uvm_pdaemon.c revision 1.111 1 /* $NetBSD: uvm_pdaemon.c,v 1.111 2019/10/01 17:40:22 chs Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
37 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_pdaemon.c: the page daemon
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.111 2019/10/01 17:40:22 chs Exp $");
70
71 #include "opt_uvmhist.h"
72 #include "opt_readahead.h"
73
74 #include <sys/param.h>
75 #include <sys/proc.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/pool.h>
79 #include <sys/buf.h>
80 #include <sys/module.h>
81 #include <sys/atomic.h>
82 #include <sys/kthread.h>
83
84 #include <uvm/uvm.h>
85 #include <uvm/uvm_pdpolicy.h>
86
87 #ifdef UVMHIST
88 UVMHIST_DEFINE(pdhist);
89 #endif
90
91 /*
92 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
93 * in a pass thru the inactive list when swap is full. the value should be
94 * "small"... if it's too large we'll cycle the active pages thru the inactive
95 * queue too quickly to for them to be referenced and avoid being freed.
96 */
97
98 #define UVMPD_NUMDIRTYREACTS 16
99
100 #define UVMPD_NUMTRYLOCKOWNER 16
101
102 /*
103 * local prototypes
104 */
105
106 static void uvmpd_scan(void);
107 static void uvmpd_scan_queue(void);
108 static void uvmpd_tune(void);
109 static void uvmpd_pool_drain_thread(void *);
110 static void uvmpd_pool_drain_wakeup(void);
111
112 static unsigned int uvm_pagedaemon_waiters;
113
114 /* State for the pool drainer thread */
115 static kmutex_t uvmpd_pool_drain_lock;
116 static kcondvar_t uvmpd_pool_drain_cv;
117 static bool uvmpd_pool_drain_run = false;
118
119 /*
120 * XXX hack to avoid hangs when large processes fork.
121 */
122 u_int uvm_extrapages;
123
124 /*
125 * uvm_wait: wait (sleep) for the page daemon to free some pages
126 *
127 * => should be called with all locks released
128 * => should _not_ be called by the page daemon (to avoid deadlock)
129 */
130
131 void
132 uvm_wait(const char *wmsg)
133 {
134 int timo = 0;
135
136 if (uvm.pagedaemon_lwp == NULL)
137 panic("out of memory before the pagedaemon thread exists");
138
139 mutex_spin_enter(&uvm_fpageqlock);
140
141 /*
142 * check for page daemon going to sleep (waiting for itself)
143 */
144
145 if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
146 /*
147 * now we have a problem: the pagedaemon wants to go to
148 * sleep until it frees more memory. but how can it
149 * free more memory if it is asleep? that is a deadlock.
150 * we have two options:
151 * [1] panic now
152 * [2] put a timeout on the sleep, thus causing the
153 * pagedaemon to only pause (rather than sleep forever)
154 *
155 * note that option [2] will only help us if we get lucky
156 * and some other process on the system breaks the deadlock
157 * by exiting or freeing memory (thus allowing the pagedaemon
158 * to continue). for now we panic if DEBUG is defined,
159 * otherwise we hope for the best with option [2] (better
160 * yet, this should never happen in the first place!).
161 */
162
163 printf("pagedaemon: deadlock detected!\n");
164 timo = hz >> 3; /* set timeout */
165 #if defined(DEBUG)
166 /* DEBUG: panic so we can debug it */
167 panic("pagedaemon deadlock");
168 #endif
169 }
170
171 uvm_pagedaemon_waiters++;
172 wakeup(&uvm.pagedaemon); /* wake the daemon! */
173 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
174 }
175
176 /*
177 * uvm_kick_pdaemon: perform checks to determine if we need to
178 * give the pagedaemon a nudge, and do so if necessary.
179 *
180 * => called with uvm_fpageqlock held.
181 */
182
183 void
184 uvm_kick_pdaemon(void)
185 {
186
187 KASSERT(mutex_owned(&uvm_fpageqlock));
188
189 if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
190 (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
191 uvmpdpol_needsscan_p()) ||
192 uvm_km_va_starved_p()) {
193 wakeup(&uvm.pagedaemon);
194 }
195 }
196
197 /*
198 * uvmpd_tune: tune paging parameters
199 *
200 * => called when ever memory is added (or removed?) to the system
201 * => caller must call with page queues locked
202 */
203
204 static void
205 uvmpd_tune(void)
206 {
207 int val;
208
209 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
210
211 /*
212 * try to keep 0.5% of available RAM free, but limit to between
213 * 128k and 1024k per-CPU. XXX: what are these values good for?
214 */
215 val = uvmexp.npages / 200;
216 val = MAX(val, (128*1024) >> PAGE_SHIFT);
217 val = MIN(val, (1024*1024) >> PAGE_SHIFT);
218 val *= ncpu;
219
220 /* Make sure there's always a user page free. */
221 if (val < uvmexp.reserve_kernel + 1)
222 val = uvmexp.reserve_kernel + 1;
223 uvmexp.freemin = val;
224
225 /* Calculate free target. */
226 val = (uvmexp.freemin * 4) / 3;
227 if (val <= uvmexp.freemin)
228 val = uvmexp.freemin + 1;
229 uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
230
231 uvmexp.wiredmax = uvmexp.npages / 3;
232 UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
233 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
234 }
235
236 /*
237 * uvm_pageout: the main loop for the pagedaemon
238 */
239
240 void
241 uvm_pageout(void *arg)
242 {
243 int npages = 0;
244 int extrapages = 0;
245
246 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
247
248 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
249
250 mutex_init(&uvmpd_pool_drain_lock, MUTEX_DEFAULT, IPL_VM);
251 cv_init(&uvmpd_pool_drain_cv, "pooldrain");
252
253 /* Create the pool drainer kernel thread. */
254 if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL,
255 uvmpd_pool_drain_thread, NULL, NULL, "pooldrain"))
256 panic("fork pooldrain");
257
258 /*
259 * ensure correct priority and set paging parameters...
260 */
261
262 uvm.pagedaemon_lwp = curlwp;
263 mutex_enter(&uvm_pageqlock);
264 npages = uvmexp.npages;
265 uvmpd_tune();
266 mutex_exit(&uvm_pageqlock);
267
268 /*
269 * main loop
270 */
271
272 for (;;) {
273 bool needsscan, needsfree, kmem_va_starved;
274
275 kmem_va_starved = uvm_km_va_starved_p();
276
277 mutex_spin_enter(&uvm_fpageqlock);
278 if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
279 !kmem_va_starved) {
280 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
281 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
282 &uvm_fpageqlock, false, "pgdaemon", 0);
283 uvmexp.pdwoke++;
284 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
285 } else {
286 mutex_spin_exit(&uvm_fpageqlock);
287 }
288
289 /*
290 * now lock page queues and recompute inactive count
291 */
292
293 mutex_enter(&uvm_pageqlock);
294 if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
295 npages = uvmexp.npages;
296 extrapages = uvm_extrapages;
297 mutex_spin_enter(&uvm_fpageqlock);
298 uvmpd_tune();
299 mutex_spin_exit(&uvm_fpageqlock);
300 }
301
302 uvmpdpol_tune();
303
304 /*
305 * Estimate a hint. Note that bufmem are returned to
306 * system only when entire pool page is empty.
307 */
308 mutex_spin_enter(&uvm_fpageqlock);
309
310 UVMHIST_LOG(pdhist," free/ftarg=%jd/%jd",
311 uvmexp.free, uvmexp.freetarg, 0,0);
312
313 needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
314 needsscan = needsfree || uvmpdpol_needsscan_p();
315
316 /*
317 * scan if needed
318 */
319 if (needsscan) {
320 mutex_spin_exit(&uvm_fpageqlock);
321 uvmpd_scan();
322 mutex_spin_enter(&uvm_fpageqlock);
323 }
324
325 /*
326 * if there's any free memory to be had,
327 * wake up any waiters.
328 */
329 if (uvmexp.free > uvmexp.reserve_kernel ||
330 uvmexp.paging == 0) {
331 wakeup(&uvmexp.free);
332 uvm_pagedaemon_waiters = 0;
333 }
334 mutex_spin_exit(&uvm_fpageqlock);
335
336 /*
337 * scan done. unlock page queues (the only lock we are holding)
338 */
339 mutex_exit(&uvm_pageqlock);
340
341 /*
342 * if we don't need free memory, we're done.
343 */
344
345 if (!needsfree && !kmem_va_starved)
346 continue;
347
348 /*
349 * kick the pool drainer thread.
350 */
351
352 uvmpd_pool_drain_wakeup();
353 }
354 /*NOTREACHED*/
355 }
356
357
358 /*
359 * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
360 */
361
362 void
363 uvm_aiodone_worker(struct work *wk, void *dummy)
364 {
365 struct buf *bp = (void *)wk;
366
367 KASSERT(&bp->b_work == wk);
368
369 /*
370 * process an i/o that's done.
371 */
372
373 (*bp->b_iodone)(bp);
374 }
375
376 void
377 uvm_pageout_start(int npages)
378 {
379
380 mutex_spin_enter(&uvm_fpageqlock);
381 uvmexp.paging += npages;
382 mutex_spin_exit(&uvm_fpageqlock);
383 }
384
385 void
386 uvm_pageout_done(int npages)
387 {
388
389 mutex_spin_enter(&uvm_fpageqlock);
390 KASSERT(uvmexp.paging >= npages);
391 uvmexp.paging -= npages;
392
393 /*
394 * wake up either of pagedaemon or LWPs waiting for it.
395 */
396
397 if (uvmexp.free <= uvmexp.reserve_kernel) {
398 wakeup(&uvm.pagedaemon);
399 } else {
400 wakeup(&uvmexp.free);
401 uvm_pagedaemon_waiters = 0;
402 }
403 mutex_spin_exit(&uvm_fpageqlock);
404 }
405
406 /*
407 * uvmpd_trylockowner: trylock the page's owner.
408 *
409 * => called with pageq locked.
410 * => resolve orphaned O->A loaned page.
411 * => return the locked mutex on success. otherwise, return NULL.
412 */
413
414 kmutex_t *
415 uvmpd_trylockowner(struct vm_page *pg)
416 {
417 struct uvm_object *uobj = pg->uobject;
418 kmutex_t *slock;
419
420 KASSERT(mutex_owned(&uvm_pageqlock));
421
422 if (uobj != NULL) {
423 slock = uobj->vmobjlock;
424 } else {
425 struct vm_anon *anon = pg->uanon;
426
427 KASSERT(anon != NULL);
428 slock = anon->an_lock;
429 }
430
431 if (!mutex_tryenter(slock)) {
432 return NULL;
433 }
434
435 if (uobj == NULL) {
436
437 /*
438 * set PQ_ANON if it isn't set already.
439 */
440
441 if ((pg->pqflags & PQ_ANON) == 0) {
442 KASSERT(pg->loan_count > 0);
443 pg->loan_count--;
444 pg->pqflags |= PQ_ANON;
445 /* anon now owns it */
446 }
447 }
448
449 return slock;
450 }
451
452 #if defined(VMSWAP)
453 struct swapcluster {
454 int swc_slot;
455 int swc_nallocated;
456 int swc_nused;
457 struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
458 };
459
460 static void
461 swapcluster_init(struct swapcluster *swc)
462 {
463
464 swc->swc_slot = 0;
465 swc->swc_nused = 0;
466 }
467
468 static int
469 swapcluster_allocslots(struct swapcluster *swc)
470 {
471 int slot;
472 int npages;
473
474 if (swc->swc_slot != 0) {
475 return 0;
476 }
477
478 /* Even with strange MAXPHYS, the shift
479 implicitly rounds down to a page. */
480 npages = MAXPHYS >> PAGE_SHIFT;
481 slot = uvm_swap_alloc(&npages, true);
482 if (slot == 0) {
483 return ENOMEM;
484 }
485 swc->swc_slot = slot;
486 swc->swc_nallocated = npages;
487 swc->swc_nused = 0;
488
489 return 0;
490 }
491
492 static int
493 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
494 {
495 int slot;
496 struct uvm_object *uobj;
497
498 KASSERT(swc->swc_slot != 0);
499 KASSERT(swc->swc_nused < swc->swc_nallocated);
500 KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
501
502 slot = swc->swc_slot + swc->swc_nused;
503 uobj = pg->uobject;
504 if (uobj == NULL) {
505 KASSERT(mutex_owned(pg->uanon->an_lock));
506 pg->uanon->an_swslot = slot;
507 } else {
508 int result;
509
510 KASSERT(mutex_owned(uobj->vmobjlock));
511 result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
512 if (result == -1) {
513 return ENOMEM;
514 }
515 }
516 swc->swc_pages[swc->swc_nused] = pg;
517 swc->swc_nused++;
518
519 return 0;
520 }
521
522 static void
523 swapcluster_flush(struct swapcluster *swc, bool now)
524 {
525 int slot;
526 int nused;
527 int nallocated;
528 int error __diagused;
529
530 if (swc->swc_slot == 0) {
531 return;
532 }
533 KASSERT(swc->swc_nused <= swc->swc_nallocated);
534
535 slot = swc->swc_slot;
536 nused = swc->swc_nused;
537 nallocated = swc->swc_nallocated;
538
539 /*
540 * if this is the final pageout we could have a few
541 * unused swap blocks. if so, free them now.
542 */
543
544 if (nused < nallocated) {
545 if (!now) {
546 return;
547 }
548 uvm_swap_free(slot + nused, nallocated - nused);
549 }
550
551 /*
552 * now start the pageout.
553 */
554
555 if (nused > 0) {
556 uvmexp.pdpageouts++;
557 uvm_pageout_start(nused);
558 error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
559 KASSERT(error == 0 || error == ENOMEM);
560 }
561
562 /*
563 * zero swslot to indicate that we are
564 * no longer building a swap-backed cluster.
565 */
566
567 swc->swc_slot = 0;
568 swc->swc_nused = 0;
569 }
570
571 static int
572 swapcluster_nused(struct swapcluster *swc)
573 {
574
575 return swc->swc_nused;
576 }
577
578 /*
579 * uvmpd_dropswap: free any swap allocated to this page.
580 *
581 * => called with owner locked.
582 * => return true if a page had an associated slot.
583 */
584
585 static bool
586 uvmpd_dropswap(struct vm_page *pg)
587 {
588 bool result = false;
589 struct vm_anon *anon = pg->uanon;
590
591 if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
592 uvm_swap_free(anon->an_swslot, 1);
593 anon->an_swslot = 0;
594 pg->flags &= ~PG_CLEAN;
595 result = true;
596 } else if (pg->pqflags & PQ_AOBJ) {
597 int slot = uao_set_swslot(pg->uobject,
598 pg->offset >> PAGE_SHIFT, 0);
599 if (slot) {
600 uvm_swap_free(slot, 1);
601 pg->flags &= ~PG_CLEAN;
602 result = true;
603 }
604 }
605
606 return result;
607 }
608
609 /*
610 * uvmpd_trydropswap: try to free any swap allocated to this page.
611 *
612 * => return true if a slot is successfully freed.
613 */
614
615 bool
616 uvmpd_trydropswap(struct vm_page *pg)
617 {
618 kmutex_t *slock;
619 bool result;
620
621 if ((pg->flags & PG_BUSY) != 0) {
622 return false;
623 }
624
625 /*
626 * lock the page's owner.
627 */
628
629 slock = uvmpd_trylockowner(pg);
630 if (slock == NULL) {
631 return false;
632 }
633
634 /*
635 * skip this page if it's busy.
636 */
637
638 if ((pg->flags & PG_BUSY) != 0) {
639 mutex_exit(slock);
640 return false;
641 }
642
643 result = uvmpd_dropswap(pg);
644
645 mutex_exit(slock);
646
647 return result;
648 }
649
650 #endif /* defined(VMSWAP) */
651
652 /*
653 * uvmpd_scan_queue: scan an replace candidate list for pages
654 * to clean or free.
655 *
656 * => called with page queues locked
657 * => we work on meeting our free target by converting inactive pages
658 * into free pages.
659 * => we handle the building of swap-backed clusters
660 */
661
662 static void
663 uvmpd_scan_queue(void)
664 {
665 struct vm_page *p;
666 struct uvm_object *uobj;
667 struct vm_anon *anon;
668 #if defined(VMSWAP)
669 struct swapcluster swc;
670 #endif /* defined(VMSWAP) */
671 int dirtyreacts;
672 int lockownerfail;
673 kmutex_t *slock;
674 UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
675
676 /*
677 * swslot is non-zero if we are building a swap cluster. we want
678 * to stay in the loop while we have a page to scan or we have
679 * a swap-cluster to build.
680 */
681
682 #if defined(VMSWAP)
683 swapcluster_init(&swc);
684 #endif /* defined(VMSWAP) */
685
686 dirtyreacts = 0;
687 lockownerfail = 0;
688 uvmpdpol_scaninit();
689
690 while (/* CONSTCOND */ 1) {
691
692 /*
693 * see if we've met the free target.
694 */
695
696 if (uvmexp.free + uvmexp.paging
697 #if defined(VMSWAP)
698 + swapcluster_nused(&swc)
699 #endif /* defined(VMSWAP) */
700 >= uvmexp.freetarg << 2 ||
701 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
702 UVMHIST_LOG(pdhist," met free target: "
703 "exit loop", 0, 0, 0, 0);
704 break;
705 }
706
707 p = uvmpdpol_selectvictim();
708 if (p == NULL) {
709 break;
710 }
711 KASSERT(uvmpdpol_pageisqueued_p(p));
712 KASSERT(p->wire_count == 0);
713
714 /*
715 * we are below target and have a new page to consider.
716 */
717
718 anon = p->uanon;
719 uobj = p->uobject;
720
721 /*
722 * first we attempt to lock the object that this page
723 * belongs to. if our attempt fails we skip on to
724 * the next page (no harm done). it is important to
725 * "try" locking the object as we are locking in the
726 * wrong order (pageq -> object) and we don't want to
727 * deadlock.
728 *
729 * the only time we expect to see an ownerless page
730 * (i.e. a page with no uobject and !PQ_ANON) is if an
731 * anon has loaned a page from a uvm_object and the
732 * uvm_object has dropped the ownership. in that
733 * case, the anon can "take over" the loaned page
734 * and make it its own.
735 */
736
737 slock = uvmpd_trylockowner(p);
738 if (slock == NULL) {
739 /*
740 * yield cpu to make a chance for an LWP holding
741 * the lock run. otherwise we can busy-loop too long
742 * if the page queue is filled with a lot of pages
743 * from few objects.
744 */
745 lockownerfail++;
746 if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
747 mutex_exit(&uvm_pageqlock);
748 /* XXX Better than yielding but inadequate. */
749 kpause("livelock", false, 1, NULL);
750 mutex_enter(&uvm_pageqlock);
751 lockownerfail = 0;
752 }
753 continue;
754 }
755 if (p->flags & PG_BUSY) {
756 mutex_exit(slock);
757 uvmexp.pdbusy++;
758 continue;
759 }
760
761 /* does the page belong to an object? */
762 if (uobj != NULL) {
763 uvmexp.pdobscan++;
764 } else {
765 #if defined(VMSWAP)
766 KASSERT(anon != NULL);
767 uvmexp.pdanscan++;
768 #else /* defined(VMSWAP) */
769 panic("%s: anon", __func__);
770 #endif /* defined(VMSWAP) */
771 }
772
773
774 /*
775 * we now have the object and the page queues locked.
776 * if the page is not swap-backed, call the object's
777 * pager to flush and free the page.
778 */
779
780 #if defined(READAHEAD_STATS)
781 if ((p->pqflags & PQ_READAHEAD) != 0) {
782 p->pqflags &= ~PQ_READAHEAD;
783 uvm_ra_miss.ev_count++;
784 }
785 #endif /* defined(READAHEAD_STATS) */
786
787 if ((p->pqflags & PQ_SWAPBACKED) == 0) {
788 KASSERT(uobj != NULL);
789 mutex_exit(&uvm_pageqlock);
790 (void) (uobj->pgops->pgo_put)(uobj, p->offset,
791 p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
792 mutex_enter(&uvm_pageqlock);
793 continue;
794 }
795
796 /*
797 * the page is swap-backed. remove all the permissions
798 * from the page so we can sync the modified info
799 * without any race conditions. if the page is clean
800 * we can free it now and continue.
801 */
802
803 pmap_page_protect(p, VM_PROT_NONE);
804 if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
805 p->flags &= ~(PG_CLEAN);
806 }
807 if (p->flags & PG_CLEAN) {
808 int slot;
809 int pageidx;
810
811 pageidx = p->offset >> PAGE_SHIFT;
812 uvm_pagefree(p);
813 uvmexp.pdfreed++;
814
815 /*
816 * for anons, we need to remove the page
817 * from the anon ourselves. for aobjs,
818 * pagefree did that for us.
819 */
820
821 if (anon) {
822 KASSERT(anon->an_swslot != 0);
823 anon->an_page = NULL;
824 slot = anon->an_swslot;
825 } else {
826 slot = uao_find_swslot(uobj, pageidx);
827 }
828 mutex_exit(slock);
829
830 if (slot > 0) {
831 /* this page is now only in swap. */
832 mutex_enter(&uvm_swap_data_lock);
833 KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
834 uvmexp.swpgonly++;
835 mutex_exit(&uvm_swap_data_lock);
836 }
837 continue;
838 }
839
840 #if defined(VMSWAP)
841 /*
842 * this page is dirty, skip it if we'll have met our
843 * free target when all the current pageouts complete.
844 */
845
846 if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
847 mutex_exit(slock);
848 continue;
849 }
850
851 /*
852 * free any swap space allocated to the page since
853 * we'll have to write it again with its new data.
854 */
855
856 uvmpd_dropswap(p);
857
858 /*
859 * start new swap pageout cluster (if necessary).
860 *
861 * if swap is full reactivate this page so that
862 * we eventually cycle all pages through the
863 * inactive queue.
864 */
865
866 if (swapcluster_allocslots(&swc)) {
867 dirtyreacts++;
868 uvm_pageactivate(p);
869 mutex_exit(slock);
870 continue;
871 }
872
873 /*
874 * at this point, we're definitely going reuse this
875 * page. mark the page busy and delayed-free.
876 * we should remove the page from the page queues
877 * so we don't ever look at it again.
878 * adjust counters and such.
879 */
880
881 p->flags |= PG_BUSY;
882 UVM_PAGE_OWN(p, "scan_queue");
883
884 p->flags |= PG_PAGEOUT;
885 uvm_pagedequeue(p);
886
887 uvmexp.pgswapout++;
888 mutex_exit(&uvm_pageqlock);
889
890 /*
891 * add the new page to the cluster.
892 */
893
894 if (swapcluster_add(&swc, p)) {
895 p->flags &= ~(PG_BUSY|PG_PAGEOUT);
896 UVM_PAGE_OWN(p, NULL);
897 mutex_enter(&uvm_pageqlock);
898 dirtyreacts++;
899 uvm_pageactivate(p);
900 mutex_exit(slock);
901 continue;
902 }
903 mutex_exit(slock);
904
905 swapcluster_flush(&swc, false);
906 mutex_enter(&uvm_pageqlock);
907
908 /*
909 * the pageout is in progress. bump counters and set up
910 * for the next loop.
911 */
912
913 uvmexp.pdpending++;
914
915 #else /* defined(VMSWAP) */
916 uvm_pageactivate(p);
917 mutex_exit(slock);
918 #endif /* defined(VMSWAP) */
919 }
920
921 #if defined(VMSWAP)
922 mutex_exit(&uvm_pageqlock);
923 swapcluster_flush(&swc, true);
924 mutex_enter(&uvm_pageqlock);
925 #endif /* defined(VMSWAP) */
926 }
927
928 /*
929 * uvmpd_scan: scan the page queues and attempt to meet our targets.
930 *
931 * => called with pageq's locked
932 */
933
934 static void
935 uvmpd_scan(void)
936 {
937 int swap_shortage, pages_freed;
938 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
939
940 uvmexp.pdrevs++;
941
942 /*
943 * work on meeting our targets. first we work on our free target
944 * by converting inactive pages into free pages. then we work on
945 * meeting our inactive target by converting active pages to
946 * inactive ones.
947 */
948
949 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
950
951 pages_freed = uvmexp.pdfreed;
952 uvmpd_scan_queue();
953 pages_freed = uvmexp.pdfreed - pages_freed;
954
955 /*
956 * detect if we're not going to be able to page anything out
957 * until we free some swap resources from active pages.
958 */
959
960 swap_shortage = 0;
961 if (uvmexp.free < uvmexp.freetarg &&
962 uvmexp.swpginuse >= uvmexp.swpgavail &&
963 !uvm_swapisfull() &&
964 pages_freed == 0) {
965 swap_shortage = uvmexp.freetarg - uvmexp.free;
966 }
967
968 uvmpdpol_balancequeue(swap_shortage);
969
970 /*
971 * if still below the minimum target, try unloading kernel
972 * modules.
973 */
974
975 if (uvmexp.free < uvmexp.freemin) {
976 module_thread_kick();
977 }
978 }
979
980 /*
981 * uvm_reclaimable: decide whether to wait for pagedaemon.
982 *
983 * => return true if it seems to be worth to do uvm_wait.
984 *
985 * XXX should be tunable.
986 * XXX should consider pools, etc?
987 */
988
989 bool
990 uvm_reclaimable(void)
991 {
992 int filepages;
993 int active, inactive;
994
995 /*
996 * if swap is not full, no problem.
997 */
998
999 if (!uvm_swapisfull()) {
1000 return true;
1001 }
1002
1003 /*
1004 * file-backed pages can be reclaimed even when swap is full.
1005 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
1006 *
1007 * XXX assume the worst case, ie. all wired pages are file-backed.
1008 *
1009 * XXX should consider about other reclaimable memory.
1010 * XXX ie. pools, traditional buffer cache.
1011 */
1012
1013 filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
1014 uvm_estimatepageable(&active, &inactive);
1015 if (filepages >= MIN((active + inactive) >> 4,
1016 5 * 1024 * 1024 >> PAGE_SHIFT)) {
1017 return true;
1018 }
1019
1020 /*
1021 * kill the process, fail allocation, etc..
1022 */
1023
1024 return false;
1025 }
1026
1027 void
1028 uvm_estimatepageable(int *active, int *inactive)
1029 {
1030
1031 uvmpdpol_estimatepageable(active, inactive);
1032 }
1033
1034
1035 /*
1036 * Use a separate thread for draining pools.
1037 * This work can't done from the main pagedaemon thread because
1038 * some pool allocators need to take vm_map locks.
1039 */
1040
1041 static void
1042 uvmpd_pool_drain_thread(void *arg)
1043 {
1044 int bufcnt;
1045
1046 for (;;) {
1047 mutex_enter(&uvmpd_pool_drain_lock);
1048 if (!uvmpd_pool_drain_run) {
1049 cv_wait(&uvmpd_pool_drain_cv, &uvmpd_pool_drain_lock);
1050 }
1051 uvmpd_pool_drain_run = false;
1052 mutex_exit(&uvmpd_pool_drain_lock);
1053
1054 /*
1055 * kill unused metadata buffers.
1056 */
1057 mutex_spin_enter(&uvm_fpageqlock);
1058 bufcnt = uvmexp.freetarg - uvmexp.free;
1059 mutex_spin_exit(&uvm_fpageqlock);
1060 if (bufcnt < 0)
1061 bufcnt = 0;
1062
1063 mutex_enter(&bufcache_lock);
1064 buf_drain(bufcnt << PAGE_SHIFT);
1065 mutex_exit(&bufcache_lock);
1066
1067 /*
1068 * drain a pool.
1069 */
1070 pool_drain(NULL);
1071 }
1072 /*NOTREACHED*/
1073 }
1074
1075 static void
1076 uvmpd_pool_drain_wakeup(void)
1077 {
1078
1079 mutex_enter(&uvmpd_pool_drain_lock);
1080 uvmpd_pool_drain_run = true;
1081 cv_signal(&uvmpd_pool_drain_cv);
1082 mutex_exit(&uvmpd_pool_drain_lock);
1083 }
1084