uvm_pdaemon.c revision 1.109.4.1 1 /* $NetBSD: uvm_pdaemon.c,v 1.109.4.1 2019/06/10 22:09:58 christos Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
37 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_pdaemon.c: the page daemon
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.109.4.1 2019/06/10 22:09:58 christos Exp $");
70
71 #include "opt_uvmhist.h"
72 #include "opt_readahead.h"
73
74 #include <sys/param.h>
75 #include <sys/proc.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/pool.h>
79 #include <sys/buf.h>
80 #include <sys/module.h>
81 #include <sys/atomic.h>
82 #include <sys/kthread.h>
83
84 #include <uvm/uvm.h>
85 #include <uvm/uvm_pdpolicy.h>
86
87 #ifdef UVMHIST
88 UVMHIST_DEFINE(pdhist);
89 #endif
90
91 /*
92 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
93 * in a pass thru the inactive list when swap is full. the value should be
94 * "small"... if it's too large we'll cycle the active pages thru the inactive
95 * queue too quickly to for them to be referenced and avoid being freed.
96 */
97
98 #define UVMPD_NUMDIRTYREACTS 16
99
100 #define UVMPD_NUMTRYLOCKOWNER 16
101
102 /*
103 * local prototypes
104 */
105
106 static void uvmpd_scan(void);
107 static void uvmpd_scan_queue(void);
108 static void uvmpd_tune(void);
109 static void uvmpd_pool_drain_thread(void *);
110 static void uvmpd_pool_drain_wakeup(void);
111
112 static unsigned int uvm_pagedaemon_waiters;
113
114 /* State for the pool drainer thread */
115 static kmutex_t uvmpd_pool_drain_lock;
116 static kcondvar_t uvmpd_pool_drain_cv;
117 static bool uvmpd_pool_drain_run = false;
118
119 /*
120 * XXX hack to avoid hangs when large processes fork.
121 */
122 u_int uvm_extrapages;
123
124 /*
125 * uvm_wait: wait (sleep) for the page daemon to free some pages
126 *
127 * => should be called with all locks released
128 * => should _not_ be called by the page daemon (to avoid deadlock)
129 */
130
131 void
132 uvm_wait(const char *wmsg)
133 {
134 int timo = 0;
135
136 mutex_spin_enter(&uvm_fpageqlock);
137
138 /*
139 * check for page daemon going to sleep (waiting for itself)
140 */
141
142 if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
143 /*
144 * now we have a problem: the pagedaemon wants to go to
145 * sleep until it frees more memory. but how can it
146 * free more memory if it is asleep? that is a deadlock.
147 * we have two options:
148 * [1] panic now
149 * [2] put a timeout on the sleep, thus causing the
150 * pagedaemon to only pause (rather than sleep forever)
151 *
152 * note that option [2] will only help us if we get lucky
153 * and some other process on the system breaks the deadlock
154 * by exiting or freeing memory (thus allowing the pagedaemon
155 * to continue). for now we panic if DEBUG is defined,
156 * otherwise we hope for the best with option [2] (better
157 * yet, this should never happen in the first place!).
158 */
159
160 printf("pagedaemon: deadlock detected!\n");
161 timo = hz >> 3; /* set timeout */
162 #if defined(DEBUG)
163 /* DEBUG: panic so we can debug it */
164 panic("pagedaemon deadlock");
165 #endif
166 }
167
168 uvm_pagedaemon_waiters++;
169 wakeup(&uvm.pagedaemon); /* wake the daemon! */
170 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
171 }
172
173 /*
174 * uvm_kick_pdaemon: perform checks to determine if we need to
175 * give the pagedaemon a nudge, and do so if necessary.
176 *
177 * => called with uvm_fpageqlock held.
178 */
179
180 void
181 uvm_kick_pdaemon(void)
182 {
183
184 KASSERT(mutex_owned(&uvm_fpageqlock));
185
186 if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
187 (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
188 uvmpdpol_needsscan_p()) ||
189 uvm_km_va_starved_p()) {
190 wakeup(&uvm.pagedaemon);
191 }
192 }
193
194 /*
195 * uvmpd_tune: tune paging parameters
196 *
197 * => called when ever memory is added (or removed?) to the system
198 * => caller must call with page queues locked
199 */
200
201 static void
202 uvmpd_tune(void)
203 {
204 int val;
205
206 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
207
208 /*
209 * try to keep 0.5% of available RAM free, but limit to between
210 * 128k and 1024k per-CPU. XXX: what are these values good for?
211 */
212 val = uvmexp.npages / 200;
213 val = MAX(val, (128*1024) >> PAGE_SHIFT);
214 val = MIN(val, (1024*1024) >> PAGE_SHIFT);
215 val *= ncpu;
216
217 /* Make sure there's always a user page free. */
218 if (val < uvmexp.reserve_kernel + 1)
219 val = uvmexp.reserve_kernel + 1;
220 uvmexp.freemin = val;
221
222 /* Calculate free target. */
223 val = (uvmexp.freemin * 4) / 3;
224 if (val <= uvmexp.freemin)
225 val = uvmexp.freemin + 1;
226 uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
227
228 uvmexp.wiredmax = uvmexp.npages / 3;
229 UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
230 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
231 }
232
233 /*
234 * uvm_pageout: the main loop for the pagedaemon
235 */
236
237 void
238 uvm_pageout(void *arg)
239 {
240 int npages = 0;
241 int extrapages = 0;
242
243 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
244
245 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
246
247 mutex_init(&uvmpd_pool_drain_lock, MUTEX_DEFAULT, IPL_VM);
248 cv_init(&uvmpd_pool_drain_cv, "pooldrain");
249
250 /* Create the pool drainer kernel thread. */
251 if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL,
252 uvmpd_pool_drain_thread, NULL, NULL, "pooldrain"))
253 panic("fork pooldrain");
254
255 /*
256 * ensure correct priority and set paging parameters...
257 */
258
259 uvm.pagedaemon_lwp = curlwp;
260 mutex_enter(&uvm_pageqlock);
261 npages = uvmexp.npages;
262 uvmpd_tune();
263 mutex_exit(&uvm_pageqlock);
264
265 /*
266 * main loop
267 */
268
269 for (;;) {
270 bool needsscan, needsfree, kmem_va_starved;
271
272 kmem_va_starved = uvm_km_va_starved_p();
273
274 mutex_spin_enter(&uvm_fpageqlock);
275 if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
276 !kmem_va_starved) {
277 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
278 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
279 &uvm_fpageqlock, false, "pgdaemon", 0);
280 uvmexp.pdwoke++;
281 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
282 } else {
283 mutex_spin_exit(&uvm_fpageqlock);
284 }
285
286 /*
287 * now lock page queues and recompute inactive count
288 */
289
290 mutex_enter(&uvm_pageqlock);
291 if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
292 npages = uvmexp.npages;
293 extrapages = uvm_extrapages;
294 mutex_spin_enter(&uvm_fpageqlock);
295 uvmpd_tune();
296 mutex_spin_exit(&uvm_fpageqlock);
297 }
298
299 uvmpdpol_tune();
300
301 /*
302 * Estimate a hint. Note that bufmem are returned to
303 * system only when entire pool page is empty.
304 */
305 mutex_spin_enter(&uvm_fpageqlock);
306
307 UVMHIST_LOG(pdhist," free/ftarg=%jd/%jd",
308 uvmexp.free, uvmexp.freetarg, 0,0);
309
310 needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
311 needsscan = needsfree || uvmpdpol_needsscan_p();
312
313 /*
314 * scan if needed
315 */
316 if (needsscan) {
317 mutex_spin_exit(&uvm_fpageqlock);
318 uvmpd_scan();
319 mutex_spin_enter(&uvm_fpageqlock);
320 }
321
322 /*
323 * if there's any free memory to be had,
324 * wake up any waiters.
325 */
326 if (uvmexp.free > uvmexp.reserve_kernel ||
327 uvmexp.paging == 0) {
328 wakeup(&uvmexp.free);
329 uvm_pagedaemon_waiters = 0;
330 }
331 mutex_spin_exit(&uvm_fpageqlock);
332
333 /*
334 * scan done. unlock page queues (the only lock we are holding)
335 */
336 mutex_exit(&uvm_pageqlock);
337
338 /*
339 * if we don't need free memory, we're done.
340 */
341
342 if (!needsfree && !kmem_va_starved)
343 continue;
344
345 /*
346 * kick the pool drainer thread.
347 */
348
349 uvmpd_pool_drain_wakeup();
350 }
351 /*NOTREACHED*/
352 }
353
354
355 /*
356 * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
357 */
358
359 void
360 uvm_aiodone_worker(struct work *wk, void *dummy)
361 {
362 struct buf *bp = (void *)wk;
363
364 KASSERT(&bp->b_work == wk);
365
366 /*
367 * process an i/o that's done.
368 */
369
370 (*bp->b_iodone)(bp);
371 }
372
373 void
374 uvm_pageout_start(int npages)
375 {
376
377 mutex_spin_enter(&uvm_fpageqlock);
378 uvmexp.paging += npages;
379 mutex_spin_exit(&uvm_fpageqlock);
380 }
381
382 void
383 uvm_pageout_done(int npages)
384 {
385
386 mutex_spin_enter(&uvm_fpageqlock);
387 KASSERT(uvmexp.paging >= npages);
388 uvmexp.paging -= npages;
389
390 /*
391 * wake up either of pagedaemon or LWPs waiting for it.
392 */
393
394 if (uvmexp.free <= uvmexp.reserve_kernel) {
395 wakeup(&uvm.pagedaemon);
396 } else {
397 wakeup(&uvmexp.free);
398 uvm_pagedaemon_waiters = 0;
399 }
400 mutex_spin_exit(&uvm_fpageqlock);
401 }
402
403 /*
404 * uvmpd_trylockowner: trylock the page's owner.
405 *
406 * => called with pageq locked.
407 * => resolve orphaned O->A loaned page.
408 * => return the locked mutex on success. otherwise, return NULL.
409 */
410
411 kmutex_t *
412 uvmpd_trylockowner(struct vm_page *pg)
413 {
414 struct uvm_object *uobj = pg->uobject;
415 kmutex_t *slock;
416
417 KASSERT(mutex_owned(&uvm_pageqlock));
418
419 if (uobj != NULL) {
420 slock = uobj->vmobjlock;
421 } else {
422 struct vm_anon *anon = pg->uanon;
423
424 KASSERT(anon != NULL);
425 slock = anon->an_lock;
426 }
427
428 if (!mutex_tryenter(slock)) {
429 return NULL;
430 }
431
432 if (uobj == NULL) {
433
434 /*
435 * set PQ_ANON if it isn't set already.
436 */
437
438 if ((pg->pqflags & PQ_ANON) == 0) {
439 KASSERT(pg->loan_count > 0);
440 pg->loan_count--;
441 pg->pqflags |= PQ_ANON;
442 /* anon now owns it */
443 }
444 }
445
446 return slock;
447 }
448
449 #if defined(VMSWAP)
450 struct swapcluster {
451 int swc_slot;
452 int swc_nallocated;
453 int swc_nused;
454 struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
455 };
456
457 static void
458 swapcluster_init(struct swapcluster *swc)
459 {
460
461 swc->swc_slot = 0;
462 swc->swc_nused = 0;
463 }
464
465 static int
466 swapcluster_allocslots(struct swapcluster *swc)
467 {
468 int slot;
469 int npages;
470
471 if (swc->swc_slot != 0) {
472 return 0;
473 }
474
475 /* Even with strange MAXPHYS, the shift
476 implicitly rounds down to a page. */
477 npages = MAXPHYS >> PAGE_SHIFT;
478 slot = uvm_swap_alloc(&npages, true);
479 if (slot == 0) {
480 return ENOMEM;
481 }
482 swc->swc_slot = slot;
483 swc->swc_nallocated = npages;
484 swc->swc_nused = 0;
485
486 return 0;
487 }
488
489 static int
490 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
491 {
492 int slot;
493 struct uvm_object *uobj;
494
495 KASSERT(swc->swc_slot != 0);
496 KASSERT(swc->swc_nused < swc->swc_nallocated);
497 KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
498
499 slot = swc->swc_slot + swc->swc_nused;
500 uobj = pg->uobject;
501 if (uobj == NULL) {
502 KASSERT(mutex_owned(pg->uanon->an_lock));
503 pg->uanon->an_swslot = slot;
504 } else {
505 int result;
506
507 KASSERT(mutex_owned(uobj->vmobjlock));
508 result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
509 if (result == -1) {
510 return ENOMEM;
511 }
512 }
513 swc->swc_pages[swc->swc_nused] = pg;
514 swc->swc_nused++;
515
516 return 0;
517 }
518
519 static void
520 swapcluster_flush(struct swapcluster *swc, bool now)
521 {
522 int slot;
523 int nused;
524 int nallocated;
525 int error __diagused;
526
527 if (swc->swc_slot == 0) {
528 return;
529 }
530 KASSERT(swc->swc_nused <= swc->swc_nallocated);
531
532 slot = swc->swc_slot;
533 nused = swc->swc_nused;
534 nallocated = swc->swc_nallocated;
535
536 /*
537 * if this is the final pageout we could have a few
538 * unused swap blocks. if so, free them now.
539 */
540
541 if (nused < nallocated) {
542 if (!now) {
543 return;
544 }
545 uvm_swap_free(slot + nused, nallocated - nused);
546 }
547
548 /*
549 * now start the pageout.
550 */
551
552 if (nused > 0) {
553 uvmexp.pdpageouts++;
554 uvm_pageout_start(nused);
555 error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
556 KASSERT(error == 0 || error == ENOMEM);
557 }
558
559 /*
560 * zero swslot to indicate that we are
561 * no longer building a swap-backed cluster.
562 */
563
564 swc->swc_slot = 0;
565 swc->swc_nused = 0;
566 }
567
568 static int
569 swapcluster_nused(struct swapcluster *swc)
570 {
571
572 return swc->swc_nused;
573 }
574
575 /*
576 * uvmpd_dropswap: free any swap allocated to this page.
577 *
578 * => called with owner locked.
579 * => return true if a page had an associated slot.
580 */
581
582 static bool
583 uvmpd_dropswap(struct vm_page *pg)
584 {
585 bool result = false;
586 struct vm_anon *anon = pg->uanon;
587
588 if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
589 uvm_swap_free(anon->an_swslot, 1);
590 anon->an_swslot = 0;
591 pg->flags &= ~PG_CLEAN;
592 result = true;
593 } else if (pg->pqflags & PQ_AOBJ) {
594 int slot = uao_set_swslot(pg->uobject,
595 pg->offset >> PAGE_SHIFT, 0);
596 if (slot) {
597 uvm_swap_free(slot, 1);
598 pg->flags &= ~PG_CLEAN;
599 result = true;
600 }
601 }
602
603 return result;
604 }
605
606 /*
607 * uvmpd_trydropswap: try to free any swap allocated to this page.
608 *
609 * => return true if a slot is successfully freed.
610 */
611
612 bool
613 uvmpd_trydropswap(struct vm_page *pg)
614 {
615 kmutex_t *slock;
616 bool result;
617
618 if ((pg->flags & PG_BUSY) != 0) {
619 return false;
620 }
621
622 /*
623 * lock the page's owner.
624 */
625
626 slock = uvmpd_trylockowner(pg);
627 if (slock == NULL) {
628 return false;
629 }
630
631 /*
632 * skip this page if it's busy.
633 */
634
635 if ((pg->flags & PG_BUSY) != 0) {
636 mutex_exit(slock);
637 return false;
638 }
639
640 result = uvmpd_dropswap(pg);
641
642 mutex_exit(slock);
643
644 return result;
645 }
646
647 #endif /* defined(VMSWAP) */
648
649 /*
650 * uvmpd_scan_queue: scan an replace candidate list for pages
651 * to clean or free.
652 *
653 * => called with page queues locked
654 * => we work on meeting our free target by converting inactive pages
655 * into free pages.
656 * => we handle the building of swap-backed clusters
657 */
658
659 static void
660 uvmpd_scan_queue(void)
661 {
662 struct vm_page *p;
663 struct uvm_object *uobj;
664 struct vm_anon *anon;
665 #if defined(VMSWAP)
666 struct swapcluster swc;
667 #endif /* defined(VMSWAP) */
668 int dirtyreacts;
669 int lockownerfail;
670 kmutex_t *slock;
671 UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
672
673 /*
674 * swslot is non-zero if we are building a swap cluster. we want
675 * to stay in the loop while we have a page to scan or we have
676 * a swap-cluster to build.
677 */
678
679 #if defined(VMSWAP)
680 swapcluster_init(&swc);
681 #endif /* defined(VMSWAP) */
682
683 dirtyreacts = 0;
684 lockownerfail = 0;
685 uvmpdpol_scaninit();
686
687 while (/* CONSTCOND */ 1) {
688
689 /*
690 * see if we've met the free target.
691 */
692
693 if (uvmexp.free + uvmexp.paging
694 #if defined(VMSWAP)
695 + swapcluster_nused(&swc)
696 #endif /* defined(VMSWAP) */
697 >= uvmexp.freetarg << 2 ||
698 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
699 UVMHIST_LOG(pdhist," met free target: "
700 "exit loop", 0, 0, 0, 0);
701 break;
702 }
703
704 p = uvmpdpol_selectvictim();
705 if (p == NULL) {
706 break;
707 }
708 KASSERT(uvmpdpol_pageisqueued_p(p));
709 KASSERT(p->wire_count == 0);
710
711 /*
712 * we are below target and have a new page to consider.
713 */
714
715 anon = p->uanon;
716 uobj = p->uobject;
717
718 /*
719 * first we attempt to lock the object that this page
720 * belongs to. if our attempt fails we skip on to
721 * the next page (no harm done). it is important to
722 * "try" locking the object as we are locking in the
723 * wrong order (pageq -> object) and we don't want to
724 * deadlock.
725 *
726 * the only time we expect to see an ownerless page
727 * (i.e. a page with no uobject and !PQ_ANON) is if an
728 * anon has loaned a page from a uvm_object and the
729 * uvm_object has dropped the ownership. in that
730 * case, the anon can "take over" the loaned page
731 * and make it its own.
732 */
733
734 slock = uvmpd_trylockowner(p);
735 if (slock == NULL) {
736 /*
737 * yield cpu to make a chance for an LWP holding
738 * the lock run. otherwise we can busy-loop too long
739 * if the page queue is filled with a lot of pages
740 * from few objects.
741 */
742 lockownerfail++;
743 if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
744 mutex_exit(&uvm_pageqlock);
745 /* XXX Better than yielding but inadequate. */
746 kpause("livelock", false, 1, NULL);
747 mutex_enter(&uvm_pageqlock);
748 lockownerfail = 0;
749 }
750 continue;
751 }
752 if (p->flags & PG_BUSY) {
753 mutex_exit(slock);
754 uvmexp.pdbusy++;
755 continue;
756 }
757
758 /* does the page belong to an object? */
759 if (uobj != NULL) {
760 uvmexp.pdobscan++;
761 } else {
762 #if defined(VMSWAP)
763 KASSERT(anon != NULL);
764 uvmexp.pdanscan++;
765 #else /* defined(VMSWAP) */
766 panic("%s: anon", __func__);
767 #endif /* defined(VMSWAP) */
768 }
769
770
771 /*
772 * we now have the object and the page queues locked.
773 * if the page is not swap-backed, call the object's
774 * pager to flush and free the page.
775 */
776
777 #if defined(READAHEAD_STATS)
778 if ((p->pqflags & PQ_READAHEAD) != 0) {
779 p->pqflags &= ~PQ_READAHEAD;
780 uvm_ra_miss.ev_count++;
781 }
782 #endif /* defined(READAHEAD_STATS) */
783
784 if ((p->pqflags & PQ_SWAPBACKED) == 0) {
785 KASSERT(uobj != NULL);
786 mutex_exit(&uvm_pageqlock);
787 (void) (uobj->pgops->pgo_put)(uobj, p->offset,
788 p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
789 mutex_enter(&uvm_pageqlock);
790 continue;
791 }
792
793 /*
794 * the page is swap-backed. remove all the permissions
795 * from the page so we can sync the modified info
796 * without any race conditions. if the page is clean
797 * we can free it now and continue.
798 */
799
800 pmap_page_protect(p, VM_PROT_NONE);
801 if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
802 p->flags &= ~(PG_CLEAN);
803 }
804 if (p->flags & PG_CLEAN) {
805 int slot;
806 int pageidx;
807
808 pageidx = p->offset >> PAGE_SHIFT;
809 uvm_pagefree(p);
810 uvmexp.pdfreed++;
811
812 /*
813 * for anons, we need to remove the page
814 * from the anon ourselves. for aobjs,
815 * pagefree did that for us.
816 */
817
818 if (anon) {
819 KASSERT(anon->an_swslot != 0);
820 anon->an_page = NULL;
821 slot = anon->an_swslot;
822 } else {
823 slot = uao_find_swslot(uobj, pageidx);
824 }
825 mutex_exit(slock);
826
827 if (slot > 0) {
828 /* this page is now only in swap. */
829 mutex_enter(&uvm_swap_data_lock);
830 KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
831 uvmexp.swpgonly++;
832 mutex_exit(&uvm_swap_data_lock);
833 }
834 continue;
835 }
836
837 #if defined(VMSWAP)
838 /*
839 * this page is dirty, skip it if we'll have met our
840 * free target when all the current pageouts complete.
841 */
842
843 if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
844 mutex_exit(slock);
845 continue;
846 }
847
848 /*
849 * free any swap space allocated to the page since
850 * we'll have to write it again with its new data.
851 */
852
853 uvmpd_dropswap(p);
854
855 /*
856 * start new swap pageout cluster (if necessary).
857 *
858 * if swap is full reactivate this page so that
859 * we eventually cycle all pages through the
860 * inactive queue.
861 */
862
863 if (swapcluster_allocslots(&swc)) {
864 dirtyreacts++;
865 uvm_pageactivate(p);
866 mutex_exit(slock);
867 continue;
868 }
869
870 /*
871 * at this point, we're definitely going reuse this
872 * page. mark the page busy and delayed-free.
873 * we should remove the page from the page queues
874 * so we don't ever look at it again.
875 * adjust counters and such.
876 */
877
878 p->flags |= PG_BUSY;
879 UVM_PAGE_OWN(p, "scan_queue");
880
881 p->flags |= PG_PAGEOUT;
882 uvm_pagedequeue(p);
883
884 uvmexp.pgswapout++;
885 mutex_exit(&uvm_pageqlock);
886
887 /*
888 * add the new page to the cluster.
889 */
890
891 if (swapcluster_add(&swc, p)) {
892 p->flags &= ~(PG_BUSY|PG_PAGEOUT);
893 UVM_PAGE_OWN(p, NULL);
894 mutex_enter(&uvm_pageqlock);
895 dirtyreacts++;
896 uvm_pageactivate(p);
897 mutex_exit(slock);
898 continue;
899 }
900 mutex_exit(slock);
901
902 swapcluster_flush(&swc, false);
903 mutex_enter(&uvm_pageqlock);
904
905 /*
906 * the pageout is in progress. bump counters and set up
907 * for the next loop.
908 */
909
910 uvmexp.pdpending++;
911
912 #else /* defined(VMSWAP) */
913 uvm_pageactivate(p);
914 mutex_exit(slock);
915 #endif /* defined(VMSWAP) */
916 }
917
918 #if defined(VMSWAP)
919 mutex_exit(&uvm_pageqlock);
920 swapcluster_flush(&swc, true);
921 mutex_enter(&uvm_pageqlock);
922 #endif /* defined(VMSWAP) */
923 }
924
925 /*
926 * uvmpd_scan: scan the page queues and attempt to meet our targets.
927 *
928 * => called with pageq's locked
929 */
930
931 static void
932 uvmpd_scan(void)
933 {
934 int swap_shortage, pages_freed;
935 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
936
937 uvmexp.pdrevs++;
938
939 /*
940 * work on meeting our targets. first we work on our free target
941 * by converting inactive pages into free pages. then we work on
942 * meeting our inactive target by converting active pages to
943 * inactive ones.
944 */
945
946 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
947
948 pages_freed = uvmexp.pdfreed;
949 uvmpd_scan_queue();
950 pages_freed = uvmexp.pdfreed - pages_freed;
951
952 /*
953 * detect if we're not going to be able to page anything out
954 * until we free some swap resources from active pages.
955 */
956
957 swap_shortage = 0;
958 if (uvmexp.free < uvmexp.freetarg &&
959 uvmexp.swpginuse >= uvmexp.swpgavail &&
960 !uvm_swapisfull() &&
961 pages_freed == 0) {
962 swap_shortage = uvmexp.freetarg - uvmexp.free;
963 }
964
965 uvmpdpol_balancequeue(swap_shortage);
966
967 /*
968 * if still below the minimum target, try unloading kernel
969 * modules.
970 */
971
972 if (uvmexp.free < uvmexp.freemin) {
973 module_thread_kick();
974 }
975 }
976
977 /*
978 * uvm_reclaimable: decide whether to wait for pagedaemon.
979 *
980 * => return true if it seems to be worth to do uvm_wait.
981 *
982 * XXX should be tunable.
983 * XXX should consider pools, etc?
984 */
985
986 bool
987 uvm_reclaimable(void)
988 {
989 int filepages;
990 int active, inactive;
991
992 /*
993 * if swap is not full, no problem.
994 */
995
996 if (!uvm_swapisfull()) {
997 return true;
998 }
999
1000 /*
1001 * file-backed pages can be reclaimed even when swap is full.
1002 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
1003 *
1004 * XXX assume the worst case, ie. all wired pages are file-backed.
1005 *
1006 * XXX should consider about other reclaimable memory.
1007 * XXX ie. pools, traditional buffer cache.
1008 */
1009
1010 filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
1011 uvm_estimatepageable(&active, &inactive);
1012 if (filepages >= MIN((active + inactive) >> 4,
1013 5 * 1024 * 1024 >> PAGE_SHIFT)) {
1014 return true;
1015 }
1016
1017 /*
1018 * kill the process, fail allocation, etc..
1019 */
1020
1021 return false;
1022 }
1023
1024 void
1025 uvm_estimatepageable(int *active, int *inactive)
1026 {
1027
1028 uvmpdpol_estimatepageable(active, inactive);
1029 }
1030
1031
1032 /*
1033 * Use a separate thread for draining pools.
1034 * This work can't done from the main pagedaemon thread because
1035 * some pool allocators need to take vm_map locks.
1036 */
1037
1038 static void
1039 uvmpd_pool_drain_thread(void *arg)
1040 {
1041 int bufcnt;
1042
1043 for (;;) {
1044 mutex_enter(&uvmpd_pool_drain_lock);
1045 if (!uvmpd_pool_drain_run) {
1046 cv_wait(&uvmpd_pool_drain_cv, &uvmpd_pool_drain_lock);
1047 }
1048 uvmpd_pool_drain_run = false;
1049 mutex_exit(&uvmpd_pool_drain_lock);
1050
1051 /*
1052 * kill unused metadata buffers.
1053 */
1054 mutex_spin_enter(&uvm_fpageqlock);
1055 bufcnt = uvmexp.freetarg - uvmexp.free;
1056 mutex_spin_exit(&uvm_fpageqlock);
1057 if (bufcnt < 0)
1058 bufcnt = 0;
1059
1060 mutex_enter(&bufcache_lock);
1061 buf_drain(bufcnt << PAGE_SHIFT);
1062 mutex_exit(&bufcache_lock);
1063
1064 /*
1065 * drain a pool.
1066 */
1067 pool_drain(NULL);
1068 }
1069 /*NOTREACHED*/
1070 }
1071
1072 static void
1073 uvmpd_pool_drain_wakeup(void)
1074 {
1075
1076 mutex_enter(&uvmpd_pool_drain_lock);
1077 uvmpd_pool_drain_run = true;
1078 cv_signal(&uvmpd_pool_drain_cv);
1079 mutex_exit(&uvmpd_pool_drain_lock);
1080 }
1081