Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.127
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.127 2020/05/25 19:46:20 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     37  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_pdaemon.c: the page daemon
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.127 2020/05/25 19:46:20 ad Exp $");
     70 
     71 #include "opt_uvmhist.h"
     72 #include "opt_readahead.h"
     73 
     74 #define	__RWLOCK_PRIVATE
     75 
     76 #include <sys/param.h>
     77 #include <sys/proc.h>
     78 #include <sys/systm.h>
     79 #include <sys/kernel.h>
     80 #include <sys/pool.h>
     81 #include <sys/buf.h>
     82 #include <sys/module.h>
     83 #include <sys/atomic.h>
     84 #include <sys/kthread.h>
     85 
     86 #include <uvm/uvm.h>
     87 #include <uvm/uvm_pdpolicy.h>
     88 #include <uvm/uvm_pgflcache.h>
     89 
     90 #ifdef UVMHIST
     91 UVMHIST_DEFINE(pdhist);
     92 #endif
     93 
     94 /*
     95  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     96  * in a pass thru the inactive list when swap is full.  the value should be
     97  * "small"... if it's too large we'll cycle the active pages thru the inactive
     98  * queue too quickly to for them to be referenced and avoid being freed.
     99  */
    100 
    101 #define	UVMPD_NUMDIRTYREACTS	16
    102 
    103 #define	UVMPD_NUMTRYLOCKOWNER	128
    104 
    105 /*
    106  * local prototypes
    107  */
    108 
    109 static void	uvmpd_scan(void);
    110 static void	uvmpd_scan_queue(void);
    111 static void	uvmpd_tune(void);
    112 static void	uvmpd_pool_drain_thread(void *);
    113 static void	uvmpd_pool_drain_wakeup(void);
    114 
    115 static unsigned int uvm_pagedaemon_waiters;
    116 
    117 /* State for the pool drainer thread */
    118 static kmutex_t uvmpd_lock __cacheline_aligned;
    119 static kcondvar_t uvmpd_pool_drain_cv;
    120 static bool uvmpd_pool_drain_run = false;
    121 
    122 /*
    123  * XXX hack to avoid hangs when large processes fork.
    124  */
    125 u_int uvm_extrapages;
    126 
    127 /*
    128  * uvm_wait: wait (sleep) for the page daemon to free some pages
    129  *
    130  * => should be called with all locks released
    131  * => should _not_ be called by the page daemon (to avoid deadlock)
    132  */
    133 
    134 void
    135 uvm_wait(const char *wmsg)
    136 {
    137 	int timo = 0;
    138 
    139 	if (uvm.pagedaemon_lwp == NULL)
    140 		panic("out of memory before the pagedaemon thread exists");
    141 
    142 	mutex_spin_enter(&uvmpd_lock);
    143 
    144 	/*
    145 	 * check for page daemon going to sleep (waiting for itself)
    146 	 */
    147 
    148 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    149 		/*
    150 		 * now we have a problem: the pagedaemon wants to go to
    151 		 * sleep until it frees more memory.   but how can it
    152 		 * free more memory if it is asleep?  that is a deadlock.
    153 		 * we have two options:
    154 		 *  [1] panic now
    155 		 *  [2] put a timeout on the sleep, thus causing the
    156 		 *      pagedaemon to only pause (rather than sleep forever)
    157 		 *
    158 		 * note that option [2] will only help us if we get lucky
    159 		 * and some other process on the system breaks the deadlock
    160 		 * by exiting or freeing memory (thus allowing the pagedaemon
    161 		 * to continue).  for now we panic if DEBUG is defined,
    162 		 * otherwise we hope for the best with option [2] (better
    163 		 * yet, this should never happen in the first place!).
    164 		 */
    165 
    166 		printf("pagedaemon: deadlock detected!\n");
    167 		timo = hz >> 3;		/* set timeout */
    168 #if defined(DEBUG)
    169 		/* DEBUG: panic so we can debug it */
    170 		panic("pagedaemon deadlock");
    171 #endif
    172 	}
    173 
    174 	uvm_pagedaemon_waiters++;
    175 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    176 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvmpd_lock, false, wmsg, timo);
    177 }
    178 
    179 /*
    180  * uvm_kick_pdaemon: perform checks to determine if we need to
    181  * give the pagedaemon a nudge, and do so if necessary.
    182  */
    183 
    184 void
    185 uvm_kick_pdaemon(void)
    186 {
    187 	int fpages = uvm_availmem();
    188 
    189 	if (fpages + uvmexp.paging < uvmexp.freemin ||
    190 	    (fpages + uvmexp.paging < uvmexp.freetarg &&
    191 	     uvmpdpol_needsscan_p()) ||
    192 	     uvm_km_va_starved_p()) {
    193 	     	mutex_spin_enter(&uvmpd_lock);
    194 		wakeup(&uvm.pagedaemon);
    195 	     	mutex_spin_exit(&uvmpd_lock);
    196 	}
    197 }
    198 
    199 /*
    200  * uvmpd_tune: tune paging parameters
    201  *
    202  * => called when ever memory is added (or removed?) to the system
    203  */
    204 
    205 static void
    206 uvmpd_tune(void)
    207 {
    208 	int val;
    209 
    210 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    211 
    212 	/*
    213 	 * try to keep 0.5% of available RAM free, but limit to between
    214 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
    215 	 */
    216 	val = uvmexp.npages / 200;
    217 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
    218 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
    219 	val *= ncpu;
    220 
    221 	/* Make sure there's always a user page free. */
    222 	if (val < uvmexp.reserve_kernel + 1)
    223 		val = uvmexp.reserve_kernel + 1;
    224 	uvmexp.freemin = val;
    225 
    226 	/* Calculate free target. */
    227 	val = (uvmexp.freemin * 4) / 3;
    228 	if (val <= uvmexp.freemin)
    229 		val = uvmexp.freemin + 1;
    230 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
    231 
    232 	uvmexp.wiredmax = uvmexp.npages / 3;
    233 	UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
    234 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    235 }
    236 
    237 /*
    238  * uvm_pageout: the main loop for the pagedaemon
    239  */
    240 
    241 void
    242 uvm_pageout(void *arg)
    243 {
    244 	int npages = 0;
    245 	int extrapages = 0;
    246 	int fpages;
    247 
    248 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    249 
    250 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    251 
    252 	mutex_init(&uvmpd_lock, MUTEX_DEFAULT, IPL_VM);
    253 	cv_init(&uvmpd_pool_drain_cv, "pooldrain");
    254 
    255 	/* Create the pool drainer kernel thread. */
    256 	if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL,
    257 	    uvmpd_pool_drain_thread, NULL, NULL, "pooldrain"))
    258 		panic("fork pooldrain");
    259 
    260 	/*
    261 	 * ensure correct priority and set paging parameters...
    262 	 */
    263 
    264 	uvm.pagedaemon_lwp = curlwp;
    265 	npages = uvmexp.npages;
    266 	uvmpd_tune();
    267 
    268 	/*
    269 	 * main loop
    270 	 */
    271 
    272 	for (;;) {
    273 		bool needsscan, needsfree, kmem_va_starved;
    274 
    275 		kmem_va_starved = uvm_km_va_starved_p();
    276 
    277 		mutex_spin_enter(&uvmpd_lock);
    278 		if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
    279 		    !kmem_va_starved) {
    280 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    281 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    282 			    &uvmpd_lock, false, "pgdaemon", 0);
    283 			uvmexp.pdwoke++;
    284 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    285 		} else {
    286 			mutex_spin_exit(&uvmpd_lock);
    287 		}
    288 
    289 		/*
    290 		 * now recompute inactive count
    291 		 */
    292 
    293 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    294 			npages = uvmexp.npages;
    295 			extrapages = uvm_extrapages;
    296 			uvmpd_tune();
    297 		}
    298 
    299 		uvmpdpol_tune();
    300 
    301 		/*
    302 		 * Estimate a hint.  Note that bufmem are returned to
    303 		 * system only when entire pool page is empty.
    304 		 */
    305 		fpages = uvm_availmem();
    306 		UVMHIST_LOG(pdhist,"  free/ftarg=%jd/%jd",
    307 		    fpages, uvmexp.freetarg, 0,0);
    308 
    309 		needsfree = fpages + uvmexp.paging < uvmexp.freetarg;
    310 		needsscan = needsfree || uvmpdpol_needsscan_p();
    311 
    312 		/*
    313 		 * scan if needed
    314 		 */
    315 		if (needsscan) {
    316 			uvmpd_scan();
    317 		}
    318 
    319 		/*
    320 		 * if there's any free memory to be had,
    321 		 * wake up any waiters.
    322 		 */
    323 		if (uvm_availmem() > uvmexp.reserve_kernel ||
    324 		    uvmexp.paging == 0) {
    325 			mutex_spin_enter(&uvmpd_lock);
    326 			wakeup(&uvmexp.free);
    327 			uvm_pagedaemon_waiters = 0;
    328 			mutex_spin_exit(&uvmpd_lock);
    329 		}
    330 
    331 		/*
    332 		 * scan done.  if we don't need free memory, we're done.
    333 		 */
    334 
    335 		if (!needsfree && !kmem_va_starved)
    336 			continue;
    337 
    338 		/*
    339 		 * kick the pool drainer thread.
    340 		 */
    341 
    342 		uvmpd_pool_drain_wakeup();
    343 	}
    344 	/*NOTREACHED*/
    345 }
    346 
    347 void
    348 uvm_pageout_start(int npages)
    349 {
    350 
    351 	atomic_add_int(&uvmexp.paging, npages);
    352 }
    353 
    354 void
    355 uvm_pageout_done(int npages)
    356 {
    357 
    358 	KASSERT(atomic_load_relaxed(&uvmexp.paging) >= npages);
    359 
    360 	if (npages == 0) {
    361 		return;
    362 	}
    363 
    364 	atomic_add_int(&uvmexp.paging, -npages);
    365 
    366 	/*
    367 	 * wake up either of pagedaemon or LWPs waiting for it.
    368 	 */
    369 
    370 	mutex_spin_enter(&uvmpd_lock);
    371 	if (uvm_availmem() <= uvmexp.reserve_kernel) {
    372 		wakeup(&uvm.pagedaemon);
    373 	} else if (uvm_pagedaemon_waiters != 0) {
    374 		wakeup(&uvmexp.free);
    375 		uvm_pagedaemon_waiters = 0;
    376 	}
    377 	mutex_spin_exit(&uvmpd_lock);
    378 }
    379 
    380 /*
    381  * uvmpd_trylockowner: trylock the page's owner.
    382  *
    383  * => called with page interlock held.
    384  * => resolve orphaned O->A loaned page.
    385  * => return the locked mutex on success.  otherwise, return NULL.
    386  */
    387 
    388 krwlock_t *
    389 uvmpd_trylockowner(struct vm_page *pg)
    390 {
    391 	struct uvm_object *uobj = pg->uobject;
    392 	struct vm_anon *anon = pg->uanon;
    393 	int tries, count;
    394 	bool running;
    395 	krwlock_t *slock;
    396 
    397 	KASSERT(mutex_owned(&pg->interlock));
    398 
    399 	if (uobj != NULL) {
    400 		slock = uobj->vmobjlock;
    401 		KASSERTMSG(slock != NULL, "pg %p uobj %p, NULL lock", pg, uobj);
    402 	} else if (anon != NULL) {
    403 		slock = anon->an_lock;
    404 		KASSERTMSG(slock != NULL, "pg %p anon %p, NULL lock", pg, anon);
    405 	} else {
    406 		/* Page may be in state of flux - ignore. */
    407 		mutex_exit(&pg->interlock);
    408 		return NULL;
    409 	}
    410 
    411 	/*
    412 	 * Now try to lock the objects.  We'll try hard, but don't really
    413 	 * plan on spending more than a millisecond or so here.
    414 	 */
    415 	tries = (curlwp == uvm.pagedaemon_lwp ? UVMPD_NUMTRYLOCKOWNER : 1);
    416 	for (;;) {
    417 		if (rw_tryenter(slock, RW_WRITER)) {
    418 			if (uobj == NULL) {
    419 				/*
    420 				 * set PG_ANON if it isn't set already.
    421 				 */
    422 				if ((pg->flags & PG_ANON) == 0) {
    423 					KASSERT(pg->loan_count > 0);
    424 					pg->loan_count--;
    425 					pg->flags |= PG_ANON;
    426 					/* anon now owns it */
    427 				}
    428 			}
    429 			mutex_exit(&pg->interlock);
    430 			return slock;
    431 		}
    432 		running = rw_owner_running(slock);
    433 		if (!running || --tries <= 0) {
    434 			break;
    435 		}
    436 		count = SPINLOCK_BACKOFF_MAX;
    437 		SPINLOCK_BACKOFF(count);
    438 	}
    439 
    440 	/*
    441 	 * We didn't get the lock; chances are the very next page on the
    442 	 * queue also has the same lock, so if the lock owner is not running
    443 	 * take a breather and allow them to make progress.  There could be
    444 	 * only 1 CPU in the system, or the pagedaemon could have preempted
    445 	 * the owner in kernel, or any number of other things could be going
    446 	 * on.
    447 	 */
    448 	mutex_exit(&pg->interlock);
    449 	if (curlwp == uvm.pagedaemon_lwp) {
    450 		if (!running) {
    451 			(void)kpause("pdpglock", false, 1, NULL);
    452 		}
    453 		uvmexp.pdbusy++;
    454 	}
    455 	return NULL;
    456 }
    457 
    458 #if defined(VMSWAP)
    459 struct swapcluster {
    460 	int swc_slot;
    461 	int swc_nallocated;
    462 	int swc_nused;
    463 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    464 };
    465 
    466 static void
    467 swapcluster_init(struct swapcluster *swc)
    468 {
    469 
    470 	swc->swc_slot = 0;
    471 	swc->swc_nused = 0;
    472 }
    473 
    474 static int
    475 swapcluster_allocslots(struct swapcluster *swc)
    476 {
    477 	int slot;
    478 	int npages;
    479 
    480 	if (swc->swc_slot != 0) {
    481 		return 0;
    482 	}
    483 
    484 	/* Even with strange MAXPHYS, the shift
    485 	   implicitly rounds down to a page. */
    486 	npages = MAXPHYS >> PAGE_SHIFT;
    487 	slot = uvm_swap_alloc(&npages, true);
    488 	if (slot == 0) {
    489 		return ENOMEM;
    490 	}
    491 	swc->swc_slot = slot;
    492 	swc->swc_nallocated = npages;
    493 	swc->swc_nused = 0;
    494 
    495 	return 0;
    496 }
    497 
    498 static int
    499 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    500 {
    501 	int slot;
    502 	struct uvm_object *uobj;
    503 
    504 	KASSERT(swc->swc_slot != 0);
    505 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    506 	KASSERT((pg->flags & PG_SWAPBACKED) != 0);
    507 
    508 	slot = swc->swc_slot + swc->swc_nused;
    509 	uobj = pg->uobject;
    510 	if (uobj == NULL) {
    511 		KASSERT(rw_write_held(pg->uanon->an_lock));
    512 		pg->uanon->an_swslot = slot;
    513 	} else {
    514 		int result;
    515 
    516 		KASSERT(rw_write_held(uobj->vmobjlock));
    517 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    518 		if (result == -1) {
    519 			return ENOMEM;
    520 		}
    521 	}
    522 	swc->swc_pages[swc->swc_nused] = pg;
    523 	swc->swc_nused++;
    524 
    525 	return 0;
    526 }
    527 
    528 static void
    529 swapcluster_flush(struct swapcluster *swc, bool now)
    530 {
    531 	int slot;
    532 	int nused;
    533 	int nallocated;
    534 	int error __diagused;
    535 
    536 	if (swc->swc_slot == 0) {
    537 		return;
    538 	}
    539 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    540 
    541 	slot = swc->swc_slot;
    542 	nused = swc->swc_nused;
    543 	nallocated = swc->swc_nallocated;
    544 
    545 	/*
    546 	 * if this is the final pageout we could have a few
    547 	 * unused swap blocks.  if so, free them now.
    548 	 */
    549 
    550 	if (nused < nallocated) {
    551 		if (!now) {
    552 			return;
    553 		}
    554 		uvm_swap_free(slot + nused, nallocated - nused);
    555 	}
    556 
    557 	/*
    558 	 * now start the pageout.
    559 	 */
    560 
    561 	if (nused > 0) {
    562 		uvmexp.pdpageouts++;
    563 		uvm_pageout_start(nused);
    564 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    565 		KASSERT(error == 0 || error == ENOMEM);
    566 	}
    567 
    568 	/*
    569 	 * zero swslot to indicate that we are
    570 	 * no longer building a swap-backed cluster.
    571 	 */
    572 
    573 	swc->swc_slot = 0;
    574 	swc->swc_nused = 0;
    575 }
    576 
    577 static int
    578 swapcluster_nused(struct swapcluster *swc)
    579 {
    580 
    581 	return swc->swc_nused;
    582 }
    583 
    584 /*
    585  * uvmpd_dropswap: free any swap allocated to this page.
    586  *
    587  * => called with owner locked.
    588  * => return true if a page had an associated slot.
    589  */
    590 
    591 bool
    592 uvmpd_dropswap(struct vm_page *pg)
    593 {
    594 	bool result = false;
    595 	struct vm_anon *anon = pg->uanon;
    596 
    597 	if ((pg->flags & PG_ANON) && anon->an_swslot) {
    598 		uvm_swap_free(anon->an_swslot, 1);
    599 		anon->an_swslot = 0;
    600 		uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    601 		result = true;
    602 	} else if (pg->flags & PG_AOBJ) {
    603 		int slot = uao_set_swslot(pg->uobject,
    604 		    pg->offset >> PAGE_SHIFT, 0);
    605 		if (slot) {
    606 			uvm_swap_free(slot, 1);
    607 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    608 			result = true;
    609 		}
    610 	}
    611 
    612 	return result;
    613 }
    614 
    615 #endif /* defined(VMSWAP) */
    616 
    617 /*
    618  * uvmpd_scan_queue: scan an replace candidate list for pages
    619  * to clean or free.
    620  *
    621  * => we work on meeting our free target by converting inactive pages
    622  *    into free pages.
    623  * => we handle the building of swap-backed clusters
    624  */
    625 
    626 static void
    627 uvmpd_scan_queue(void)
    628 {
    629 	struct vm_page *p;
    630 	struct uvm_object *uobj;
    631 	struct vm_anon *anon;
    632 #if defined(VMSWAP)
    633 	struct swapcluster swc;
    634 #endif /* defined(VMSWAP) */
    635 	int dirtyreacts;
    636 	krwlock_t *slock;
    637 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    638 
    639 	/*
    640 	 * swslot is non-zero if we are building a swap cluster.  we want
    641 	 * to stay in the loop while we have a page to scan or we have
    642 	 * a swap-cluster to build.
    643 	 */
    644 
    645 #if defined(VMSWAP)
    646 	swapcluster_init(&swc);
    647 #endif /* defined(VMSWAP) */
    648 
    649 	dirtyreacts = 0;
    650 	uvmpdpol_scaninit();
    651 
    652 	while (/* CONSTCOND */ 1) {
    653 
    654 		/*
    655 		 * see if we've met the free target.
    656 		 */
    657 
    658 		if (uvm_availmem() + uvmexp.paging
    659 #if defined(VMSWAP)
    660 		    + swapcluster_nused(&swc)
    661 #endif /* defined(VMSWAP) */
    662 		    >= uvmexp.freetarg << 2 ||
    663 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    664 			UVMHIST_LOG(pdhist,"  met free target: "
    665 				    "exit loop", 0, 0, 0, 0);
    666 			break;
    667 		}
    668 
    669 		/*
    670 		 * first we have the pdpolicy select a victim page
    671 		 * and attempt to lock the object that the page
    672 		 * belongs to.  if our attempt fails we skip on to
    673 		 * the next page (no harm done).  it is important to
    674 		 * "try" locking the object as we are locking in the
    675 		 * wrong order (pageq -> object) and we don't want to
    676 		 * deadlock.
    677 		 *
    678 		 * the only time we expect to see an ownerless page
    679 		 * (i.e. a page with no uobject and !PG_ANON) is if an
    680 		 * anon has loaned a page from a uvm_object and the
    681 		 * uvm_object has dropped the ownership.  in that
    682 		 * case, the anon can "take over" the loaned page
    683 		 * and make it its own.
    684 		 */
    685 
    686 		p = uvmpdpol_selectvictim(&slock);
    687 		if (p == NULL) {
    688 			break;
    689 		}
    690 		KASSERT(uvmpdpol_pageisqueued_p(p));
    691 		KASSERT(uvm_page_owner_locked_p(p, true));
    692 		KASSERT(p->wire_count == 0);
    693 
    694 		/*
    695 		 * we are below target and have a new page to consider.
    696 		 */
    697 
    698 		anon = p->uanon;
    699 		uobj = p->uobject;
    700 
    701 		if (p->flags & PG_BUSY) {
    702 			rw_exit(slock);
    703 			uvmexp.pdbusy++;
    704 			continue;
    705 		}
    706 
    707 		/* does the page belong to an object? */
    708 		if (uobj != NULL) {
    709 			uvmexp.pdobscan++;
    710 		} else {
    711 #if defined(VMSWAP)
    712 			KASSERT(anon != NULL);
    713 			uvmexp.pdanscan++;
    714 #else /* defined(VMSWAP) */
    715 			panic("%s: anon", __func__);
    716 #endif /* defined(VMSWAP) */
    717 		}
    718 
    719 
    720 		/*
    721 		 * we now have the object locked.
    722 		 * if the page is not swap-backed, call the object's
    723 		 * pager to flush and free the page.
    724 		 */
    725 
    726 #if defined(READAHEAD_STATS)
    727 		if ((p->flags & PG_READAHEAD) != 0) {
    728 			p->flags &= ~PG_READAHEAD;
    729 			uvm_ra_miss.ev_count++;
    730 		}
    731 #endif /* defined(READAHEAD_STATS) */
    732 
    733 		if ((p->flags & PG_SWAPBACKED) == 0) {
    734 			KASSERT(uobj != NULL);
    735 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    736 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    737 			continue;
    738 		}
    739 
    740 		/*
    741 		 * the page is swap-backed.  remove all the permissions
    742 		 * from the page so we can sync the modified info
    743 		 * without any race conditions.  if the page is clean
    744 		 * we can free it now and continue.
    745 		 */
    746 
    747 		pmap_page_protect(p, VM_PROT_NONE);
    748 		if (uvm_pagegetdirty(p) == UVM_PAGE_STATUS_UNKNOWN) {
    749 			if (pmap_clear_modify(p)) {
    750 				uvm_pagemarkdirty(p, UVM_PAGE_STATUS_DIRTY);
    751 			} else {
    752 				uvm_pagemarkdirty(p, UVM_PAGE_STATUS_CLEAN);
    753 			}
    754 		}
    755 		if (uvm_pagegetdirty(p) != UVM_PAGE_STATUS_DIRTY) {
    756 			int slot;
    757 			int pageidx;
    758 
    759 			pageidx = p->offset >> PAGE_SHIFT;
    760 			uvm_pagefree(p);
    761 			atomic_inc_uint(&uvmexp.pdfreed);
    762 
    763 			/*
    764 			 * for anons, we need to remove the page
    765 			 * from the anon ourselves.  for aobjs,
    766 			 * pagefree did that for us.
    767 			 */
    768 
    769 			if (anon) {
    770 				KASSERT(anon->an_swslot != 0);
    771 				anon->an_page = NULL;
    772 				slot = anon->an_swslot;
    773 			} else {
    774 				slot = uao_find_swslot(uobj, pageidx);
    775 			}
    776 			if (slot > 0) {
    777 				/* this page is now only in swap. */
    778 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    779 				atomic_inc_uint(&uvmexp.swpgonly);
    780 			}
    781 			rw_exit(slock);
    782 			continue;
    783 		}
    784 
    785 #if defined(VMSWAP)
    786 		/*
    787 		 * this page is dirty, skip it if we'll have met our
    788 		 * free target when all the current pageouts complete.
    789 		 */
    790 
    791 		if (uvm_availmem() + uvmexp.paging > uvmexp.freetarg << 2) {
    792 			rw_exit(slock);
    793 			continue;
    794 		}
    795 
    796 		/*
    797 		 * free any swap space allocated to the page since
    798 		 * we'll have to write it again with its new data.
    799 		 */
    800 
    801 		uvmpd_dropswap(p);
    802 
    803 		/*
    804 		 * start new swap pageout cluster (if necessary).
    805 		 *
    806 		 * if swap is full reactivate this page so that
    807 		 * we eventually cycle all pages through the
    808 		 * inactive queue.
    809 		 */
    810 
    811 		if (swapcluster_allocslots(&swc)) {
    812 			dirtyreacts++;
    813 			uvm_pagelock(p);
    814 			uvm_pageactivate(p);
    815 			uvm_pageunlock(p);
    816 			rw_exit(slock);
    817 			continue;
    818 		}
    819 
    820 		/*
    821 		 * at this point, we're definitely going reuse this
    822 		 * page.  mark the page busy and delayed-free.
    823 		 * we should remove the page from the page queues
    824 		 * so we don't ever look at it again.
    825 		 * adjust counters and such.
    826 		 */
    827 
    828 		p->flags |= PG_BUSY;
    829 		UVM_PAGE_OWN(p, "scan_queue");
    830 		p->flags |= PG_PAGEOUT;
    831 		uvmexp.pgswapout++;
    832 
    833 		uvm_pagelock(p);
    834 		uvm_pagedequeue(p);
    835 		uvm_pageunlock(p);
    836 
    837 		/*
    838 		 * add the new page to the cluster.
    839 		 */
    840 
    841 		if (swapcluster_add(&swc, p)) {
    842 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    843 			UVM_PAGE_OWN(p, NULL);
    844 			dirtyreacts++;
    845 			uvm_pagelock(p);
    846 			uvm_pageactivate(p);
    847 			uvm_pageunlock(p);
    848 			rw_exit(slock);
    849 			continue;
    850 		}
    851 		rw_exit(slock);
    852 
    853 		swapcluster_flush(&swc, false);
    854 
    855 		/*
    856 		 * the pageout is in progress.  bump counters and set up
    857 		 * for the next loop.
    858 		 */
    859 
    860 		atomic_inc_uint(&uvmexp.pdpending);
    861 
    862 #else /* defined(VMSWAP) */
    863 		uvm_pagelock(p);
    864 		uvm_pageactivate(p);
    865 		uvm_pageunlock(p);
    866 		rw_exit(slock);
    867 #endif /* defined(VMSWAP) */
    868 	}
    869 
    870 	uvmpdpol_scanfini();
    871 
    872 #if defined(VMSWAP)
    873 	swapcluster_flush(&swc, true);
    874 #endif /* defined(VMSWAP) */
    875 }
    876 
    877 /*
    878  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    879  */
    880 
    881 static void
    882 uvmpd_scan(void)
    883 {
    884 	int swap_shortage, pages_freed, fpages;
    885 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    886 
    887 	uvmexp.pdrevs++;
    888 
    889 	/*
    890 	 * work on meeting our targets.   first we work on our free target
    891 	 * by converting inactive pages into free pages.  then we work on
    892 	 * meeting our inactive target by converting active pages to
    893 	 * inactive ones.
    894 	 */
    895 
    896 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    897 
    898 	pages_freed = uvmexp.pdfreed;
    899 	uvmpd_scan_queue();
    900 	pages_freed = uvmexp.pdfreed - pages_freed;
    901 
    902 	/*
    903 	 * detect if we're not going to be able to page anything out
    904 	 * until we free some swap resources from active pages.
    905 	 */
    906 
    907 	swap_shortage = 0;
    908 	fpages = uvm_availmem();
    909 	if (fpages < uvmexp.freetarg &&
    910 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    911 	    !uvm_swapisfull() &&
    912 	    pages_freed == 0) {
    913 		swap_shortage = uvmexp.freetarg - fpages;
    914 	}
    915 
    916 	uvmpdpol_balancequeue(swap_shortage);
    917 
    918 	/*
    919 	 * if still below the minimum target, try unloading kernel
    920 	 * modules.
    921 	 */
    922 
    923 	if (uvm_availmem() < uvmexp.freemin) {
    924 		module_thread_kick();
    925 	}
    926 }
    927 
    928 /*
    929  * uvm_reclaimable: decide whether to wait for pagedaemon.
    930  *
    931  * => return true if it seems to be worth to do uvm_wait.
    932  *
    933  * XXX should be tunable.
    934  * XXX should consider pools, etc?
    935  */
    936 
    937 bool
    938 uvm_reclaimable(void)
    939 {
    940 	int filepages;
    941 	int active, inactive;
    942 
    943 	/*
    944 	 * if swap is not full, no problem.
    945 	 */
    946 
    947 	if (!uvm_swapisfull()) {
    948 		return true;
    949 	}
    950 
    951 	/*
    952 	 * file-backed pages can be reclaimed even when swap is full.
    953 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    954 	 *
    955 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    956 	 *
    957 	 * XXX should consider about other reclaimable memory.
    958 	 * XXX ie. pools, traditional buffer cache.
    959 	 */
    960 
    961 	cpu_count_sync_all();
    962 	filepages = (int)cpu_count_get(CPU_COUNT_FILEPAGES) +
    963 	    (int)cpu_count_get(CPU_COUNT_EXECPAGES) - uvmexp.wired;
    964 	uvm_estimatepageable(&active, &inactive);
    965 	if (filepages >= MIN((active + inactive) >> 4,
    966 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
    967 		return true;
    968 	}
    969 
    970 	/*
    971 	 * kill the process, fail allocation, etc..
    972 	 */
    973 
    974 	return false;
    975 }
    976 
    977 void
    978 uvm_estimatepageable(int *active, int *inactive)
    979 {
    980 
    981 	uvmpdpol_estimatepageable(active, inactive);
    982 }
    983 
    984 
    985 /*
    986  * Use a separate thread for draining pools.
    987  * This work can't done from the main pagedaemon thread because
    988  * some pool allocators need to take vm_map locks.
    989  */
    990 
    991 static void
    992 uvmpd_pool_drain_thread(void *arg)
    993 {
    994 	struct pool *firstpool, *curpool;
    995 	int bufcnt, lastslept;
    996 	bool cycled;
    997 
    998 	firstpool = NULL;
    999 	cycled = true;
   1000 	for (;;) {
   1001 		/*
   1002 		 * sleep until awoken by the pagedaemon.
   1003 		 */
   1004 		mutex_enter(&uvmpd_lock);
   1005 		if (!uvmpd_pool_drain_run) {
   1006 			lastslept = getticks();
   1007 			cv_wait(&uvmpd_pool_drain_cv, &uvmpd_lock);
   1008 			if (getticks() != lastslept) {
   1009 				cycled = false;
   1010 				firstpool = NULL;
   1011 			}
   1012 		}
   1013 		uvmpd_pool_drain_run = false;
   1014 		mutex_exit(&uvmpd_lock);
   1015 
   1016 		/*
   1017 		 * rate limit draining, otherwise in desperate circumstances
   1018 		 * this can totally saturate the system with xcall activity.
   1019 		 */
   1020 		if (cycled) {
   1021 			kpause("uvmpdlmt", false, 1, NULL);
   1022 			cycled = false;
   1023 			firstpool = NULL;
   1024 		}
   1025 
   1026 		/*
   1027 		 * drain and temporarily disable the freelist cache.
   1028 		 */
   1029 		uvm_pgflcache_pause();
   1030 
   1031 		/*
   1032 		 * kill unused metadata buffers.
   1033 		 */
   1034 		bufcnt = uvmexp.freetarg - uvm_availmem();
   1035 		if (bufcnt < 0)
   1036 			bufcnt = 0;
   1037 
   1038 		mutex_enter(&bufcache_lock);
   1039 		buf_drain(bufcnt << PAGE_SHIFT);
   1040 		mutex_exit(&bufcache_lock);
   1041 
   1042 		/*
   1043 		 * drain a pool, and then re-enable the freelist cache.
   1044 		 */
   1045 		(void)pool_drain(&curpool);
   1046 		KASSERT(curpool != NULL);
   1047 		if (firstpool == NULL) {
   1048 			firstpool = curpool;
   1049 		} else if (firstpool == curpool) {
   1050 			cycled = true;
   1051 		}
   1052 		uvm_pgflcache_resume();
   1053 	}
   1054 	/*NOTREACHED*/
   1055 }
   1056 
   1057 static void
   1058 uvmpd_pool_drain_wakeup(void)
   1059 {
   1060 
   1061 	mutex_enter(&uvmpd_lock);
   1062 	uvmpd_pool_drain_run = true;
   1063 	cv_signal(&uvmpd_pool_drain_cv);
   1064 	mutex_exit(&uvmpd_lock);
   1065 }
   1066