Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.126
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.126 2020/04/13 15:54:45 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     37  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_pdaemon.c: the page daemon
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.126 2020/04/13 15:54:45 maxv Exp $");
     70 
     71 #include "opt_uvmhist.h"
     72 #include "opt_readahead.h"
     73 
     74 #define	__RWLOCK_PRIVATE
     75 
     76 #include <sys/param.h>
     77 #include <sys/proc.h>
     78 #include <sys/systm.h>
     79 #include <sys/kernel.h>
     80 #include <sys/pool.h>
     81 #include <sys/buf.h>
     82 #include <sys/module.h>
     83 #include <sys/atomic.h>
     84 #include <sys/kthread.h>
     85 
     86 #include <uvm/uvm.h>
     87 #include <uvm/uvm_pdpolicy.h>
     88 #include <uvm/uvm_pgflcache.h>
     89 
     90 #ifdef UVMHIST
     91 UVMHIST_DEFINE(pdhist);
     92 #endif
     93 
     94 /*
     95  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     96  * in a pass thru the inactive list when swap is full.  the value should be
     97  * "small"... if it's too large we'll cycle the active pages thru the inactive
     98  * queue too quickly to for them to be referenced and avoid being freed.
     99  */
    100 
    101 #define	UVMPD_NUMDIRTYREACTS	16
    102 
    103 #define	UVMPD_NUMTRYLOCKOWNER	128
    104 
    105 /*
    106  * local prototypes
    107  */
    108 
    109 static void	uvmpd_scan(void);
    110 static void	uvmpd_scan_queue(void);
    111 static void	uvmpd_tune(void);
    112 static void	uvmpd_pool_drain_thread(void *);
    113 static void	uvmpd_pool_drain_wakeup(void);
    114 
    115 static unsigned int uvm_pagedaemon_waiters;
    116 
    117 /* State for the pool drainer thread */
    118 static kmutex_t uvmpd_lock __cacheline_aligned;
    119 static kcondvar_t uvmpd_pool_drain_cv;
    120 static bool uvmpd_pool_drain_run = false;
    121 
    122 /*
    123  * XXX hack to avoid hangs when large processes fork.
    124  */
    125 u_int uvm_extrapages;
    126 
    127 /*
    128  * uvm_wait: wait (sleep) for the page daemon to free some pages
    129  *
    130  * => should be called with all locks released
    131  * => should _not_ be called by the page daemon (to avoid deadlock)
    132  */
    133 
    134 void
    135 uvm_wait(const char *wmsg)
    136 {
    137 	int timo = 0;
    138 
    139 	if (uvm.pagedaemon_lwp == NULL)
    140 		panic("out of memory before the pagedaemon thread exists");
    141 
    142 	mutex_spin_enter(&uvmpd_lock);
    143 
    144 	/*
    145 	 * check for page daemon going to sleep (waiting for itself)
    146 	 */
    147 
    148 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    149 		/*
    150 		 * now we have a problem: the pagedaemon wants to go to
    151 		 * sleep until it frees more memory.   but how can it
    152 		 * free more memory if it is asleep?  that is a deadlock.
    153 		 * we have two options:
    154 		 *  [1] panic now
    155 		 *  [2] put a timeout on the sleep, thus causing the
    156 		 *      pagedaemon to only pause (rather than sleep forever)
    157 		 *
    158 		 * note that option [2] will only help us if we get lucky
    159 		 * and some other process on the system breaks the deadlock
    160 		 * by exiting or freeing memory (thus allowing the pagedaemon
    161 		 * to continue).  for now we panic if DEBUG is defined,
    162 		 * otherwise we hope for the best with option [2] (better
    163 		 * yet, this should never happen in the first place!).
    164 		 */
    165 
    166 		printf("pagedaemon: deadlock detected!\n");
    167 		timo = hz >> 3;		/* set timeout */
    168 #if defined(DEBUG)
    169 		/* DEBUG: panic so we can debug it */
    170 		panic("pagedaemon deadlock");
    171 #endif
    172 	}
    173 
    174 	uvm_pagedaemon_waiters++;
    175 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    176 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvmpd_lock, false, wmsg, timo);
    177 }
    178 
    179 /*
    180  * uvm_kick_pdaemon: perform checks to determine if we need to
    181  * give the pagedaemon a nudge, and do so if necessary.
    182  */
    183 
    184 void
    185 uvm_kick_pdaemon(void)
    186 {
    187 	int fpages = uvm_availmem();
    188 
    189 	if (fpages + uvmexp.paging < uvmexp.freemin ||
    190 	    (fpages + uvmexp.paging < uvmexp.freetarg &&
    191 	     uvmpdpol_needsscan_p()) ||
    192 	     uvm_km_va_starved_p()) {
    193 	     	mutex_spin_enter(&uvmpd_lock);
    194 		wakeup(&uvm.pagedaemon);
    195 	     	mutex_spin_exit(&uvmpd_lock);
    196 	}
    197 }
    198 
    199 /*
    200  * uvmpd_tune: tune paging parameters
    201  *
    202  * => called when ever memory is added (or removed?) to the system
    203  */
    204 
    205 static void
    206 uvmpd_tune(void)
    207 {
    208 	int val;
    209 
    210 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    211 
    212 	/*
    213 	 * try to keep 0.5% of available RAM free, but limit to between
    214 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
    215 	 */
    216 	val = uvmexp.npages / 200;
    217 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
    218 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
    219 	val *= ncpu;
    220 
    221 	/* Make sure there's always a user page free. */
    222 	if (val < uvmexp.reserve_kernel + 1)
    223 		val = uvmexp.reserve_kernel + 1;
    224 	uvmexp.freemin = val;
    225 
    226 	/* Calculate free target. */
    227 	val = (uvmexp.freemin * 4) / 3;
    228 	if (val <= uvmexp.freemin)
    229 		val = uvmexp.freemin + 1;
    230 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
    231 
    232 	uvmexp.wiredmax = uvmexp.npages / 3;
    233 	UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
    234 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    235 }
    236 
    237 /*
    238  * uvm_pageout: the main loop for the pagedaemon
    239  */
    240 
    241 void
    242 uvm_pageout(void *arg)
    243 {
    244 	int npages = 0;
    245 	int extrapages = 0;
    246 	int fpages;
    247 
    248 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    249 
    250 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    251 
    252 	mutex_init(&uvmpd_lock, MUTEX_DEFAULT, IPL_VM);
    253 	cv_init(&uvmpd_pool_drain_cv, "pooldrain");
    254 
    255 	/* Create the pool drainer kernel thread. */
    256 	if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL,
    257 	    uvmpd_pool_drain_thread, NULL, NULL, "pooldrain"))
    258 		panic("fork pooldrain");
    259 
    260 	/*
    261 	 * ensure correct priority and set paging parameters...
    262 	 */
    263 
    264 	uvm.pagedaemon_lwp = curlwp;
    265 	npages = uvmexp.npages;
    266 	uvmpd_tune();
    267 
    268 	/*
    269 	 * main loop
    270 	 */
    271 
    272 	for (;;) {
    273 		bool needsscan, needsfree, kmem_va_starved;
    274 
    275 		kmem_va_starved = uvm_km_va_starved_p();
    276 
    277 		mutex_spin_enter(&uvmpd_lock);
    278 		if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
    279 		    !kmem_va_starved) {
    280 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    281 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    282 			    &uvmpd_lock, false, "pgdaemon", 0);
    283 			uvmexp.pdwoke++;
    284 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    285 		} else {
    286 			mutex_spin_exit(&uvmpd_lock);
    287 		}
    288 
    289 		/*
    290 		 * now recompute inactive count
    291 		 */
    292 
    293 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    294 			npages = uvmexp.npages;
    295 			extrapages = uvm_extrapages;
    296 			uvmpd_tune();
    297 		}
    298 
    299 		uvmpdpol_tune();
    300 
    301 		/*
    302 		 * Estimate a hint.  Note that bufmem are returned to
    303 		 * system only when entire pool page is empty.
    304 		 */
    305 		fpages = uvm_availmem();
    306 		UVMHIST_LOG(pdhist,"  free/ftarg=%jd/%jd",
    307 		    fpages, uvmexp.freetarg, 0,0);
    308 
    309 		needsfree = fpages + uvmexp.paging < uvmexp.freetarg;
    310 		needsscan = needsfree || uvmpdpol_needsscan_p();
    311 
    312 		/*
    313 		 * scan if needed
    314 		 */
    315 		if (needsscan) {
    316 			uvmpd_scan();
    317 		}
    318 
    319 		/*
    320 		 * if there's any free memory to be had,
    321 		 * wake up any waiters.
    322 		 */
    323 		if (uvm_availmem() > uvmexp.reserve_kernel ||
    324 		    uvmexp.paging == 0) {
    325 			mutex_spin_enter(&uvmpd_lock);
    326 			wakeup(&uvmexp.free);
    327 			uvm_pagedaemon_waiters = 0;
    328 			mutex_spin_exit(&uvmpd_lock);
    329 		}
    330 
    331 		/*
    332 		 * scan done.  if we don't need free memory, we're done.
    333 		 */
    334 
    335 		if (!needsfree && !kmem_va_starved)
    336 			continue;
    337 
    338 		/*
    339 		 * kick the pool drainer thread.
    340 		 */
    341 
    342 		uvmpd_pool_drain_wakeup();
    343 	}
    344 	/*NOTREACHED*/
    345 }
    346 
    347 void
    348 uvm_pageout_start(int npages)
    349 {
    350 
    351 	atomic_add_int(&uvmexp.paging, npages);
    352 }
    353 
    354 void
    355 uvm_pageout_done(int npages)
    356 {
    357 
    358 	KASSERT(uvmexp.paging >= npages);
    359 	atomic_add_int(&uvmexp.paging, -npages);
    360 
    361 	/*
    362 	 * wake up either of pagedaemon or LWPs waiting for it.
    363 	 */
    364 
    365 	mutex_spin_enter(&uvmpd_lock);
    366 	if (uvm_availmem() <= uvmexp.reserve_kernel) {
    367 		wakeup(&uvm.pagedaemon);
    368 	} else if (uvm_pagedaemon_waiters != 0) {
    369 		wakeup(&uvmexp.free);
    370 		uvm_pagedaemon_waiters = 0;
    371 	}
    372 	mutex_spin_exit(&uvmpd_lock);
    373 }
    374 
    375 /*
    376  * uvmpd_trylockowner: trylock the page's owner.
    377  *
    378  * => called with page interlock held.
    379  * => resolve orphaned O->A loaned page.
    380  * => return the locked mutex on success.  otherwise, return NULL.
    381  */
    382 
    383 krwlock_t *
    384 uvmpd_trylockowner(struct vm_page *pg)
    385 {
    386 	struct uvm_object *uobj = pg->uobject;
    387 	struct vm_anon *anon = pg->uanon;
    388 	int tries, count;
    389 	bool running;
    390 	krwlock_t *slock;
    391 
    392 	KASSERT(mutex_owned(&pg->interlock));
    393 
    394 	if (uobj != NULL) {
    395 		slock = uobj->vmobjlock;
    396 		KASSERTMSG(slock != NULL, "pg %p uobj %p, NULL lock", pg, uobj);
    397 	} else if (anon != NULL) {
    398 		slock = anon->an_lock;
    399 		KASSERTMSG(slock != NULL, "pg %p anon %p, NULL lock", pg, anon);
    400 	} else {
    401 		/* Page may be in state of flux - ignore. */
    402 		mutex_exit(&pg->interlock);
    403 		return NULL;
    404 	}
    405 
    406 	/*
    407 	 * Now try to lock the objects.  We'll try hard, but don't really
    408 	 * plan on spending more than a millisecond or so here.
    409 	 */
    410 	tries = (curlwp == uvm.pagedaemon_lwp ? UVMPD_NUMTRYLOCKOWNER : 1);
    411 	for (;;) {
    412 		if (rw_tryenter(slock, RW_WRITER)) {
    413 			if (uobj == NULL) {
    414 				/*
    415 				 * set PG_ANON if it isn't set already.
    416 				 */
    417 				if ((pg->flags & PG_ANON) == 0) {
    418 					KASSERT(pg->loan_count > 0);
    419 					pg->loan_count--;
    420 					pg->flags |= PG_ANON;
    421 					/* anon now owns it */
    422 				}
    423 			}
    424 			mutex_exit(&pg->interlock);
    425 			return slock;
    426 		}
    427 		running = rw_owner_running(slock);
    428 		if (!running || --tries <= 0) {
    429 			break;
    430 		}
    431 		count = SPINLOCK_BACKOFF_MAX;
    432 		SPINLOCK_BACKOFF(count);
    433 	}
    434 
    435 	/*
    436 	 * We didn't get the lock; chances are the very next page on the
    437 	 * queue also has the same lock, so if the lock owner is not running
    438 	 * take a breather and allow them to make progress.  There could be
    439 	 * only 1 CPU in the system, or the pagedaemon could have preempted
    440 	 * the owner in kernel, or any number of other things could be going
    441 	 * on.
    442 	 */
    443 	mutex_exit(&pg->interlock);
    444 	if (curlwp == uvm.pagedaemon_lwp) {
    445 		if (!running) {
    446 			(void)kpause("pdpglock", false, 1, NULL);
    447 		}
    448 		uvmexp.pdbusy++;
    449 	}
    450 	return NULL;
    451 }
    452 
    453 #if defined(VMSWAP)
    454 struct swapcluster {
    455 	int swc_slot;
    456 	int swc_nallocated;
    457 	int swc_nused;
    458 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    459 };
    460 
    461 static void
    462 swapcluster_init(struct swapcluster *swc)
    463 {
    464 
    465 	swc->swc_slot = 0;
    466 	swc->swc_nused = 0;
    467 }
    468 
    469 static int
    470 swapcluster_allocslots(struct swapcluster *swc)
    471 {
    472 	int slot;
    473 	int npages;
    474 
    475 	if (swc->swc_slot != 0) {
    476 		return 0;
    477 	}
    478 
    479 	/* Even with strange MAXPHYS, the shift
    480 	   implicitly rounds down to a page. */
    481 	npages = MAXPHYS >> PAGE_SHIFT;
    482 	slot = uvm_swap_alloc(&npages, true);
    483 	if (slot == 0) {
    484 		return ENOMEM;
    485 	}
    486 	swc->swc_slot = slot;
    487 	swc->swc_nallocated = npages;
    488 	swc->swc_nused = 0;
    489 
    490 	return 0;
    491 }
    492 
    493 static int
    494 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    495 {
    496 	int slot;
    497 	struct uvm_object *uobj;
    498 
    499 	KASSERT(swc->swc_slot != 0);
    500 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    501 	KASSERT((pg->flags & PG_SWAPBACKED) != 0);
    502 
    503 	slot = swc->swc_slot + swc->swc_nused;
    504 	uobj = pg->uobject;
    505 	if (uobj == NULL) {
    506 		KASSERT(rw_write_held(pg->uanon->an_lock));
    507 		pg->uanon->an_swslot = slot;
    508 	} else {
    509 		int result;
    510 
    511 		KASSERT(rw_write_held(uobj->vmobjlock));
    512 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    513 		if (result == -1) {
    514 			return ENOMEM;
    515 		}
    516 	}
    517 	swc->swc_pages[swc->swc_nused] = pg;
    518 	swc->swc_nused++;
    519 
    520 	return 0;
    521 }
    522 
    523 static void
    524 swapcluster_flush(struct swapcluster *swc, bool now)
    525 {
    526 	int slot;
    527 	int nused;
    528 	int nallocated;
    529 	int error __diagused;
    530 
    531 	if (swc->swc_slot == 0) {
    532 		return;
    533 	}
    534 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    535 
    536 	slot = swc->swc_slot;
    537 	nused = swc->swc_nused;
    538 	nallocated = swc->swc_nallocated;
    539 
    540 	/*
    541 	 * if this is the final pageout we could have a few
    542 	 * unused swap blocks.  if so, free them now.
    543 	 */
    544 
    545 	if (nused < nallocated) {
    546 		if (!now) {
    547 			return;
    548 		}
    549 		uvm_swap_free(slot + nused, nallocated - nused);
    550 	}
    551 
    552 	/*
    553 	 * now start the pageout.
    554 	 */
    555 
    556 	if (nused > 0) {
    557 		uvmexp.pdpageouts++;
    558 		uvm_pageout_start(nused);
    559 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    560 		KASSERT(error == 0 || error == ENOMEM);
    561 	}
    562 
    563 	/*
    564 	 * zero swslot to indicate that we are
    565 	 * no longer building a swap-backed cluster.
    566 	 */
    567 
    568 	swc->swc_slot = 0;
    569 	swc->swc_nused = 0;
    570 }
    571 
    572 static int
    573 swapcluster_nused(struct swapcluster *swc)
    574 {
    575 
    576 	return swc->swc_nused;
    577 }
    578 
    579 /*
    580  * uvmpd_dropswap: free any swap allocated to this page.
    581  *
    582  * => called with owner locked.
    583  * => return true if a page had an associated slot.
    584  */
    585 
    586 bool
    587 uvmpd_dropswap(struct vm_page *pg)
    588 {
    589 	bool result = false;
    590 	struct vm_anon *anon = pg->uanon;
    591 
    592 	if ((pg->flags & PG_ANON) && anon->an_swslot) {
    593 		uvm_swap_free(anon->an_swslot, 1);
    594 		anon->an_swslot = 0;
    595 		uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    596 		result = true;
    597 	} else if (pg->flags & PG_AOBJ) {
    598 		int slot = uao_set_swslot(pg->uobject,
    599 		    pg->offset >> PAGE_SHIFT, 0);
    600 		if (slot) {
    601 			uvm_swap_free(slot, 1);
    602 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    603 			result = true;
    604 		}
    605 	}
    606 
    607 	return result;
    608 }
    609 
    610 #endif /* defined(VMSWAP) */
    611 
    612 /*
    613  * uvmpd_scan_queue: scan an replace candidate list for pages
    614  * to clean or free.
    615  *
    616  * => we work on meeting our free target by converting inactive pages
    617  *    into free pages.
    618  * => we handle the building of swap-backed clusters
    619  */
    620 
    621 static void
    622 uvmpd_scan_queue(void)
    623 {
    624 	struct vm_page *p;
    625 	struct uvm_object *uobj;
    626 	struct vm_anon *anon;
    627 #if defined(VMSWAP)
    628 	struct swapcluster swc;
    629 #endif /* defined(VMSWAP) */
    630 	int dirtyreacts;
    631 	krwlock_t *slock;
    632 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    633 
    634 	/*
    635 	 * swslot is non-zero if we are building a swap cluster.  we want
    636 	 * to stay in the loop while we have a page to scan or we have
    637 	 * a swap-cluster to build.
    638 	 */
    639 
    640 #if defined(VMSWAP)
    641 	swapcluster_init(&swc);
    642 #endif /* defined(VMSWAP) */
    643 
    644 	dirtyreacts = 0;
    645 	uvmpdpol_scaninit();
    646 
    647 	while (/* CONSTCOND */ 1) {
    648 
    649 		/*
    650 		 * see if we've met the free target.
    651 		 */
    652 
    653 		if (uvm_availmem() + uvmexp.paging
    654 #if defined(VMSWAP)
    655 		    + swapcluster_nused(&swc)
    656 #endif /* defined(VMSWAP) */
    657 		    >= uvmexp.freetarg << 2 ||
    658 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    659 			UVMHIST_LOG(pdhist,"  met free target: "
    660 				    "exit loop", 0, 0, 0, 0);
    661 			break;
    662 		}
    663 
    664 		/*
    665 		 * first we have the pdpolicy select a victim page
    666 		 * and attempt to lock the object that the page
    667 		 * belongs to.  if our attempt fails we skip on to
    668 		 * the next page (no harm done).  it is important to
    669 		 * "try" locking the object as we are locking in the
    670 		 * wrong order (pageq -> object) and we don't want to
    671 		 * deadlock.
    672 		 *
    673 		 * the only time we expect to see an ownerless page
    674 		 * (i.e. a page with no uobject and !PG_ANON) is if an
    675 		 * anon has loaned a page from a uvm_object and the
    676 		 * uvm_object has dropped the ownership.  in that
    677 		 * case, the anon can "take over" the loaned page
    678 		 * and make it its own.
    679 		 */
    680 
    681 		p = uvmpdpol_selectvictim(&slock);
    682 		if (p == NULL) {
    683 			break;
    684 		}
    685 		KASSERT(uvmpdpol_pageisqueued_p(p));
    686 		KASSERT(uvm_page_owner_locked_p(p, true));
    687 		KASSERT(p->wire_count == 0);
    688 
    689 		/*
    690 		 * we are below target and have a new page to consider.
    691 		 */
    692 
    693 		anon = p->uanon;
    694 		uobj = p->uobject;
    695 
    696 		if (p->flags & PG_BUSY) {
    697 			rw_exit(slock);
    698 			uvmexp.pdbusy++;
    699 			continue;
    700 		}
    701 
    702 		/* does the page belong to an object? */
    703 		if (uobj != NULL) {
    704 			uvmexp.pdobscan++;
    705 		} else {
    706 #if defined(VMSWAP)
    707 			KASSERT(anon != NULL);
    708 			uvmexp.pdanscan++;
    709 #else /* defined(VMSWAP) */
    710 			panic("%s: anon", __func__);
    711 #endif /* defined(VMSWAP) */
    712 		}
    713 
    714 
    715 		/*
    716 		 * we now have the object locked.
    717 		 * if the page is not swap-backed, call the object's
    718 		 * pager to flush and free the page.
    719 		 */
    720 
    721 #if defined(READAHEAD_STATS)
    722 		if ((p->flags & PG_READAHEAD) != 0) {
    723 			p->flags &= ~PG_READAHEAD;
    724 			uvm_ra_miss.ev_count++;
    725 		}
    726 #endif /* defined(READAHEAD_STATS) */
    727 
    728 		if ((p->flags & PG_SWAPBACKED) == 0) {
    729 			KASSERT(uobj != NULL);
    730 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    731 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    732 			continue;
    733 		}
    734 
    735 		/*
    736 		 * the page is swap-backed.  remove all the permissions
    737 		 * from the page so we can sync the modified info
    738 		 * without any race conditions.  if the page is clean
    739 		 * we can free it now and continue.
    740 		 */
    741 
    742 		pmap_page_protect(p, VM_PROT_NONE);
    743 		if (uvm_pagegetdirty(p) == UVM_PAGE_STATUS_UNKNOWN) {
    744 			if (pmap_clear_modify(p)) {
    745 				uvm_pagemarkdirty(p, UVM_PAGE_STATUS_DIRTY);
    746 			} else {
    747 				uvm_pagemarkdirty(p, UVM_PAGE_STATUS_CLEAN);
    748 			}
    749 		}
    750 		if (uvm_pagegetdirty(p) != UVM_PAGE_STATUS_DIRTY) {
    751 			int slot;
    752 			int pageidx;
    753 
    754 			pageidx = p->offset >> PAGE_SHIFT;
    755 			uvm_pagefree(p);
    756 			atomic_inc_uint(&uvmexp.pdfreed);
    757 
    758 			/*
    759 			 * for anons, we need to remove the page
    760 			 * from the anon ourselves.  for aobjs,
    761 			 * pagefree did that for us.
    762 			 */
    763 
    764 			if (anon) {
    765 				KASSERT(anon->an_swslot != 0);
    766 				anon->an_page = NULL;
    767 				slot = anon->an_swslot;
    768 			} else {
    769 				slot = uao_find_swslot(uobj, pageidx);
    770 			}
    771 			if (slot > 0) {
    772 				/* this page is now only in swap. */
    773 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    774 				atomic_inc_uint(&uvmexp.swpgonly);
    775 			}
    776 			rw_exit(slock);
    777 			continue;
    778 		}
    779 
    780 #if defined(VMSWAP)
    781 		/*
    782 		 * this page is dirty, skip it if we'll have met our
    783 		 * free target when all the current pageouts complete.
    784 		 */
    785 
    786 		if (uvm_availmem() + uvmexp.paging > uvmexp.freetarg << 2) {
    787 			rw_exit(slock);
    788 			continue;
    789 		}
    790 
    791 		/*
    792 		 * free any swap space allocated to the page since
    793 		 * we'll have to write it again with its new data.
    794 		 */
    795 
    796 		uvmpd_dropswap(p);
    797 
    798 		/*
    799 		 * start new swap pageout cluster (if necessary).
    800 		 *
    801 		 * if swap is full reactivate this page so that
    802 		 * we eventually cycle all pages through the
    803 		 * inactive queue.
    804 		 */
    805 
    806 		if (swapcluster_allocslots(&swc)) {
    807 			dirtyreacts++;
    808 			uvm_pagelock(p);
    809 			uvm_pageactivate(p);
    810 			uvm_pageunlock(p);
    811 			rw_exit(slock);
    812 			continue;
    813 		}
    814 
    815 		/*
    816 		 * at this point, we're definitely going reuse this
    817 		 * page.  mark the page busy and delayed-free.
    818 		 * we should remove the page from the page queues
    819 		 * so we don't ever look at it again.
    820 		 * adjust counters and such.
    821 		 */
    822 
    823 		p->flags |= PG_BUSY;
    824 		UVM_PAGE_OWN(p, "scan_queue");
    825 		p->flags |= PG_PAGEOUT;
    826 		uvmexp.pgswapout++;
    827 
    828 		uvm_pagelock(p);
    829 		uvm_pagedequeue(p);
    830 		uvm_pageunlock(p);
    831 
    832 		/*
    833 		 * add the new page to the cluster.
    834 		 */
    835 
    836 		if (swapcluster_add(&swc, p)) {
    837 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    838 			UVM_PAGE_OWN(p, NULL);
    839 			dirtyreacts++;
    840 			uvm_pagelock(p);
    841 			uvm_pageactivate(p);
    842 			uvm_pageunlock(p);
    843 			rw_exit(slock);
    844 			continue;
    845 		}
    846 		rw_exit(slock);
    847 
    848 		swapcluster_flush(&swc, false);
    849 
    850 		/*
    851 		 * the pageout is in progress.  bump counters and set up
    852 		 * for the next loop.
    853 		 */
    854 
    855 		atomic_inc_uint(&uvmexp.pdpending);
    856 
    857 #else /* defined(VMSWAP) */
    858 		uvm_pagelock(p);
    859 		uvm_pageactivate(p);
    860 		uvm_pageunlock(p);
    861 		rw_exit(slock);
    862 #endif /* defined(VMSWAP) */
    863 	}
    864 
    865 	uvmpdpol_scanfini();
    866 
    867 #if defined(VMSWAP)
    868 	swapcluster_flush(&swc, true);
    869 #endif /* defined(VMSWAP) */
    870 }
    871 
    872 /*
    873  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    874  */
    875 
    876 static void
    877 uvmpd_scan(void)
    878 {
    879 	int swap_shortage, pages_freed, fpages;
    880 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    881 
    882 	uvmexp.pdrevs++;
    883 
    884 	/*
    885 	 * work on meeting our targets.   first we work on our free target
    886 	 * by converting inactive pages into free pages.  then we work on
    887 	 * meeting our inactive target by converting active pages to
    888 	 * inactive ones.
    889 	 */
    890 
    891 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    892 
    893 	pages_freed = uvmexp.pdfreed;
    894 	uvmpd_scan_queue();
    895 	pages_freed = uvmexp.pdfreed - pages_freed;
    896 
    897 	/*
    898 	 * detect if we're not going to be able to page anything out
    899 	 * until we free some swap resources from active pages.
    900 	 */
    901 
    902 	swap_shortage = 0;
    903 	fpages = uvm_availmem();
    904 	if (fpages < uvmexp.freetarg &&
    905 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    906 	    !uvm_swapisfull() &&
    907 	    pages_freed == 0) {
    908 		swap_shortage = uvmexp.freetarg - fpages;
    909 	}
    910 
    911 	uvmpdpol_balancequeue(swap_shortage);
    912 
    913 	/*
    914 	 * if still below the minimum target, try unloading kernel
    915 	 * modules.
    916 	 */
    917 
    918 	if (uvm_availmem() < uvmexp.freemin) {
    919 		module_thread_kick();
    920 	}
    921 }
    922 
    923 /*
    924  * uvm_reclaimable: decide whether to wait for pagedaemon.
    925  *
    926  * => return true if it seems to be worth to do uvm_wait.
    927  *
    928  * XXX should be tunable.
    929  * XXX should consider pools, etc?
    930  */
    931 
    932 bool
    933 uvm_reclaimable(void)
    934 {
    935 	int filepages;
    936 	int active, inactive;
    937 
    938 	/*
    939 	 * if swap is not full, no problem.
    940 	 */
    941 
    942 	if (!uvm_swapisfull()) {
    943 		return true;
    944 	}
    945 
    946 	/*
    947 	 * file-backed pages can be reclaimed even when swap is full.
    948 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    949 	 *
    950 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    951 	 *
    952 	 * XXX should consider about other reclaimable memory.
    953 	 * XXX ie. pools, traditional buffer cache.
    954 	 */
    955 
    956 	cpu_count_sync_all();
    957 	filepages = (int)cpu_count_get(CPU_COUNT_FILEPAGES) +
    958 	    (int)cpu_count_get(CPU_COUNT_EXECPAGES) - uvmexp.wired;
    959 	uvm_estimatepageable(&active, &inactive);
    960 	if (filepages >= MIN((active + inactive) >> 4,
    961 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
    962 		return true;
    963 	}
    964 
    965 	/*
    966 	 * kill the process, fail allocation, etc..
    967 	 */
    968 
    969 	return false;
    970 }
    971 
    972 void
    973 uvm_estimatepageable(int *active, int *inactive)
    974 {
    975 
    976 	uvmpdpol_estimatepageable(active, inactive);
    977 }
    978 
    979 
    980 /*
    981  * Use a separate thread for draining pools.
    982  * This work can't done from the main pagedaemon thread because
    983  * some pool allocators need to take vm_map locks.
    984  */
    985 
    986 static void
    987 uvmpd_pool_drain_thread(void *arg)
    988 {
    989 	struct pool *firstpool, *curpool;
    990 	int bufcnt, lastslept;
    991 	bool cycled;
    992 
    993 	firstpool = NULL;
    994 	cycled = true;
    995 	for (;;) {
    996 		/*
    997 		 * sleep until awoken by the pagedaemon.
    998 		 */
    999 		mutex_enter(&uvmpd_lock);
   1000 		if (!uvmpd_pool_drain_run) {
   1001 			lastslept = getticks();
   1002 			cv_wait(&uvmpd_pool_drain_cv, &uvmpd_lock);
   1003 			if (getticks() != lastslept) {
   1004 				cycled = false;
   1005 				firstpool = NULL;
   1006 			}
   1007 		}
   1008 		uvmpd_pool_drain_run = false;
   1009 		mutex_exit(&uvmpd_lock);
   1010 
   1011 		/*
   1012 		 * rate limit draining, otherwise in desperate circumstances
   1013 		 * this can totally saturate the system with xcall activity.
   1014 		 */
   1015 		if (cycled) {
   1016 			kpause("uvmpdlmt", false, 1, NULL);
   1017 			cycled = false;
   1018 			firstpool = NULL;
   1019 		}
   1020 
   1021 		/*
   1022 		 * drain and temporarily disable the freelist cache.
   1023 		 */
   1024 		uvm_pgflcache_pause();
   1025 
   1026 		/*
   1027 		 * kill unused metadata buffers.
   1028 		 */
   1029 		bufcnt = uvmexp.freetarg - uvm_availmem();
   1030 		if (bufcnt < 0)
   1031 			bufcnt = 0;
   1032 
   1033 		mutex_enter(&bufcache_lock);
   1034 		buf_drain(bufcnt << PAGE_SHIFT);
   1035 		mutex_exit(&bufcache_lock);
   1036 
   1037 		/*
   1038 		 * drain a pool, and then re-enable the freelist cache.
   1039 		 */
   1040 		(void)pool_drain(&curpool);
   1041 		KASSERT(curpool != NULL);
   1042 		if (firstpool == NULL) {
   1043 			firstpool = curpool;
   1044 		} else if (firstpool == curpool) {
   1045 			cycled = true;
   1046 		}
   1047 		uvm_pgflcache_resume();
   1048 	}
   1049 	/*NOTREACHED*/
   1050 }
   1051 
   1052 static void
   1053 uvmpd_pool_drain_wakeup(void)
   1054 {
   1055 
   1056 	mutex_enter(&uvmpd_lock);
   1057 	uvmpd_pool_drain_run = true;
   1058 	cv_signal(&uvmpd_pool_drain_cv);
   1059 	mutex_exit(&uvmpd_lock);
   1060 }
   1061