Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.111
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.111 2019/10/01 17:40:22 chs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     37  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_pdaemon.c: the page daemon
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.111 2019/10/01 17:40:22 chs Exp $");
     70 
     71 #include "opt_uvmhist.h"
     72 #include "opt_readahead.h"
     73 
     74 #include <sys/param.h>
     75 #include <sys/proc.h>
     76 #include <sys/systm.h>
     77 #include <sys/kernel.h>
     78 #include <sys/pool.h>
     79 #include <sys/buf.h>
     80 #include <sys/module.h>
     81 #include <sys/atomic.h>
     82 #include <sys/kthread.h>
     83 
     84 #include <uvm/uvm.h>
     85 #include <uvm/uvm_pdpolicy.h>
     86 
     87 #ifdef UVMHIST
     88 UVMHIST_DEFINE(pdhist);
     89 #endif
     90 
     91 /*
     92  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     93  * in a pass thru the inactive list when swap is full.  the value should be
     94  * "small"... if it's too large we'll cycle the active pages thru the inactive
     95  * queue too quickly to for them to be referenced and avoid being freed.
     96  */
     97 
     98 #define	UVMPD_NUMDIRTYREACTS	16
     99 
    100 #define	UVMPD_NUMTRYLOCKOWNER	16
    101 
    102 /*
    103  * local prototypes
    104  */
    105 
    106 static void	uvmpd_scan(void);
    107 static void	uvmpd_scan_queue(void);
    108 static void	uvmpd_tune(void);
    109 static void	uvmpd_pool_drain_thread(void *);
    110 static void	uvmpd_pool_drain_wakeup(void);
    111 
    112 static unsigned int uvm_pagedaemon_waiters;
    113 
    114 /* State for the pool drainer thread */
    115 static kmutex_t uvmpd_pool_drain_lock;
    116 static kcondvar_t uvmpd_pool_drain_cv;
    117 static bool uvmpd_pool_drain_run = false;
    118 
    119 /*
    120  * XXX hack to avoid hangs when large processes fork.
    121  */
    122 u_int uvm_extrapages;
    123 
    124 /*
    125  * uvm_wait: wait (sleep) for the page daemon to free some pages
    126  *
    127  * => should be called with all locks released
    128  * => should _not_ be called by the page daemon (to avoid deadlock)
    129  */
    130 
    131 void
    132 uvm_wait(const char *wmsg)
    133 {
    134 	int timo = 0;
    135 
    136 	if (uvm.pagedaemon_lwp == NULL)
    137 		panic("out of memory before the pagedaemon thread exists");
    138 
    139 	mutex_spin_enter(&uvm_fpageqlock);
    140 
    141 	/*
    142 	 * check for page daemon going to sleep (waiting for itself)
    143 	 */
    144 
    145 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    146 		/*
    147 		 * now we have a problem: the pagedaemon wants to go to
    148 		 * sleep until it frees more memory.   but how can it
    149 		 * free more memory if it is asleep?  that is a deadlock.
    150 		 * we have two options:
    151 		 *  [1] panic now
    152 		 *  [2] put a timeout on the sleep, thus causing the
    153 		 *      pagedaemon to only pause (rather than sleep forever)
    154 		 *
    155 		 * note that option [2] will only help us if we get lucky
    156 		 * and some other process on the system breaks the deadlock
    157 		 * by exiting or freeing memory (thus allowing the pagedaemon
    158 		 * to continue).  for now we panic if DEBUG is defined,
    159 		 * otherwise we hope for the best with option [2] (better
    160 		 * yet, this should never happen in the first place!).
    161 		 */
    162 
    163 		printf("pagedaemon: deadlock detected!\n");
    164 		timo = hz >> 3;		/* set timeout */
    165 #if defined(DEBUG)
    166 		/* DEBUG: panic so we can debug it */
    167 		panic("pagedaemon deadlock");
    168 #endif
    169 	}
    170 
    171 	uvm_pagedaemon_waiters++;
    172 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    173 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
    174 }
    175 
    176 /*
    177  * uvm_kick_pdaemon: perform checks to determine if we need to
    178  * give the pagedaemon a nudge, and do so if necessary.
    179  *
    180  * => called with uvm_fpageqlock held.
    181  */
    182 
    183 void
    184 uvm_kick_pdaemon(void)
    185 {
    186 
    187 	KASSERT(mutex_owned(&uvm_fpageqlock));
    188 
    189 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    190 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    191 	     uvmpdpol_needsscan_p()) ||
    192 	     uvm_km_va_starved_p()) {
    193 		wakeup(&uvm.pagedaemon);
    194 	}
    195 }
    196 
    197 /*
    198  * uvmpd_tune: tune paging parameters
    199  *
    200  * => called when ever memory is added (or removed?) to the system
    201  * => caller must call with page queues locked
    202  */
    203 
    204 static void
    205 uvmpd_tune(void)
    206 {
    207 	int val;
    208 
    209 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    210 
    211 	/*
    212 	 * try to keep 0.5% of available RAM free, but limit to between
    213 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
    214 	 */
    215 	val = uvmexp.npages / 200;
    216 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
    217 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
    218 	val *= ncpu;
    219 
    220 	/* Make sure there's always a user page free. */
    221 	if (val < uvmexp.reserve_kernel + 1)
    222 		val = uvmexp.reserve_kernel + 1;
    223 	uvmexp.freemin = val;
    224 
    225 	/* Calculate free target. */
    226 	val = (uvmexp.freemin * 4) / 3;
    227 	if (val <= uvmexp.freemin)
    228 		val = uvmexp.freemin + 1;
    229 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
    230 
    231 	uvmexp.wiredmax = uvmexp.npages / 3;
    232 	UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
    233 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    234 }
    235 
    236 /*
    237  * uvm_pageout: the main loop for the pagedaemon
    238  */
    239 
    240 void
    241 uvm_pageout(void *arg)
    242 {
    243 	int npages = 0;
    244 	int extrapages = 0;
    245 
    246 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    247 
    248 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    249 
    250 	mutex_init(&uvmpd_pool_drain_lock, MUTEX_DEFAULT, IPL_VM);
    251 	cv_init(&uvmpd_pool_drain_cv, "pooldrain");
    252 
    253 	/* Create the pool drainer kernel thread. */
    254 	if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL,
    255 	    uvmpd_pool_drain_thread, NULL, NULL, "pooldrain"))
    256 		panic("fork pooldrain");
    257 
    258 	/*
    259 	 * ensure correct priority and set paging parameters...
    260 	 */
    261 
    262 	uvm.pagedaemon_lwp = curlwp;
    263 	mutex_enter(&uvm_pageqlock);
    264 	npages = uvmexp.npages;
    265 	uvmpd_tune();
    266 	mutex_exit(&uvm_pageqlock);
    267 
    268 	/*
    269 	 * main loop
    270 	 */
    271 
    272 	for (;;) {
    273 		bool needsscan, needsfree, kmem_va_starved;
    274 
    275 		kmem_va_starved = uvm_km_va_starved_p();
    276 
    277 		mutex_spin_enter(&uvm_fpageqlock);
    278 		if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
    279 		    !kmem_va_starved) {
    280 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    281 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    282 			    &uvm_fpageqlock, false, "pgdaemon", 0);
    283 			uvmexp.pdwoke++;
    284 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    285 		} else {
    286 			mutex_spin_exit(&uvm_fpageqlock);
    287 		}
    288 
    289 		/*
    290 		 * now lock page queues and recompute inactive count
    291 		 */
    292 
    293 		mutex_enter(&uvm_pageqlock);
    294 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    295 			npages = uvmexp.npages;
    296 			extrapages = uvm_extrapages;
    297 			mutex_spin_enter(&uvm_fpageqlock);
    298 			uvmpd_tune();
    299 			mutex_spin_exit(&uvm_fpageqlock);
    300 		}
    301 
    302 		uvmpdpol_tune();
    303 
    304 		/*
    305 		 * Estimate a hint.  Note that bufmem are returned to
    306 		 * system only when entire pool page is empty.
    307 		 */
    308 		mutex_spin_enter(&uvm_fpageqlock);
    309 
    310 		UVMHIST_LOG(pdhist,"  free/ftarg=%jd/%jd",
    311 		    uvmexp.free, uvmexp.freetarg, 0,0);
    312 
    313 		needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
    314 		needsscan = needsfree || uvmpdpol_needsscan_p();
    315 
    316 		/*
    317 		 * scan if needed
    318 		 */
    319 		if (needsscan) {
    320 			mutex_spin_exit(&uvm_fpageqlock);
    321 			uvmpd_scan();
    322 			mutex_spin_enter(&uvm_fpageqlock);
    323 		}
    324 
    325 		/*
    326 		 * if there's any free memory to be had,
    327 		 * wake up any waiters.
    328 		 */
    329 		if (uvmexp.free > uvmexp.reserve_kernel ||
    330 		    uvmexp.paging == 0) {
    331 			wakeup(&uvmexp.free);
    332 			uvm_pagedaemon_waiters = 0;
    333 		}
    334 		mutex_spin_exit(&uvm_fpageqlock);
    335 
    336 		/*
    337 		 * scan done.  unlock page queues (the only lock we are holding)
    338 		 */
    339 		mutex_exit(&uvm_pageqlock);
    340 
    341 		/*
    342 		 * if we don't need free memory, we're done.
    343 		 */
    344 
    345 		if (!needsfree && !kmem_va_starved)
    346 			continue;
    347 
    348 		/*
    349 		 * kick the pool drainer thread.
    350 		 */
    351 
    352 		uvmpd_pool_drain_wakeup();
    353 	}
    354 	/*NOTREACHED*/
    355 }
    356 
    357 
    358 /*
    359  * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
    360  */
    361 
    362 void
    363 uvm_aiodone_worker(struct work *wk, void *dummy)
    364 {
    365 	struct buf *bp = (void *)wk;
    366 
    367 	KASSERT(&bp->b_work == wk);
    368 
    369 	/*
    370 	 * process an i/o that's done.
    371 	 */
    372 
    373 	(*bp->b_iodone)(bp);
    374 }
    375 
    376 void
    377 uvm_pageout_start(int npages)
    378 {
    379 
    380 	mutex_spin_enter(&uvm_fpageqlock);
    381 	uvmexp.paging += npages;
    382 	mutex_spin_exit(&uvm_fpageqlock);
    383 }
    384 
    385 void
    386 uvm_pageout_done(int npages)
    387 {
    388 
    389 	mutex_spin_enter(&uvm_fpageqlock);
    390 	KASSERT(uvmexp.paging >= npages);
    391 	uvmexp.paging -= npages;
    392 
    393 	/*
    394 	 * wake up either of pagedaemon or LWPs waiting for it.
    395 	 */
    396 
    397 	if (uvmexp.free <= uvmexp.reserve_kernel) {
    398 		wakeup(&uvm.pagedaemon);
    399 	} else {
    400 		wakeup(&uvmexp.free);
    401 		uvm_pagedaemon_waiters = 0;
    402 	}
    403 	mutex_spin_exit(&uvm_fpageqlock);
    404 }
    405 
    406 /*
    407  * uvmpd_trylockowner: trylock the page's owner.
    408  *
    409  * => called with pageq locked.
    410  * => resolve orphaned O->A loaned page.
    411  * => return the locked mutex on success.  otherwise, return NULL.
    412  */
    413 
    414 kmutex_t *
    415 uvmpd_trylockowner(struct vm_page *pg)
    416 {
    417 	struct uvm_object *uobj = pg->uobject;
    418 	kmutex_t *slock;
    419 
    420 	KASSERT(mutex_owned(&uvm_pageqlock));
    421 
    422 	if (uobj != NULL) {
    423 		slock = uobj->vmobjlock;
    424 	} else {
    425 		struct vm_anon *anon = pg->uanon;
    426 
    427 		KASSERT(anon != NULL);
    428 		slock = anon->an_lock;
    429 	}
    430 
    431 	if (!mutex_tryenter(slock)) {
    432 		return NULL;
    433 	}
    434 
    435 	if (uobj == NULL) {
    436 
    437 		/*
    438 		 * set PQ_ANON if it isn't set already.
    439 		 */
    440 
    441 		if ((pg->pqflags & PQ_ANON) == 0) {
    442 			KASSERT(pg->loan_count > 0);
    443 			pg->loan_count--;
    444 			pg->pqflags |= PQ_ANON;
    445 			/* anon now owns it */
    446 		}
    447 	}
    448 
    449 	return slock;
    450 }
    451 
    452 #if defined(VMSWAP)
    453 struct swapcluster {
    454 	int swc_slot;
    455 	int swc_nallocated;
    456 	int swc_nused;
    457 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    458 };
    459 
    460 static void
    461 swapcluster_init(struct swapcluster *swc)
    462 {
    463 
    464 	swc->swc_slot = 0;
    465 	swc->swc_nused = 0;
    466 }
    467 
    468 static int
    469 swapcluster_allocslots(struct swapcluster *swc)
    470 {
    471 	int slot;
    472 	int npages;
    473 
    474 	if (swc->swc_slot != 0) {
    475 		return 0;
    476 	}
    477 
    478 	/* Even with strange MAXPHYS, the shift
    479 	   implicitly rounds down to a page. */
    480 	npages = MAXPHYS >> PAGE_SHIFT;
    481 	slot = uvm_swap_alloc(&npages, true);
    482 	if (slot == 0) {
    483 		return ENOMEM;
    484 	}
    485 	swc->swc_slot = slot;
    486 	swc->swc_nallocated = npages;
    487 	swc->swc_nused = 0;
    488 
    489 	return 0;
    490 }
    491 
    492 static int
    493 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    494 {
    495 	int slot;
    496 	struct uvm_object *uobj;
    497 
    498 	KASSERT(swc->swc_slot != 0);
    499 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    500 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
    501 
    502 	slot = swc->swc_slot + swc->swc_nused;
    503 	uobj = pg->uobject;
    504 	if (uobj == NULL) {
    505 		KASSERT(mutex_owned(pg->uanon->an_lock));
    506 		pg->uanon->an_swslot = slot;
    507 	} else {
    508 		int result;
    509 
    510 		KASSERT(mutex_owned(uobj->vmobjlock));
    511 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    512 		if (result == -1) {
    513 			return ENOMEM;
    514 		}
    515 	}
    516 	swc->swc_pages[swc->swc_nused] = pg;
    517 	swc->swc_nused++;
    518 
    519 	return 0;
    520 }
    521 
    522 static void
    523 swapcluster_flush(struct swapcluster *swc, bool now)
    524 {
    525 	int slot;
    526 	int nused;
    527 	int nallocated;
    528 	int error __diagused;
    529 
    530 	if (swc->swc_slot == 0) {
    531 		return;
    532 	}
    533 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    534 
    535 	slot = swc->swc_slot;
    536 	nused = swc->swc_nused;
    537 	nallocated = swc->swc_nallocated;
    538 
    539 	/*
    540 	 * if this is the final pageout we could have a few
    541 	 * unused swap blocks.  if so, free them now.
    542 	 */
    543 
    544 	if (nused < nallocated) {
    545 		if (!now) {
    546 			return;
    547 		}
    548 		uvm_swap_free(slot + nused, nallocated - nused);
    549 	}
    550 
    551 	/*
    552 	 * now start the pageout.
    553 	 */
    554 
    555 	if (nused > 0) {
    556 		uvmexp.pdpageouts++;
    557 		uvm_pageout_start(nused);
    558 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    559 		KASSERT(error == 0 || error == ENOMEM);
    560 	}
    561 
    562 	/*
    563 	 * zero swslot to indicate that we are
    564 	 * no longer building a swap-backed cluster.
    565 	 */
    566 
    567 	swc->swc_slot = 0;
    568 	swc->swc_nused = 0;
    569 }
    570 
    571 static int
    572 swapcluster_nused(struct swapcluster *swc)
    573 {
    574 
    575 	return swc->swc_nused;
    576 }
    577 
    578 /*
    579  * uvmpd_dropswap: free any swap allocated to this page.
    580  *
    581  * => called with owner locked.
    582  * => return true if a page had an associated slot.
    583  */
    584 
    585 static bool
    586 uvmpd_dropswap(struct vm_page *pg)
    587 {
    588 	bool result = false;
    589 	struct vm_anon *anon = pg->uanon;
    590 
    591 	if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
    592 		uvm_swap_free(anon->an_swslot, 1);
    593 		anon->an_swslot = 0;
    594 		pg->flags &= ~PG_CLEAN;
    595 		result = true;
    596 	} else if (pg->pqflags & PQ_AOBJ) {
    597 		int slot = uao_set_swslot(pg->uobject,
    598 		    pg->offset >> PAGE_SHIFT, 0);
    599 		if (slot) {
    600 			uvm_swap_free(slot, 1);
    601 			pg->flags &= ~PG_CLEAN;
    602 			result = true;
    603 		}
    604 	}
    605 
    606 	return result;
    607 }
    608 
    609 /*
    610  * uvmpd_trydropswap: try to free any swap allocated to this page.
    611  *
    612  * => return true if a slot is successfully freed.
    613  */
    614 
    615 bool
    616 uvmpd_trydropswap(struct vm_page *pg)
    617 {
    618 	kmutex_t *slock;
    619 	bool result;
    620 
    621 	if ((pg->flags & PG_BUSY) != 0) {
    622 		return false;
    623 	}
    624 
    625 	/*
    626 	 * lock the page's owner.
    627 	 */
    628 
    629 	slock = uvmpd_trylockowner(pg);
    630 	if (slock == NULL) {
    631 		return false;
    632 	}
    633 
    634 	/*
    635 	 * skip this page if it's busy.
    636 	 */
    637 
    638 	if ((pg->flags & PG_BUSY) != 0) {
    639 		mutex_exit(slock);
    640 		return false;
    641 	}
    642 
    643 	result = uvmpd_dropswap(pg);
    644 
    645 	mutex_exit(slock);
    646 
    647 	return result;
    648 }
    649 
    650 #endif /* defined(VMSWAP) */
    651 
    652 /*
    653  * uvmpd_scan_queue: scan an replace candidate list for pages
    654  * to clean or free.
    655  *
    656  * => called with page queues locked
    657  * => we work on meeting our free target by converting inactive pages
    658  *    into free pages.
    659  * => we handle the building of swap-backed clusters
    660  */
    661 
    662 static void
    663 uvmpd_scan_queue(void)
    664 {
    665 	struct vm_page *p;
    666 	struct uvm_object *uobj;
    667 	struct vm_anon *anon;
    668 #if defined(VMSWAP)
    669 	struct swapcluster swc;
    670 #endif /* defined(VMSWAP) */
    671 	int dirtyreacts;
    672 	int lockownerfail;
    673 	kmutex_t *slock;
    674 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    675 
    676 	/*
    677 	 * swslot is non-zero if we are building a swap cluster.  we want
    678 	 * to stay in the loop while we have a page to scan or we have
    679 	 * a swap-cluster to build.
    680 	 */
    681 
    682 #if defined(VMSWAP)
    683 	swapcluster_init(&swc);
    684 #endif /* defined(VMSWAP) */
    685 
    686 	dirtyreacts = 0;
    687 	lockownerfail = 0;
    688 	uvmpdpol_scaninit();
    689 
    690 	while (/* CONSTCOND */ 1) {
    691 
    692 		/*
    693 		 * see if we've met the free target.
    694 		 */
    695 
    696 		if (uvmexp.free + uvmexp.paging
    697 #if defined(VMSWAP)
    698 		    + swapcluster_nused(&swc)
    699 #endif /* defined(VMSWAP) */
    700 		    >= uvmexp.freetarg << 2 ||
    701 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    702 			UVMHIST_LOG(pdhist,"  met free target: "
    703 				    "exit loop", 0, 0, 0, 0);
    704 			break;
    705 		}
    706 
    707 		p = uvmpdpol_selectvictim();
    708 		if (p == NULL) {
    709 			break;
    710 		}
    711 		KASSERT(uvmpdpol_pageisqueued_p(p));
    712 		KASSERT(p->wire_count == 0);
    713 
    714 		/*
    715 		 * we are below target and have a new page to consider.
    716 		 */
    717 
    718 		anon = p->uanon;
    719 		uobj = p->uobject;
    720 
    721 		/*
    722 		 * first we attempt to lock the object that this page
    723 		 * belongs to.  if our attempt fails we skip on to
    724 		 * the next page (no harm done).  it is important to
    725 		 * "try" locking the object as we are locking in the
    726 		 * wrong order (pageq -> object) and we don't want to
    727 		 * deadlock.
    728 		 *
    729 		 * the only time we expect to see an ownerless page
    730 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
    731 		 * anon has loaned a page from a uvm_object and the
    732 		 * uvm_object has dropped the ownership.  in that
    733 		 * case, the anon can "take over" the loaned page
    734 		 * and make it its own.
    735 		 */
    736 
    737 		slock = uvmpd_trylockowner(p);
    738 		if (slock == NULL) {
    739 			/*
    740 			 * yield cpu to make a chance for an LWP holding
    741 			 * the lock run.  otherwise we can busy-loop too long
    742 			 * if the page queue is filled with a lot of pages
    743 			 * from few objects.
    744 			 */
    745 			lockownerfail++;
    746 			if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
    747 				mutex_exit(&uvm_pageqlock);
    748 				/* XXX Better than yielding but inadequate. */
    749 				kpause("livelock", false, 1, NULL);
    750 				mutex_enter(&uvm_pageqlock);
    751 				lockownerfail = 0;
    752 			}
    753 			continue;
    754 		}
    755 		if (p->flags & PG_BUSY) {
    756 			mutex_exit(slock);
    757 			uvmexp.pdbusy++;
    758 			continue;
    759 		}
    760 
    761 		/* does the page belong to an object? */
    762 		if (uobj != NULL) {
    763 			uvmexp.pdobscan++;
    764 		} else {
    765 #if defined(VMSWAP)
    766 			KASSERT(anon != NULL);
    767 			uvmexp.pdanscan++;
    768 #else /* defined(VMSWAP) */
    769 			panic("%s: anon", __func__);
    770 #endif /* defined(VMSWAP) */
    771 		}
    772 
    773 
    774 		/*
    775 		 * we now have the object and the page queues locked.
    776 		 * if the page is not swap-backed, call the object's
    777 		 * pager to flush and free the page.
    778 		 */
    779 
    780 #if defined(READAHEAD_STATS)
    781 		if ((p->pqflags & PQ_READAHEAD) != 0) {
    782 			p->pqflags &= ~PQ_READAHEAD;
    783 			uvm_ra_miss.ev_count++;
    784 		}
    785 #endif /* defined(READAHEAD_STATS) */
    786 
    787 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
    788 			KASSERT(uobj != NULL);
    789 			mutex_exit(&uvm_pageqlock);
    790 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    791 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    792 			mutex_enter(&uvm_pageqlock);
    793 			continue;
    794 		}
    795 
    796 		/*
    797 		 * the page is swap-backed.  remove all the permissions
    798 		 * from the page so we can sync the modified info
    799 		 * without any race conditions.  if the page is clean
    800 		 * we can free it now and continue.
    801 		 */
    802 
    803 		pmap_page_protect(p, VM_PROT_NONE);
    804 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    805 			p->flags &= ~(PG_CLEAN);
    806 		}
    807 		if (p->flags & PG_CLEAN) {
    808 			int slot;
    809 			int pageidx;
    810 
    811 			pageidx = p->offset >> PAGE_SHIFT;
    812 			uvm_pagefree(p);
    813 			uvmexp.pdfreed++;
    814 
    815 			/*
    816 			 * for anons, we need to remove the page
    817 			 * from the anon ourselves.  for aobjs,
    818 			 * pagefree did that for us.
    819 			 */
    820 
    821 			if (anon) {
    822 				KASSERT(anon->an_swslot != 0);
    823 				anon->an_page = NULL;
    824 				slot = anon->an_swslot;
    825 			} else {
    826 				slot = uao_find_swslot(uobj, pageidx);
    827 			}
    828 			mutex_exit(slock);
    829 
    830 			if (slot > 0) {
    831 				/* this page is now only in swap. */
    832 				mutex_enter(&uvm_swap_data_lock);
    833 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    834 				uvmexp.swpgonly++;
    835 				mutex_exit(&uvm_swap_data_lock);
    836 			}
    837 			continue;
    838 		}
    839 
    840 #if defined(VMSWAP)
    841 		/*
    842 		 * this page is dirty, skip it if we'll have met our
    843 		 * free target when all the current pageouts complete.
    844 		 */
    845 
    846 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    847 			mutex_exit(slock);
    848 			continue;
    849 		}
    850 
    851 		/*
    852 		 * free any swap space allocated to the page since
    853 		 * we'll have to write it again with its new data.
    854 		 */
    855 
    856 		uvmpd_dropswap(p);
    857 
    858 		/*
    859 		 * start new swap pageout cluster (if necessary).
    860 		 *
    861 		 * if swap is full reactivate this page so that
    862 		 * we eventually cycle all pages through the
    863 		 * inactive queue.
    864 		 */
    865 
    866 		if (swapcluster_allocslots(&swc)) {
    867 			dirtyreacts++;
    868 			uvm_pageactivate(p);
    869 			mutex_exit(slock);
    870 			continue;
    871 		}
    872 
    873 		/*
    874 		 * at this point, we're definitely going reuse this
    875 		 * page.  mark the page busy and delayed-free.
    876 		 * we should remove the page from the page queues
    877 		 * so we don't ever look at it again.
    878 		 * adjust counters and such.
    879 		 */
    880 
    881 		p->flags |= PG_BUSY;
    882 		UVM_PAGE_OWN(p, "scan_queue");
    883 
    884 		p->flags |= PG_PAGEOUT;
    885 		uvm_pagedequeue(p);
    886 
    887 		uvmexp.pgswapout++;
    888 		mutex_exit(&uvm_pageqlock);
    889 
    890 		/*
    891 		 * add the new page to the cluster.
    892 		 */
    893 
    894 		if (swapcluster_add(&swc, p)) {
    895 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    896 			UVM_PAGE_OWN(p, NULL);
    897 			mutex_enter(&uvm_pageqlock);
    898 			dirtyreacts++;
    899 			uvm_pageactivate(p);
    900 			mutex_exit(slock);
    901 			continue;
    902 		}
    903 		mutex_exit(slock);
    904 
    905 		swapcluster_flush(&swc, false);
    906 		mutex_enter(&uvm_pageqlock);
    907 
    908 		/*
    909 		 * the pageout is in progress.  bump counters and set up
    910 		 * for the next loop.
    911 		 */
    912 
    913 		uvmexp.pdpending++;
    914 
    915 #else /* defined(VMSWAP) */
    916 		uvm_pageactivate(p);
    917 		mutex_exit(slock);
    918 #endif /* defined(VMSWAP) */
    919 	}
    920 
    921 #if defined(VMSWAP)
    922 	mutex_exit(&uvm_pageqlock);
    923 	swapcluster_flush(&swc, true);
    924 	mutex_enter(&uvm_pageqlock);
    925 #endif /* defined(VMSWAP) */
    926 }
    927 
    928 /*
    929  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    930  *
    931  * => called with pageq's locked
    932  */
    933 
    934 static void
    935 uvmpd_scan(void)
    936 {
    937 	int swap_shortage, pages_freed;
    938 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    939 
    940 	uvmexp.pdrevs++;
    941 
    942 	/*
    943 	 * work on meeting our targets.   first we work on our free target
    944 	 * by converting inactive pages into free pages.  then we work on
    945 	 * meeting our inactive target by converting active pages to
    946 	 * inactive ones.
    947 	 */
    948 
    949 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    950 
    951 	pages_freed = uvmexp.pdfreed;
    952 	uvmpd_scan_queue();
    953 	pages_freed = uvmexp.pdfreed - pages_freed;
    954 
    955 	/*
    956 	 * detect if we're not going to be able to page anything out
    957 	 * until we free some swap resources from active pages.
    958 	 */
    959 
    960 	swap_shortage = 0;
    961 	if (uvmexp.free < uvmexp.freetarg &&
    962 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    963 	    !uvm_swapisfull() &&
    964 	    pages_freed == 0) {
    965 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    966 	}
    967 
    968 	uvmpdpol_balancequeue(swap_shortage);
    969 
    970 	/*
    971 	 * if still below the minimum target, try unloading kernel
    972 	 * modules.
    973 	 */
    974 
    975 	if (uvmexp.free < uvmexp.freemin) {
    976 		module_thread_kick();
    977 	}
    978 }
    979 
    980 /*
    981  * uvm_reclaimable: decide whether to wait for pagedaemon.
    982  *
    983  * => return true if it seems to be worth to do uvm_wait.
    984  *
    985  * XXX should be tunable.
    986  * XXX should consider pools, etc?
    987  */
    988 
    989 bool
    990 uvm_reclaimable(void)
    991 {
    992 	int filepages;
    993 	int active, inactive;
    994 
    995 	/*
    996 	 * if swap is not full, no problem.
    997 	 */
    998 
    999 	if (!uvm_swapisfull()) {
   1000 		return true;
   1001 	}
   1002 
   1003 	/*
   1004 	 * file-backed pages can be reclaimed even when swap is full.
   1005 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
   1006 	 *
   1007 	 * XXX assume the worst case, ie. all wired pages are file-backed.
   1008 	 *
   1009 	 * XXX should consider about other reclaimable memory.
   1010 	 * XXX ie. pools, traditional buffer cache.
   1011 	 */
   1012 
   1013 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
   1014 	uvm_estimatepageable(&active, &inactive);
   1015 	if (filepages >= MIN((active + inactive) >> 4,
   1016 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
   1017 		return true;
   1018 	}
   1019 
   1020 	/*
   1021 	 * kill the process, fail allocation, etc..
   1022 	 */
   1023 
   1024 	return false;
   1025 }
   1026 
   1027 void
   1028 uvm_estimatepageable(int *active, int *inactive)
   1029 {
   1030 
   1031 	uvmpdpol_estimatepageable(active, inactive);
   1032 }
   1033 
   1034 
   1035 /*
   1036  * Use a separate thread for draining pools.
   1037  * This work can't done from the main pagedaemon thread because
   1038  * some pool allocators need to take vm_map locks.
   1039  */
   1040 
   1041 static void
   1042 uvmpd_pool_drain_thread(void *arg)
   1043 {
   1044 	int bufcnt;
   1045 
   1046 	for (;;) {
   1047 		mutex_enter(&uvmpd_pool_drain_lock);
   1048 		if (!uvmpd_pool_drain_run) {
   1049 			cv_wait(&uvmpd_pool_drain_cv, &uvmpd_pool_drain_lock);
   1050 		}
   1051 		uvmpd_pool_drain_run = false;
   1052 		mutex_exit(&uvmpd_pool_drain_lock);
   1053 
   1054 		/*
   1055 		 * kill unused metadata buffers.
   1056 		 */
   1057 		mutex_spin_enter(&uvm_fpageqlock);
   1058 		bufcnt = uvmexp.freetarg - uvmexp.free;
   1059 		mutex_spin_exit(&uvm_fpageqlock);
   1060 		if (bufcnt < 0)
   1061 			bufcnt = 0;
   1062 
   1063 		mutex_enter(&bufcache_lock);
   1064 		buf_drain(bufcnt << PAGE_SHIFT);
   1065 		mutex_exit(&bufcache_lock);
   1066 
   1067 		/*
   1068 		 * drain a pool.
   1069 		 */
   1070 		pool_drain(NULL);
   1071 	}
   1072 	/*NOTREACHED*/
   1073 }
   1074 
   1075 static void
   1076 uvmpd_pool_drain_wakeup(void)
   1077 {
   1078 
   1079 	mutex_enter(&uvmpd_pool_drain_lock);
   1080 	uvmpd_pool_drain_run = true;
   1081 	cv_signal(&uvmpd_pool_drain_cv);
   1082 	mutex_exit(&uvmpd_pool_drain_lock);
   1083 }
   1084