)
    132 	 */
    133 
    134 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    135 		/*
    136 		 * now we have a problem: the pagedaemon wants to go to
    137 		 * sleep until it frees more memory.   but how can it
    138 		 * free more memory if it is asleep?  that is a deadlock.
    139 		 * we have two options:
    140 		 *  [1] panic now
    141 		 *  [2] put a timeout on the sleep, thus causing the
    142 		 *      pagedaemon to only pause (rather than sleep forever)
    143 		 *
    144 		 * note that option [2] will only help us if we get lucky
    145 		 * and some other process on the system breaks the deadlock
    146 		 * by exiting or freeing memory (thus allowing the pagedaemon
    147 		 * to continue).  for now we panic if DEBUG is defined,
    148 		 * otherwise we hope for the best with option [2] (better
    149 		 * yet, this should never happen in the first place!).
    150 		 */
    151 
    152 		printf("pagedaemon: deadlock detected!\n");
    153 		timo = hz >> 3;		/* set timeout */
    154 #if defined(DEBUG)
    155 		/* DEBUG: panic so we can debug it */
    156 		panic("pagedaemon deadlock");
    157 #endif
    158 	}
    159 
    160 	uvm_pagedaemon_waiters++;
    161 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    162 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
    163 }
    164 
    165 /*
    166  * uvm_kick_pdaemon: perform checks to determine if we need to
    167  * give the pagedaemon a nudge, and do so if necessary.
    168  *
    169  * => called with uvm_fpageqlock held.
    170  */
    171 
    172 void
    173 uvm_kick_pdaemon(void)
    174 {
    175 
    176 	KASSERT(mutex_owned(&uvm_fpageqlock));
    177 
    178 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    179 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    180 	     uvmpdpol_needsscan_p()) ||
    181 	     uvm_km_va_starved_p()) {
    182 		wakeup(&uvm.pagedaemon);
    183 	}
    184 }
    185 
    186 /*
    187  * uvmpd_tune: tune paging parameters
    188  *
    189  * => called when ever memory is added (or removed?) to the system
    190  * => caller must call with page queues locked
    191  */
    192 
    193 static void
    194 uvmpd_tune(void)
    195 {
    196 	int val;
    197 
    198 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    199 
    200 	/*
    201 	 * try to keep 0.5% of available RAM free, but limit to between
    202 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
    203 	 */
    204 	val = uvmexp.npages / 200;
    205 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
    206 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
    207 	val *= ncpu;
    208 
    209 	/* Make sure there's always a user page free. */
    210 	if (val < uvmexp.reserve_kernel + 1)
    211 		val = uvmexp.reserve_kernel + 1;
    212 	uvmexp.freemin = val;
    213 
    214 	/* Calculate free target. */
    215 	val = (uvmexp.freemin * 4) / 3;
    216 	if (val <= uvmexp.freemin)
    217 		val = uvmexp.freemin + 1;
    218 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
    219 
    220 	uvmexp.wiredmax = uvmexp.npages / 3;
    221 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    222 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    223 }
    224 
    225 /*
    226  * uvm_pageout: the main loop for the pagedaemon
    227  */
    228 
    229 void
    230 uvm_pageout(void *arg)
    231 {
    232 	int bufcnt, npages = 0;
    233 	int extrapages = 0;
    234 	struct pool *pp;
    235 
    236 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    237 
    238 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    239 
    240 	/*
    241 	 * ensure correct priority and set paging parameters...
    242 	 */
    243 
    244 	uvm.pagedaemon_lwp = curlwp;
    245 	mutex_enter(&uvm_pageqlock);
    246 	npages = uvmexp.npages;
    247 	uvmpd_tune();
    248 	mutex_exit(&uvm_pageqlock);
    249 
    250 	/*
    251 	 * main loop
    252 	 */
    253 
    254 	for (;;) {
    255 		bool needsscan, needsfree, kmem_va_starved;
    256 
    257 		kmem_va_starved = uvm_km_va_starved_p();
    258 
    259 		mutex_spin_enter(&uvm_fpageqlock);
    260 		if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
    261 		    !kmem_va_starved) {
    262 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    263 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    264 			    &uvm_fpageqlock, false, "pgdaemon", 0);
    265 			uvmexp.pdwoke++;
    266 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    267 		} else {
    268 			mutex_spin_exit(&uvm_fpageqlock);
    269 		}
    270 
    271 		/*
    272 		 * now lock page queues and recompute inactive count
    273 		 */
    274 
    275 		mutex_enter(&uvm_pageqlock);
    276 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    277 			npages = uvmexp.npages;
    278 			extrapages = uvm_extrapages;
    279 			mutex_spin_enter(&uvm_fpageqlock);
    280 			uvmpd_tune();
    281 			mutex_spin_exit(&uvm_fpageqlock);
    282 		}
    283 
    284 		uvmpdpol_tune();
    285 
    286 		/*
    287 		 * Estimate a hint.  Note that bufmem are returned to
    288 		 * system only when entire pool page is empty.
    289 		 */
    290 		mutex_spin_enter(&uvm_fpageqlock);
    291 		bufcnt = uvmexp.freetarg - uvmexp.free;
    292 		if (bufcnt < 0)
    293 			bufcnt = 0;
    294 
    295 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d",
    296 		    uvmexp.free, uvmexp.freetarg, 0,0);
    297 
    298 		needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
    299 		needsscan = needsfree || uvmpdpol_needsscan_p();
    300 
    301 		/*
    302 		 * scan if needed
    303 		 */
    304 		if (needsscan) {
    305 			mutex_spin_exit(&uvm_fpageqlock);
    306 			uvmpd_scan();
    307 			mutex_spin_enter(&uvm_fpageqlock);
    308 		}
    309 
    310 		/*
    311 		 * if there's any free memory to be had,
    312 		 * wake up any waiters.
    313 		 */
    314 		if (uvmexp.free > uvmexp.reserve_kernel ||
    315 		    uvmexp.paging == 0) {
    316 			wakeup(&uvmexp.free);
    317 			uvm_pagedaemon_waiters = 0;
    318 		}
    319 		mutex_spin_exit(&uvm_fpageqlock);
    320 
    321 		/*
    322 		 * scan done.  unlock page queues (the only lock we are holding)
    323 		 */
    324 		mutex_exit(&uvm_pageqlock);
    325 
    326 		/*
    327 		 * if we don't need free memory, we're done.
    328 		 */
    329 
    330 		if (!needsfree && !kmem_va_starved)
    331 			continue;
    332 
    333 		/*
    334 		 * kill unused metadata buffers.
    335 		 */
    336 		mutex_enter(&bufcache_lock);
    337 		buf_drain(bufcnt << PAGE_SHIFT);
    338 		mutex_exit(&bufcache_lock);
    339 
    340 		/*
    341 		 * drain the pools.
    342 		 */
    343 		pool_drain(&pp);
    344 	}
    345 	/*NOTREACHED*/
    346 }
    347 
    348 
    349 /*
    350  * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
    351  */
    352 
    353 void
    354 uvm_aiodone_worker(struct work *wk, void *dummy)
    355 {
    356 	struct buf *bp = (void *)wk;
    357 
    358 	KASSERT(&bp->b_work == wk);
    359 
    360 	/*
    361 	 * process an i/o that's done.
    362 	 */
    363 
    364 	(*bp->b_iodone)(bp);
    365 }
    366 
    367 void
    368 uvm_pageout_start(int npages)
    369 {
    370 
    371 	mutex_spin_enter(&uvm_fpageqlock);
    372 	uvmexp.paging += npages;
    373 	mutex_spin_exit(&uvm_fpageqlock);
    374 }
    375 
    376 void
    377 uvm_pageout_done(int npages)
    378 {
    379 
    380 	mutex_spin_enter(&uvm_fpageqlock);
    381 	KASSERT(uvmexp.paging >= npages);
    382 	uvmexp.paging -= npages;
    383 
    384 	/*
    385 	 * wake up either of pagedaemon or LWPs waiting for it.
    386 	 */
    387 
    388 	if (uvmexp.free <= uvmexp.reserve_kernel) {
    389 		wakeup(&uvm.pagedaemon);
    390 	} else {
    391 		wakeup(&uvmexp.free);
    392 		uvm_pagedaemon_waiters = 0;
    393 	}
    394 	mutex_spin_exit(&uvm_fpageqlock);
    395 }
    396 
    397 /*
    398  * uvmpd_trylockowner: trylock the page's owner.
    399  *
    400  * => called with pageq locked.
    401  * => resolve orphaned O->A loaned page.
    402  * => return the locked mutex on success.  otherwise, return NULL.
    403  */
    404 
    405 kmutex_t *
    406 uvmpd_trylockowner(struct vm_page *pg)
    407 {
    408 	struct uvm_object *uobj = pg->uobject;
    409 	kmutex_t *slock;
    410 
    411 	KASSERT(mutex_owned(&uvm_pageqlock));
    412 
    413 	if (uobj != NULL) {
    414 		slock = uobj->vmobjlock;
    415 	} else {
    416 		struct vm_anon *anon = pg->uanon;
    417 
    418 		KASSERT(anon != NULL);
    419 		slock = anon->an_lock;
    420 	}
    421 
    422 	if (!mutex_tryenter(slock)) {
    423 		return NULL;
    424 	}
    425 
    426 	if (uobj == NULL) {
    427 
    428 		/*
    429 		 * set PQ_ANON if it isn't set already.
    430 		 */
    431 
    432 		if ((pg->pqflags & PQ_ANON) == 0) {
    433 			KASSERT(pg->loan_count > 0);
    434 			pg->loan_count--;
    435 			pg->pqflags |= PQ_ANON;
    436 			/* anon now owns it */
    437 		}
    438 	}
    439 
    440 	return slock;
    441 }
    442 
    443 #if defined(VMSWAP)
    444 struct swapcluster {
    445 	int swc_slot;
    446 	int swc_nallocated;
    447 	int swc_nused;
    448 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    449 };
    450 
    451 static void
    452 swapcluster_init(struct swapcluster *swc)
    453 {
    454 
    455 	swc->swc_slot = 0;
    456 	swc->swc_nused = 0;
    457 }
    458 
    459 static int
    460 swapcluster_allocslots(struct swapcluster *swc)
    461 {
    462 	int slot;
    463 	int npages;
    464 
    465 	if (swc->swc_slot != 0) {
    466 		return 0;
    467 	}
    468 
    469 	/* Even with strange MAXPHYS, the shift
    470 	   implicitly rounds down to a page. */
    471 	npages = MAXPHYS >> PAGE_SHIFT;
    472 	slot = uvm_swap_alloc(&npages, true);
    473 	if (slot == 0) {
    474 		return ENOMEM;
    475 	}
    476 	swc->swc_slot = slot;
    477 	swc->swc_nallocated = npages;
    478 	swc->swc_nused = 0;
    479 
    480 	return 0;
    481 }
    482 
    483 static int
    484 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    485 {
    486 	int slot;
    487 	struct uvm_object *uobj;
    488 
    489 	KASSERT(swc->swc_slot != 0);
    490 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    491 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
    492 
    493 	slot = swc->swc_slot + swc->swc_nused;
    494 	uobj = pg->uobject;
    495 	if (uobj == NULL) {
    496 		KASSERT(mutex_owned(pg->uanon->an_lock));
    497 		pg->uanon->an_swslot = slot;
    498 	} else {
    499 		int result;
    500 
    501 		KASSERT(mutex_owned(uobj->vmobjlock));
    502 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    503 		if (result == -1) {
    504 			return ENOMEM;
    505 		}
    506 	}
    507 	swc->swc_pages[swc->swc_nused] = pg;
    508 	swc->swc_nused++;
    509 
    510 	return 0;
    511 }
    512 
    513 static void
    514 swapcluster_flush(struct swapcluster *swc, bool now)
    515 {
    516 	int slot;
    517 	int nused;
    518 	int nallocated;
    519 	int error __diagused;
    520 
    521 	if (swc->swc_slot == 0) {
    522 		return;
    523 	}
    524 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    525 
    526 	slot = swc->swc_slot;
    527 	nused = swc->swc_nused;
    528 	nallocated = swc->swc_nallocated;
    529 
    530 	/*
    531 	 * if this is the final pageout we could have a few
    532 	 * unused swap blocks.  if so, free them now.
    533 	 */
    534 
    535 	if (nused < nallocated) {
    536 		if (!now) {
    537 			return;
    538 		}
    539 		uvm_swap_free(slot + nused, nallocated - nused);
    540 	}
    541 
    542 	/*
    543 	 * now start the pageout.
    544 	 */
    545 
    546 	if (nused > 0) {
    547 		uvmexp.pdpageouts++;
    548 		uvm_pageout_start(nused);
    549 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    550 		KASSERT(error == 0 || error == ENOMEM);
    551 	}
    552 
    553 	/*
    554 	 * zero swslot to indicate that we are
    555 	 * no longer building a swap-backed cluster.
    556 	 */
    557 
    558 	swc->swc_slot = 0;
    559 	swc->swc_nused = 0;
    560 }
    561 
    562 static int
    563 swapcluster_nused(struct swapcluster *swc)
    564 {
    565 
    566 	return swc->swc_nused;
    567 }
    568 
    569 /*
    570  * uvmpd_dropswap: free any swap allocated to this page.
    571  *
    572  * => called with owner locked.
    573  * => return true if a page had an associated slot.
    574  */
    575 
    576 static bool
    577 uvmpd_dropswap(struct vm_page *pg)
    578 {
    579 	bool result = false;
    580 	struct vm_anon *anon = pg->uanon;
    581 
    582 	if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
    583 		uvm_swap_free(anon->an_swslot, 1);
    584 		anon->an_swslot = 0;
    585 		pg->flags &= ~PG_CLEAN;
    586 		result = true;
    587 	} else if (pg->pqflags & PQ_AOBJ) {
    588 		int slot = uao_set_swslot(pg->uobject,
    589 		    pg->offset >> PAGE_SHIFT, 0);
    590 		if (slot) {
    591 			uvm_swap_free(slot, 1);
    592 			pg->flags &= ~PG_CLEAN;
    593 			result = true;
    594 		}
    595 	}
    596 
    597 	return result;
    598 }
    599 
    600 /*
    601  * uvmpd_trydropswap: try to free any swap allocated to this page.
    602  *
    603  * => return true if a slot is successfully freed.
    604  */
    605 
    606 bool
    607 uvmpd_trydropswap(struct vm_page *pg)
    608 {
    609 	kmutex_t *slock;
    610 	bool result;
    611 
    612 	if ((pg->flags & PG_BUSY) != 0) {
    613 		return false;
    614 	}
    615 
    616 	/*
    617 	 * lock the page's owner.
    618 	 */
    619 
    620 	slock = uvmpd_trylockowner(pg);
    621 	if (slock == NULL) {
    622 		return false;
    623 	}
    624 
    625 	/*
    626 	 * skip this page if it's busy.
    627 	 */
    628 
    629 	if ((pg->flags & PG_BUSY) != 0) {
    630 		mutex_exit(slock);
    631 		return false;
    632 	}
    633 
    634 	result = uvmpd_dropswap(pg);
    635 
    636 	mutex_exit(slock);
    637 
    638 	return result;
    639 }
    640 
    641 #endif /* defined(VMSWAP) */
    642 
    643 /*
    644  * uvmpd_scan_queue: scan an replace candidate list for pages
    645  * to clean or free.
    646  *
    647  * => called with page queues locked
    648  * => we work on meeting our free target by converting inactive pages
    649  *    into free pages.
    650  * => we handle the building of swap-backed clusters
    651  */
    652 
    653 static void
    654 uvmpd_scan_queue(void)
    655 {
    656 	struct vm_page *p;
    657 	struct uvm_object *uobj;
    658 	struct vm_anon *anon;
    659 #if defined(VMSWAP)
    660 	struct swapcluster swc;
    661 #endif /* defined(VMSWAP) */
    662 	int dirtyreacts;
    663 	int lockownerfail;
    664 	kmutex_t *slock;
    665 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    666 
    667 	/*
    668 	 * swslot is non-zero if we are building a swap cluster.  we want
    669 	 * to stay in the loop while we have a page to scan or we have
    670 	 * a swap-cluster to build.
    671 	 */
    672 
    673 #if defined(VMSWAP)
    674 	swapcluster_init(&swc);
    675 #endif /* defined(VMSWAP) */
    676 
    677 	dirtyreacts = 0;
    678 	lockownerfail = 0;
    679 	uvmpdpol_scaninit();
    680 
    681 	while (/* CONSTCOND */ 1) {
    682 
    683 		/*
    684 		 * see if we've met the free target.
    685 		 */
    686 
    687 		if (uvmexp.free + uvmexp.paging
    688 #if defined(VMSWAP)
    689 		    + swapcluster_nused(&swc)
    690 #endif /* defined(VMSWAP) */
    691 		    >= uvmexp.freetarg << 2 ||
    692 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    693 			UVMHIST_LOG(pdhist,"  met free target: "
    694 				    "exit loop", 0, 0, 0, 0);
    695 			break;
    696 		}
    697 
    698 		p = uvmpdpol_selectvictim();
    699 		if (p == NULL) {
    700 			break;
    701 		}
    702 		KASSERT(uvmpdpol_pageisqueued_p(p));
    703 		KASSERT(p->wire_count == 0);
    704 
    705 		/*
    706 		 * we are below target and have a new page to consider.
    707 		 */
    708 
    709 		anon = p->uanon;
    710 		uobj = p->uobject;
    711 
    712 		/*
    713 		 * first we attempt to lock the object that this page
    714 		 * belongs to.  if our attempt fails we skip on to
    715 		 * the next page (no harm done).  it is important to
    716 		 * "try" locking the object as we are locking in the
    717 		 * wrong order (pageq -> object) and we don't want to
    718 		 * deadlock.
    719 		 *
    720 		 * the only time we expect to see an ownerless page
    721 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
    722 		 * anon has loaned a page from a uvm_object and the
    723 		 * uvm_object has dropped the ownership.  in that
    724 		 * case, the anon can "take over" the loaned page
    725 		 * and make it its own.
    726 		 */
    727 
    728 		slock = uvmpd_trylockowner(p);
    729 		if (slock == NULL) {
    730 			/*
    731 			 * yield cpu to make a chance for an LWP holding
    732 			 * the lock run.  otherwise we can busy-loop too long
    733 			 * if the page queue is filled with a lot of pages
    734 			 * from few objects.
    735 			 */
    736 			lockownerfail++;
    737 			if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
    738 				mutex_exit(&uvm_pageqlock);
    739 				/* XXX Better than yielding but inadequate. */
    740 				kpause("livelock", false, 1, NULL);
    741 				mutex_enter(&uvm_pageqlock);
    742 				lockownerfail = 0;
    743 			}
    744 			continue;
    745 		}
    746 		if (p->flags & PG_BUSY) {
    747 			mutex_exit(slock);
    748 			uvmexp.pdbusy++;
    749 			continue;
    750 		}
    751 
    752 		/* does the page belong to an object? */
    753 		if (uobj != NULL) {
    754 			uvmexp.pdobscan++;
    755 		} else {
    756 #if defined(VMSWAP)
    757 			KASSERT(anon != NULL);
    758 			uvmexp.pdanscan++;
    759 #else /* defined(VMSWAP) */
    760 			panic("%s: anon", __func__);
    761 #endif /* defined(VMSWAP) */
    762 		}
    763 
    764 
    765 		/*
    766 		 * we now have the object and the page queues locked.
    767 		 * if the page is not swap-backed, call the object's
    768 		 * pager to flush and free the page.
    769 		 */
    770 
    771 #if defined(READAHEAD_STATS)
    772 		if ((p->pqflags & PQ_READAHEAD) != 0) {
    773 			p->pqflags &= ~PQ_READAHEAD;
    774 			uvm_ra_miss.ev_count++;
    775 		}
    776 #endif /* defined(READAHEAD_STATS) */
    777 
    778 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    779 			KASSERT(uobj != NULL);
    780 			mutex_exit(&uvm_pageqlock);
    781 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    782 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    783 			mutex_enter(&uvm_pageqlock);
    784 			continue;
    785 		}
    786 
    787 		/*
    788 		 * the page is swap-backed.  remove all the permissions
    789 		 * from the page so we can sync the modified info
    790 		 * without any race conditions.  if the page is clean
    791 		 * we can free it now and continue.
    792 		 */
    793 
    794 		pmap_page_protect(p, VM_PROT_NONE);
    795 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    796 			p->flags &= ~(PG_CLEAN);
    797 		}
    798 		if (p->flags & PG_CLEAN) {
    799 			int slot;
    800 			int pageidx;
    801 
    802 			pageidx = p->offset >> PAGE_SHIFT;
    803 			uvm_pagefree(p);
    804 			uvmexp.pdfreed++;
    805 
    806 			/*
    807 			 * for anons, we need to remove the page
    808 			 * from the anon ourselves.  for aobjs,
    809 			 * pagefree did that for us.
    810 			 */
    811 
    812 			if (anon) {
    813 				KASSERT(anon->an_swslot != 0);
    814 				anon->an_page = NULL;
    815 				slot = anon->an_swslot;
    816 			} else {
    817 				slot = uao_find_swslot(uobj, pageidx);
    818 			}
    819 			mutex_exit(slock);
    820 
    821 			if (slot > 0) {
    822 				/* this page is now only in swap. */
    823 				mutex_enter(&uvm_swap_data_lock);
    824 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    825 				uvmexp.swpgonly++;
    826 				mutex_exit(&uvm_swap_data_lock);
    827 			}
    828 			continue;
    829 		}
    830 
    831 #if defined(VMSWAP)
    832 		/*
    833 		 * this page is dirty, skip it if we'll have met our
    834 		 * free target when all the current pageouts complete.
    835 		 */
    836 
    837 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    838 			mutex_exit(slock);
    839 			continue;
    840 		}
    841 
    842 		/*
    843 		 * free any swap space allocated to the page since
    844 		 * we'll have to write it again with its new data.
    845 		 */
    846 
    847 		uvmpd_dropswap(p);
    848 
    849 		/*
    850 		 * start new swap pageout cluster (if necessary).
    851 		 *
    852 		 * if swap is full reactivate this page so that
    853 		 * we eventually cycle all pages through the
    854 		 * inactive queue.
    855 		 */
    856 
    857 		if (swapcluster_allocslots(&swc)) {
    858 			dirtyreacts++;
    859 			uvm_pageactivate(p);
    860 			mutex_exit(slock);
    861 			continue;
    862 		}
    863 
    864 		/*
    865 		 * at this point, we're definitely going reuse this
    866 		 * page.  mark the page busy and delayed-free.
    867 		 * we should remove the page from the page queues
    868 		 * so we don't ever look at it again.
    869 		 * adjust counters and such.
    870 		 */
    871 
    872 		p->flags |= PG_BUSY;
    873 		UVM_PAGE_OWN(p, "scan_queue");
    874 
    875 		p->flags |= PG_PAGEOUT;
    876 		uvm_pagedequeue(p);
    877 
    878 		uvmexp.pgswapout++;
    879 		mutex_exit(&uvm_pageqlock);
    880 
    881 		/*
    882 		 * add the new page to the cluster.
    883 		 */
    884 
    885 		if (swapcluster_add(&swc, p)) {
    886 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    887 			UVM_PAGE_OWN(p, NULL);
    888 			mutex_enter(&uvm_pageqlock);
    889 			dirtyreacts++;
    890 			uvm_pageactivate(p);
    891 			mutex_exit(slock);
    892 			continue;
    893 		}
    894 		mutex_exit(slock);
    895 
    896 		swapcluster_flush(&swc, false);
    897 		mutex_enter(&uvm_pageqlock);
    898 
    899 		/*
    900 		 * the pageout is in progress.  bump counters and set up
    901 		 * for the next loop.
    902 		 */
    903 
    904 		uvmexp.pdpending++;
    905 
    906 #else /* defined(VMSWAP) */
    907 		uvm_pageactivate(p);
    908 		mutex_exit(slock);
    909 #endif /* defined(VMSWAP) */
    910 	}
    911 
    912 #if defined(VMSWAP)
    913 	mutex_exit(&uvm_pageqlock);
    914 	swapcluster_flush(&swc, true);
    915 	mutex_enter(&uvm_pageqlock);
    916 #endif /* defined(VMSWAP) */
    917 }
    918 
    919 /*
    920  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    921  *
    922  * => called with pageq's locked
    923  */
    924 
    925 static void
    926 uvmpd_scan(void)
    927 {
    928 	int swap_shortage, pages_freed;
    929 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    930 
    931 	uvmexp.pdrevs++;
    932 
    933 	/*
    934 	 * work on meeting our targets.   first we work on our free target
    935 	 * by converting inactive pages into free pages.  then we work on
    936 	 * meeting our inactive target by converting active pages to
    937 	 * inactive ones.
    938 	 */
    939 
    940 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    941 
    942 	pages_freed = uvmexp.pdfreed;
    943 	uvmpd_scan_queue();
    944 	pages_freed = uvmexp.pdfreed - pages_freed;
    945 
    946 	/*
    947 	 * detect if we're not going to be able to page anything out
    948 	 * until we free some swap resources from active pages.
    949 	 */
    950 
    951 	swap_shortage = 0;
    952 	if (uvmexp.free < uvmexp.freetarg &&
    953 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    954 	    !uvm_swapisfull() &&
    955 	    pages_freed == 0) {
    956 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    957 	}
    958 
    959 	uvmpdpol_balancequeue(swap_shortage);
    960 
    961 	/*
    962 	 * if still below the minimum target, try unloading kernel
    963 	 * modules.
    964 	 */
    965 
    966 	if (uvmexp.free < uvmexp.freemin) {
    967 		module_thread_kick();
    968 	}
    969 }
    970 
    971 /*
    972  * uvm_reclaimable: decide whether to wait for pagedaemon.
    973  *
    974  * => return true if it seems to be worth to do uvm_wait.
    975  *
    976  * XXX should be tunable.
    977  * XXX should consider pools, etc?
    978  */
    979 
    980 bool
    981 uvm_reclaimable(void)
    982 {
    983 	int filepages;
    984 	int active, inactive;
    985 
    986 	/*
    987 	 * if swap is not full, no problem.
    988 	 */
    989 
    990 	if (!uvm_swapisfull()) {
    991 		return true;
    992 	}
    993 
    994 	/*
    995 	 * file-backed pages can be reclaimed even when swap is full.
    996 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    997 	 *
    998 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    999 	 *
   1000 	 * XXX should consider about other reclaimable memory.
   1001 	 * XXX ie. pools, traditional buffer cache.
   1002 	 */
   1003 
   1004 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
   1005 	uvm_estimatepageable(&active, &inactive);
   1006 	if (filepages >= MIN((active + inactive) >> 4,
   1007 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
   1008 		return true;
   1009 	}
   1010 
   1011 	/*
   1012 	 * kill the process, fail allocation, etc..
   1013 	 */
   1014 
   1015 	return false;
   1016 }
   1017 
   1018 void
   1019 uvm_estimatepageable(int *active, int *inactive)
   1020 {
   1021 
   1022 	uvmpdpol_estimatepageable(active, inactive);
   1023 }
   1024 
   1025