Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.114
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.114 2019/12/14 15:04:47 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     37  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_pdaemon.c: the page daemon
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.114 2019/12/14 15:04:47 ad Exp $");
     70 
     71 #include "opt_uvmhist.h"
     72 #include "opt_readahead.h"
     73 
     74 #include <sys/param.h>
     75 #include <sys/proc.h>
     76 #include <sys/systm.h>
     77 #include <sys/kernel.h>
     78 #include <sys/pool.h>
     79 #include <sys/buf.h>
     80 #include <sys/module.h>
     81 #include <sys/atomic.h>
     82 #include <sys/kthread.h>
     83 
     84 #include <uvm/uvm.h>
     85 #include <uvm/uvm_pdpolicy.h>
     86 
     87 #ifdef UVMHIST
     88 UVMHIST_DEFINE(pdhist);
     89 #endif
     90 
     91 /*
     92  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     93  * in a pass thru the inactive list when swap is full.  the value should be
     94  * "small"... if it's too large we'll cycle the active pages thru the inactive
     95  * queue too quickly to for them to be referenced and avoid being freed.
     96  */
     97 
     98 #define	UVMPD_NUMDIRTYREACTS	16
     99 
    100 #define	UVMPD_NUMTRYLOCKOWNER	128
    101 
    102 /*
    103  * local prototypes
    104  */
    105 
    106 static void	uvmpd_scan(void);
    107 static void	uvmpd_scan_queue(void);
    108 static void	uvmpd_tune(void);
    109 static void	uvmpd_pool_drain_thread(void *);
    110 static void	uvmpd_pool_drain_wakeup(void);
    111 
    112 static unsigned int uvm_pagedaemon_waiters;
    113 
    114 /* State for the pool drainer thread */
    115 static kmutex_t uvmpd_pool_drain_lock __cacheline_aligned;
    116 static kcondvar_t uvmpd_pool_drain_cv;
    117 static bool uvmpd_pool_drain_run = false;
    118 
    119 /*
    120  * XXX hack to avoid hangs when large processes fork.
    121  */
    122 u_int uvm_extrapages;
    123 
    124 /*
    125  * uvm_wait: wait (sleep) for the page daemon to free some pages
    126  *
    127  * => should be called with all locks released
    128  * => should _not_ be called by the page daemon (to avoid deadlock)
    129  */
    130 
    131 void
    132 uvm_wait(const char *wmsg)
    133 {
    134 	int timo = 0;
    135 
    136 	if (uvm.pagedaemon_lwp == NULL)
    137 		panic("out of memory before the pagedaemon thread exists");
    138 
    139 	mutex_spin_enter(&uvm_fpageqlock);
    140 
    141 	/*
    142 	 * check for page daemon going to sleep (waiting for itself)
    143 	 */
    144 
    145 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    146 		/*
    147 		 * now we have a problem: the pagedaemon wants to go to
    148 		 * sleep until it frees more memory.   but how can it
    149 		 * free more memory if it is asleep?  that is a deadlock.
    150 		 * we have two options:
    151 		 *  [1] panic now
    152 		 *  [2] put a timeout on the sleep, thus causing the
    153 		 *      pagedaemon to only pause (rather than sleep forever)
    154 		 *
    155 		 * note that option [2] will only help us if we get lucky
    156 		 * and some other process on the system breaks the deadlock
    157 		 * by exiting or freeing memory (thus allowing the pagedaemon
    158 		 * to continue).  for now we panic if DEBUG is defined,
    159 		 * otherwise we hope for the best with option [2] (better
    160 		 * yet, this should never happen in the first place!).
    161 		 */
    162 
    163 		printf("pagedaemon: deadlock detected!\n");
    164 		timo = hz >> 3;		/* set timeout */
    165 #if defined(DEBUG)
    166 		/* DEBUG: panic so we can debug it */
    167 		panic("pagedaemon deadlock");
    168 #endif
    169 	}
    170 
    171 	uvm_pagedaemon_waiters++;
    172 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    173 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
    174 }
    175 
    176 /*
    177  * uvm_kick_pdaemon: perform checks to determine if we need to
    178  * give the pagedaemon a nudge, and do so if necessary.
    179  *
    180  * => called with uvm_fpageqlock held.
    181  */
    182 
    183 void
    184 uvm_kick_pdaemon(void)
    185 {
    186 
    187 	KASSERT(mutex_owned(&uvm_fpageqlock));
    188 
    189 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    190 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    191 	     uvmpdpol_needsscan_p()) ||
    192 	     uvm_km_va_starved_p()) {
    193 		wakeup(&uvm.pagedaemon);
    194 	}
    195 }
    196 
    197 /*
    198  * uvmpd_tune: tune paging parameters
    199  *
    200  * => called when ever memory is added (or removed?) to the system
    201  */
    202 
    203 static void
    204 uvmpd_tune(void)
    205 {
    206 	int val;
    207 
    208 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    209 
    210 	/*
    211 	 * try to keep 0.5% of available RAM free, but limit to between
    212 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
    213 	 */
    214 	val = uvmexp.npages / 200;
    215 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
    216 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
    217 	val *= ncpu;
    218 
    219 	/* Make sure there's always a user page free. */
    220 	if (val < uvmexp.reserve_kernel + 1)
    221 		val = uvmexp.reserve_kernel + 1;
    222 	uvmexp.freemin = val;
    223 
    224 	/* Calculate free target. */
    225 	val = (uvmexp.freemin * 4) / 3;
    226 	if (val <= uvmexp.freemin)
    227 		val = uvmexp.freemin + 1;
    228 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
    229 
    230 	uvmexp.wiredmax = uvmexp.npages / 3;
    231 	UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
    232 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    233 }
    234 
    235 /*
    236  * uvm_pageout: the main loop for the pagedaemon
    237  */
    238 
    239 void
    240 uvm_pageout(void *arg)
    241 {
    242 	int npages = 0;
    243 	int extrapages = 0;
    244 
    245 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    246 
    247 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    248 
    249 	mutex_init(&uvmpd_pool_drain_lock, MUTEX_DEFAULT, IPL_VM);
    250 	cv_init(&uvmpd_pool_drain_cv, "pooldrain");
    251 
    252 	/* Create the pool drainer kernel thread. */
    253 	if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL,
    254 	    uvmpd_pool_drain_thread, NULL, NULL, "pooldrain"))
    255 		panic("fork pooldrain");
    256 
    257 	/*
    258 	 * ensure correct priority and set paging parameters...
    259 	 */
    260 
    261 	uvm.pagedaemon_lwp = curlwp;
    262 	npages = uvmexp.npages;
    263 	uvmpd_tune();
    264 
    265 	/*
    266 	 * main loop
    267 	 */
    268 
    269 	for (;;) {
    270 		bool needsscan, needsfree, kmem_va_starved;
    271 
    272 		kmem_va_starved = uvm_km_va_starved_p();
    273 
    274 		mutex_spin_enter(&uvm_fpageqlock);
    275 		if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
    276 		    !kmem_va_starved) {
    277 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    278 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    279 			    &uvm_fpageqlock, false, "pgdaemon", 0);
    280 			uvmexp.pdwoke++;
    281 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    282 		} else {
    283 			mutex_spin_exit(&uvm_fpageqlock);
    284 		}
    285 
    286 		/*
    287 		 * now recompute inactive count
    288 		 */
    289 
    290 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    291 			npages = uvmexp.npages;
    292 			extrapages = uvm_extrapages;
    293 			mutex_spin_enter(&uvm_fpageqlock);
    294 			uvmpd_tune();
    295 			mutex_spin_exit(&uvm_fpageqlock);
    296 		}
    297 
    298 		uvmpdpol_tune();
    299 
    300 		/*
    301 		 * Estimate a hint.  Note that bufmem are returned to
    302 		 * system only when entire pool page is empty.
    303 		 */
    304 		mutex_spin_enter(&uvm_fpageqlock);
    305 
    306 		UVMHIST_LOG(pdhist,"  free/ftarg=%jd/%jd",
    307 		    uvmexp.free, uvmexp.freetarg, 0,0);
    308 
    309 		needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
    310 		needsscan = needsfree || uvmpdpol_needsscan_p();
    311 
    312 		/*
    313 		 * scan if needed
    314 		 */
    315 		if (needsscan) {
    316 			mutex_spin_exit(&uvm_fpageqlock);
    317 			uvmpd_scan();
    318 			mutex_spin_enter(&uvm_fpageqlock);
    319 		}
    320 
    321 		/*
    322 		 * if there's any free memory to be had,
    323 		 * wake up any waiters.
    324 		 */
    325 		if (uvmexp.free > uvmexp.reserve_kernel ||
    326 		    uvmexp.paging == 0) {
    327 			wakeup(&uvmexp.free);
    328 			uvm_pagedaemon_waiters = 0;
    329 		}
    330 		mutex_spin_exit(&uvm_fpageqlock);
    331 
    332 		/*
    333 		 * scan done.  if we don't need free memory, we're done.
    334 		 */
    335 
    336 		if (!needsfree && !kmem_va_starved)
    337 			continue;
    338 
    339 		/*
    340 		 * kick the pool drainer thread.
    341 		 */
    342 
    343 		uvmpd_pool_drain_wakeup();
    344 	}
    345 	/*NOTREACHED*/
    346 }
    347 
    348 
    349 /*
    350  * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
    351  */
    352 
    353 void
    354 uvm_aiodone_worker(struct work *wk, void *dummy)
    355 {
    356 	struct buf *bp = (void *)wk;
    357 
    358 	KASSERT(&bp->b_work == wk);
    359 
    360 	/*
    361 	 * process an i/o that's done.
    362 	 */
    363 
    364 	(*bp->b_iodone)(bp);
    365 }
    366 
    367 void
    368 uvm_pageout_start(int npages)
    369 {
    370 
    371 	atomic_inc_uint(&uvmexp.pdpending);
    372 	atomic_add_int(&uvmexp.paging, npages);
    373 }
    374 
    375 void
    376 uvm_pageout_done(int npages)
    377 {
    378 
    379 	KASSERT(uvmexp.paging >= npages);
    380 	atomic_dec_uint(&uvmexp.pdpending);
    381 	atomic_add_int(&uvmexp.paging, -npages);
    382 
    383 	/*
    384 	 * wake up either of pagedaemon or LWPs waiting for it.
    385 	 */
    386 
    387 	mutex_spin_enter(&uvm_fpageqlock);
    388 	if (uvmexp.free <= uvmexp.reserve_kernel) {
    389 		wakeup(&uvm.pagedaemon);
    390 	} else {
    391 		wakeup(&uvmexp.free);
    392 		uvm_pagedaemon_waiters = 0;
    393 	}
    394 	mutex_spin_exit(&uvm_fpageqlock);
    395 }
    396 
    397 /*
    398  * uvmpd_trylockowner: trylock the page's owner.
    399  *
    400  * => called with page interlock held.
    401  * => resolve orphaned O->A loaned page.
    402  * => return the locked mutex on success.  otherwise, return NULL.
    403  */
    404 
    405 kmutex_t *
    406 uvmpd_trylockowner(struct vm_page *pg)
    407 {
    408 	struct uvm_object *uobj = pg->uobject;
    409 	struct vm_anon *anon = pg->uanon;
    410 	int tries, count;
    411 	bool running;
    412 	kmutex_t *slock;
    413 
    414 	KASSERT(mutex_owned(&pg->interlock));
    415 
    416 	if (uobj != NULL) {
    417 		slock = uobj->vmobjlock;
    418 		KASSERTMSG(slock != NULL, "pg %p uobj %p, NULL lock", pg, uobj);
    419 	} else if (anon != NULL) {
    420 		slock = anon->an_lock;
    421 		KASSERTMSG(slock != NULL, "pg %p anon %p, NULL lock", pg, anon);
    422 	} else {
    423 		/* Page may be in state of flux - ignore. */
    424 		mutex_exit(&pg->interlock);
    425 		return NULL;
    426 	}
    427 
    428 	/*
    429 	 * Now try to lock the objects.  We'll try hard, but don't really
    430 	 * plan on spending more than a millisecond or so here.
    431 	 */
    432 	tries = (curlwp == uvm.pagedaemon_lwp ? UVMPD_NUMTRYLOCKOWNER : 1);
    433 	for (;;) {
    434 		if (mutex_tryenter(slock)) {
    435 			if (uobj == NULL) {
    436 				/*
    437 				 * set PG_ANON if it isn't set already.
    438 				 */
    439 				if ((pg->flags & PG_ANON) == 0) {
    440 					KASSERT(pg->loan_count > 0);
    441 					pg->loan_count--;
    442 					pg->flags |= PG_ANON;
    443 					/* anon now owns it */
    444 				}
    445 			}
    446 			mutex_exit(&pg->interlock);
    447 			return slock;
    448 		}
    449 		running = mutex_owner_running(slock);
    450 		if (!running || --tries <= 0) {
    451 			break;
    452 		}
    453 		count = SPINLOCK_BACKOFF_MAX;
    454 		SPINLOCK_BACKOFF(count);
    455 	}
    456 
    457 	/*
    458 	 * We didn't get the lock; chances are the very next page on the
    459 	 * queue also has the same lock, so if the lock owner is not running
    460 	 * take a breather and allow them to make progress.  There could be
    461 	 * only 1 CPU in the system, or the pagedaemon could have preempted
    462 	 * the owner in kernel, or any number of other things could be going
    463 	 * on.
    464 	 */
    465 	mutex_exit(&pg->interlock);
    466 	if (curlwp == uvm.pagedaemon_lwp) {
    467 		if (!running) {
    468 			(void)kpause("pdpglock", false, 1, NULL);
    469 		}
    470 		uvmexp.pdbusy++;
    471 	}
    472 	return NULL;
    473 }
    474 
    475 #if defined(VMSWAP)
    476 struct swapcluster {
    477 	int swc_slot;
    478 	int swc_nallocated;
    479 	int swc_nused;
    480 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    481 };
    482 
    483 static void
    484 swapcluster_init(struct swapcluster *swc)
    485 {
    486 
    487 	swc->swc_slot = 0;
    488 	swc->swc_nused = 0;
    489 }
    490 
    491 static int
    492 swapcluster_allocslots(struct swapcluster *swc)
    493 {
    494 	int slot;
    495 	int npages;
    496 
    497 	if (swc->swc_slot != 0) {
    498 		return 0;
    499 	}
    500 
    501 	/* Even with strange MAXPHYS, the shift
    502 	   implicitly rounds down to a page. */
    503 	npages = MAXPHYS >> PAGE_SHIFT;
    504 	slot = uvm_swap_alloc(&npages, true);
    505 	if (slot == 0) {
    506 		return ENOMEM;
    507 	}
    508 	swc->swc_slot = slot;
    509 	swc->swc_nallocated = npages;
    510 	swc->swc_nused = 0;
    511 
    512 	return 0;
    513 }
    514 
    515 static int
    516 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    517 {
    518 	int slot;
    519 	struct uvm_object *uobj;
    520 
    521 	KASSERT(swc->swc_slot != 0);
    522 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    523 	KASSERT((pg->flags & PG_SWAPBACKED) != 0);
    524 
    525 	slot = swc->swc_slot + swc->swc_nused;
    526 	uobj = pg->uobject;
    527 	if (uobj == NULL) {
    528 		KASSERT(mutex_owned(pg->uanon->an_lock));
    529 		pg->uanon->an_swslot = slot;
    530 	} else {
    531 		int result;
    532 
    533 		KASSERT(mutex_owned(uobj->vmobjlock));
    534 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    535 		if (result == -1) {
    536 			return ENOMEM;
    537 		}
    538 	}
    539 	swc->swc_pages[swc->swc_nused] = pg;
    540 	swc->swc_nused++;
    541 
    542 	return 0;
    543 }
    544 
    545 static void
    546 swapcluster_flush(struct swapcluster *swc, bool now)
    547 {
    548 	int slot;
    549 	int nused;
    550 	int nallocated;
    551 	int error __diagused;
    552 
    553 	if (swc->swc_slot == 0) {
    554 		return;
    555 	}
    556 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    557 
    558 	slot = swc->swc_slot;
    559 	nused = swc->swc_nused;
    560 	nallocated = swc->swc_nallocated;
    561 
    562 	/*
    563 	 * if this is the final pageout we could have a few
    564 	 * unused swap blocks.  if so, free them now.
    565 	 */
    566 
    567 	if (nused < nallocated) {
    568 		if (!now) {
    569 			return;
    570 		}
    571 		uvm_swap_free(slot + nused, nallocated - nused);
    572 	}
    573 
    574 	/*
    575 	 * now start the pageout.
    576 	 */
    577 
    578 	if (nused > 0) {
    579 		uvmexp.pdpageouts++;
    580 		uvm_pageout_start(nused);
    581 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    582 		KASSERT(error == 0 || error == ENOMEM);
    583 	}
    584 
    585 	/*
    586 	 * zero swslot to indicate that we are
    587 	 * no longer building a swap-backed cluster.
    588 	 */
    589 
    590 	swc->swc_slot = 0;
    591 	swc->swc_nused = 0;
    592 }
    593 
    594 static int
    595 swapcluster_nused(struct swapcluster *swc)
    596 {
    597 
    598 	return swc->swc_nused;
    599 }
    600 
    601 /*
    602  * uvmpd_dropswap: free any swap allocated to this page.
    603  *
    604  * => called with owner locked.
    605  * => return true if a page had an associated slot.
    606  */
    607 
    608 static bool
    609 uvmpd_dropswap(struct vm_page *pg)
    610 {
    611 	bool result = false;
    612 	struct vm_anon *anon = pg->uanon;
    613 
    614 	if ((pg->flags & PG_ANON) && anon->an_swslot) {
    615 		uvm_swap_free(anon->an_swslot, 1);
    616 		anon->an_swslot = 0;
    617 		pg->flags &= ~PG_CLEAN;
    618 		result = true;
    619 	} else if (pg->flags & PG_AOBJ) {
    620 		int slot = uao_set_swslot(pg->uobject,
    621 		    pg->offset >> PAGE_SHIFT, 0);
    622 		if (slot) {
    623 			uvm_swap_free(slot, 1);
    624 			pg->flags &= ~PG_CLEAN;
    625 			result = true;
    626 		}
    627 	}
    628 
    629 	return result;
    630 }
    631 
    632 /*
    633  * uvmpd_trydropswap: try to free any swap allocated to this page.
    634  *
    635  * => return true if a slot is successfully freed.
    636  * => page interlock must be held, and will be dropped.
    637  */
    638 
    639 bool
    640 uvmpd_trydropswap(struct vm_page *pg)
    641 {
    642 	kmutex_t *slock;
    643 	bool result;
    644 
    645 	if ((pg->flags & PG_BUSY) != 0) {
    646 		mutex_exit(&pg->interlock);
    647 		return false;
    648 	}
    649 
    650 	/*
    651 	 * lock the page's owner.
    652 	 * this will drop pg->interlock.
    653 	 */
    654 
    655 	slock = uvmpd_trylockowner(pg);
    656 	if (slock == NULL) {
    657 		return false;
    658 	}
    659 
    660 	/*
    661 	 * skip this page if it's busy.
    662 	 */
    663 
    664 	if ((pg->flags & PG_BUSY) != 0) {
    665 		mutex_exit(slock);
    666 		return false;
    667 	}
    668 
    669 	result = uvmpd_dropswap(pg);
    670 
    671 	mutex_exit(slock);
    672 
    673 	return result;
    674 }
    675 
    676 #endif /* defined(VMSWAP) */
    677 
    678 /*
    679  * uvmpd_scan_queue: scan an replace candidate list for pages
    680  * to clean or free.
    681  *
    682  * => we work on meeting our free target by converting inactive pages
    683  *    into free pages.
    684  * => we handle the building of swap-backed clusters
    685  */
    686 
    687 static void
    688 uvmpd_scan_queue(void)
    689 {
    690 	struct vm_page *p;
    691 	struct uvm_object *uobj;
    692 	struct vm_anon *anon;
    693 #if defined(VMSWAP)
    694 	struct swapcluster swc;
    695 #endif /* defined(VMSWAP) */
    696 	int dirtyreacts;
    697 	kmutex_t *slock;
    698 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    699 
    700 	/*
    701 	 * swslot is non-zero if we are building a swap cluster.  we want
    702 	 * to stay in the loop while we have a page to scan or we have
    703 	 * a swap-cluster to build.
    704 	 */
    705 
    706 #if defined(VMSWAP)
    707 	swapcluster_init(&swc);
    708 #endif /* defined(VMSWAP) */
    709 
    710 	dirtyreacts = 0;
    711 	uvmpdpol_scaninit();
    712 
    713 	while (/* CONSTCOND */ 1) {
    714 
    715 		/*
    716 		 * see if we've met the free target.
    717 		 */
    718 
    719 		if (uvmexp.free + uvmexp.paging
    720 #if defined(VMSWAP)
    721 		    + swapcluster_nused(&swc)
    722 #endif /* defined(VMSWAP) */
    723 		    >= uvmexp.freetarg << 2 ||
    724 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    725 			UVMHIST_LOG(pdhist,"  met free target: "
    726 				    "exit loop", 0, 0, 0, 0);
    727 			break;
    728 		}
    729 
    730 		/*
    731 		 * first we have the pdpolicy select a victim page
    732 		 * and attempt to lock the object that the page
    733 		 * belongs to.  if our attempt fails we skip on to
    734 		 * the next page (no harm done).  it is important to
    735 		 * "try" locking the object as we are locking in the
    736 		 * wrong order (pageq -> object) and we don't want to
    737 		 * deadlock.
    738 		 *
    739 		 * the only time we expect to see an ownerless page
    740 		 * (i.e. a page with no uobject and !PG_ANON) is if an
    741 		 * anon has loaned a page from a uvm_object and the
    742 		 * uvm_object has dropped the ownership.  in that
    743 		 * case, the anon can "take over" the loaned page
    744 		 * and make it its own.
    745 		 */
    746 
    747 		p = uvmpdpol_selectvictim(&slock);
    748 		if (p == NULL) {
    749 			break;
    750 		}
    751 		KASSERT(uvmpdpol_pageisqueued_p(p));
    752 		KASSERT(uvm_page_locked_p(p));
    753 		KASSERT(p->wire_count == 0);
    754 
    755 		/*
    756 		 * we are below target and have a new page to consider.
    757 		 */
    758 
    759 		anon = p->uanon;
    760 		uobj = p->uobject;
    761 
    762 		if (p->flags & PG_BUSY) {
    763 			mutex_exit(slock);
    764 			uvmexp.pdbusy++;
    765 			continue;
    766 		}
    767 
    768 		/* does the page belong to an object? */
    769 		if (uobj != NULL) {
    770 			uvmexp.pdobscan++;
    771 		} else {
    772 #if defined(VMSWAP)
    773 			KASSERT(anon != NULL);
    774 			uvmexp.pdanscan++;
    775 #else /* defined(VMSWAP) */
    776 			panic("%s: anon", __func__);
    777 #endif /* defined(VMSWAP) */
    778 		}
    779 
    780 
    781 		/*
    782 		 * we now have the object locked.
    783 		 * if the page is not swap-backed, call the object's
    784 		 * pager to flush and free the page.
    785 		 */
    786 
    787 #if defined(READAHEAD_STATS)
    788 		if ((p->flags & PG_READAHEAD) != 0) {
    789 			p->flags &= ~PG_READAHEAD;
    790 			uvm_ra_miss.ev_count++;
    791 		}
    792 #endif /* defined(READAHEAD_STATS) */
    793 
    794 		if ((p->flags & PG_SWAPBACKED) == 0) {
    795 			KASSERT(uobj != NULL);
    796 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    797 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    798 			continue;
    799 		}
    800 
    801 		/*
    802 		 * the page is swap-backed.  remove all the permissions
    803 		 * from the page so we can sync the modified info
    804 		 * without any race conditions.  if the page is clean
    805 		 * we can free it now and continue.
    806 		 */
    807 
    808 		pmap_page_protect(p, VM_PROT_NONE);
    809 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
    810 			p->flags &= ~(PG_CLEAN);
    811 		}
    812 		if (p->flags & PG_CLEAN) {
    813 			int slot;
    814 			int pageidx;
    815 
    816 			pageidx = p->offset >> PAGE_SHIFT;
    817 			uvm_pagefree(p);
    818 			atomic_inc_uint(&uvmexp.pdfreed);
    819 
    820 			/*
    821 			 * for anons, we need to remove the page
    822 			 * from the anon ourselves.  for aobjs,
    823 			 * pagefree did that for us.
    824 			 */
    825 
    826 			if (anon) {
    827 				KASSERT(anon->an_swslot != 0);
    828 				anon->an_page = NULL;
    829 				slot = anon->an_swslot;
    830 			} else {
    831 				slot = uao_find_swslot(uobj, pageidx);
    832 			}
    833 			if (slot > 0) {
    834 				/* this page is now only in swap. */
    835 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    836 				atomic_inc_uint(&uvmexp.swpgonly);
    837 			}
    838 			mutex_exit(slock);
    839 			continue;
    840 		}
    841 
    842 #if defined(VMSWAP)
    843 		/*
    844 		 * this page is dirty, skip it if we'll have met our
    845 		 * free target when all the current pageouts complete.
    846 		 */
    847 
    848 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
    849 			mutex_exit(slock);
    850 			continue;
    851 		}
    852 
    853 		/*
    854 		 * free any swap space allocated to the page since
    855 		 * we'll have to write it again with its new data.
    856 		 */
    857 
    858 		uvmpd_dropswap(p);
    859 
    860 		/*
    861 		 * start new swap pageout cluster (if necessary).
    862 		 *
    863 		 * if swap is full reactivate this page so that
    864 		 * we eventually cycle all pages through the
    865 		 * inactive queue.
    866 		 */
    867 
    868 		if (swapcluster_allocslots(&swc)) {
    869 			dirtyreacts++;
    870 			uvm_pageactivate(p);
    871 			mutex_exit(slock);
    872 			continue;
    873 		}
    874 
    875 		/*
    876 		 * at this point, we're definitely going reuse this
    877 		 * page.  mark the page busy and delayed-free.
    878 		 * we should remove the page from the page queues
    879 		 * so we don't ever look at it again.
    880 		 * adjust counters and such.
    881 		 */
    882 
    883 		p->flags |= PG_BUSY;
    884 		UVM_PAGE_OWN(p, "scan_queue");
    885 		p->flags |= PG_PAGEOUT;
    886 		uvmexp.pgswapout++;
    887 
    888 		uvm_pagedequeue(p);
    889 
    890 		/*
    891 		 * add the new page to the cluster.
    892 		 */
    893 
    894 		if (swapcluster_add(&swc, p)) {
    895 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    896 			UVM_PAGE_OWN(p, NULL);
    897 			dirtyreacts++;
    898 			uvm_pageactivate(p);
    899 			mutex_exit(slock);
    900 			continue;
    901 		}
    902 		mutex_exit(slock);
    903 
    904 		/*
    905 		 * set the pageout in progress.  bump counters and set up
    906 		 * for the next loop.
    907 		 */
    908 
    909 		swapcluster_flush(&swc, false);
    910 
    911 #else /* defined(VMSWAP) */
    912 		uvm_pageactivate(p);
    913 		mutex_exit(slock);
    914 #endif /* defined(VMSWAP) */
    915 	}
    916 
    917 #if defined(VMSWAP)
    918 	swapcluster_flush(&swc, true);
    919 #endif /* defined(VMSWAP) */
    920 }
    921 
    922 /*
    923  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    924  */
    925 
    926 static void
    927 uvmpd_scan(void)
    928 {
    929 	int swap_shortage, pages_freed;
    930 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    931 
    932 	uvmexp.pdrevs++;
    933 
    934 	/*
    935 	 * work on meeting our targets.   first we work on our free target
    936 	 * by converting inactive pages into free pages.  then we work on
    937 	 * meeting our inactive target by converting active pages to
    938 	 * inactive ones.
    939 	 */
    940 
    941 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    942 
    943 	pages_freed = uvmexp.pdfreed;
    944 	uvmpd_scan_queue();
    945 	pages_freed = uvmexp.pdfreed - pages_freed;
    946 
    947 	/*
    948 	 * detect if we're not going to be able to page anything out
    949 	 * until we free some swap resources from active pages.
    950 	 */
    951 
    952 	swap_shortage = 0;
    953 	if (uvmexp.free < uvmexp.freetarg &&
    954 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    955 	    !uvm_swapisfull() &&
    956 	    pages_freed == 0) {
    957 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    958 	}
    959 
    960 	uvmpdpol_balancequeue(swap_shortage);
    961 
    962 	/*
    963 	 * if still below the minimum target, try unloading kernel
    964 	 * modules.
    965 	 */
    966 
    967 	if (uvmexp.free < uvmexp.freemin) {
    968 		module_thread_kick();
    969 	}
    970 }
    971 
    972 /*
    973  * uvm_reclaimable: decide whether to wait for pagedaemon.
    974  *
    975  * => return true if it seems to be worth to do uvm_wait.
    976  *
    977  * XXX should be tunable.
    978  * XXX should consider pools, etc?
    979  */
    980 
    981 bool
    982 uvm_reclaimable(void)
    983 {
    984 	int filepages;
    985 	int active, inactive;
    986 
    987 	/*
    988 	 * if swap is not full, no problem.
    989 	 */
    990 
    991 	if (!uvm_swapisfull()) {
    992 		return true;
    993 	}
    994 
    995 	/*
    996 	 * file-backed pages can be reclaimed even when swap is full.
    997 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    998 	 *
    999 	 * XXX assume the worst case, ie. all wired pages are file-backed.
   1000 	 *
   1001 	 * XXX should consider about other reclaimable memory.
   1002 	 * XXX ie. pools, traditional buffer cache.
   1003 	 */
   1004 
   1005 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
   1006 	uvm_estimatepageable(&active, &inactive);
   1007 	if (filepages >= MIN((active + inactive) >> 4,
   1008 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
   1009 		return true;
   1010 	}
   1011 
   1012 	/*
   1013 	 * kill the process, fail allocation, etc..
   1014 	 */
   1015 
   1016 	return false;
   1017 }
   1018 
   1019 void
   1020 uvm_estimatepageable(int *active, int *inactive)
   1021 {
   1022 
   1023 	uvmpdpol_estimatepageable(active, inactive);
   1024 }
   1025 
   1026 
   1027 /*
   1028  * Use a separate thread for draining pools.
   1029  * This work can't done from the main pagedaemon thread because
   1030  * some pool allocators need to take vm_map locks.
   1031  */
   1032 
   1033 static void
   1034 uvmpd_pool_drain_thread(void *arg)
   1035 {
   1036 	int bufcnt;
   1037 
   1038 	for (;;) {
   1039 		mutex_enter(&uvmpd_pool_drain_lock);
   1040 		if (!uvmpd_pool_drain_run) {
   1041 			cv_wait(&uvmpd_pool_drain_cv, &uvmpd_pool_drain_lock);
   1042 		}
   1043 		uvmpd_pool_drain_run = false;
   1044 		mutex_exit(&uvmpd_pool_drain_lock);
   1045 
   1046 		/*
   1047 		 * kill unused metadata buffers.
   1048 		 */
   1049 		mutex_spin_enter(&uvm_fpageqlock);
   1050 		bufcnt = uvmexp.freetarg - uvmexp.free;
   1051 		mutex_spin_exit(&uvm_fpageqlock);
   1052 		if (bufcnt < 0)
   1053 			bufcnt = 0;
   1054 
   1055 		mutex_enter(&bufcache_lock);
   1056 		buf_drain(bufcnt << PAGE_SHIFT);
   1057 		mutex_exit(&bufcache_lock);
   1058 
   1059 		/*
   1060 		 * drain a pool.
   1061 		 */
   1062 		pool_drain(NULL);
   1063 	}
   1064 	/*NOTREACHED*/
   1065 }
   1066 
   1067 static void
   1068 uvmpd_pool_drain_wakeup(void)
   1069 {
   1070 
   1071 	mutex_enter(&uvmpd_pool_drain_lock);
   1072 	uvmpd_pool_drain_run = true;
   1073 	cv_signal(&uvmpd_pool_drain_cv);
   1074 	mutex_exit(&uvmpd_pool_drain_lock);
   1075 }
   1076