Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.130.2.1
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.130.2.1 2020/12/14 14:38:17 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     37  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_pdaemon.c: the page daemon
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.130.2.1 2020/12/14 14:38:17 thorpej Exp $");
     70 
     71 #include "opt_uvmhist.h"
     72 #include "opt_readahead.h"
     73 
     74 #define	__RWLOCK_PRIVATE
     75 
     76 #include <sys/param.h>
     77 #include <sys/proc.h>
     78 #include <sys/systm.h>
     79 #include <sys/kernel.h>
     80 #include <sys/pool.h>
     81 #include <sys/buf.h>
     82 #include <sys/module.h>
     83 #include <sys/atomic.h>
     84 #include <sys/kthread.h>
     85 
     86 #include <uvm/uvm.h>
     87 #include <uvm/uvm_pdpolicy.h>
     88 #include <uvm/uvm_pgflcache.h>
     89 
     90 #ifdef UVMHIST
     91 UVMHIST_DEFINE(pdhist);
     92 #endif
     93 
     94 /*
     95  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     96  * in a pass thru the inactive list when swap is full.  the value should be
     97  * "small"... if it's too large we'll cycle the active pages thru the inactive
     98  * queue too quickly to for them to be referenced and avoid being freed.
     99  */
    100 
    101 #define	UVMPD_NUMDIRTYREACTS	16
    102 
    103 /*
    104  * local prototypes
    105  */
    106 
    107 static void	uvmpd_scan(void);
    108 static void	uvmpd_scan_queue(void);
    109 static void	uvmpd_tune(void);
    110 static void	uvmpd_pool_drain_thread(void *);
    111 static void	uvmpd_pool_drain_wakeup(void);
    112 
    113 static unsigned int uvm_pagedaemon_waiters;
    114 
    115 /* State for the pool drainer thread */
    116 static kmutex_t uvmpd_lock __cacheline_aligned;
    117 static kcondvar_t uvmpd_pool_drain_cv;
    118 static bool uvmpd_pool_drain_run = false;
    119 
    120 /*
    121  * XXX hack to avoid hangs when large processes fork.
    122  */
    123 u_int uvm_extrapages;
    124 
    125 /*
    126  * uvm_wait: wait (sleep) for the page daemon to free some pages
    127  *
    128  * => should be called with all locks released
    129  * => should _not_ be called by the page daemon (to avoid deadlock)
    130  */
    131 
    132 void
    133 uvm_wait(const char *wmsg)
    134 {
    135 	int timo = 0;
    136 
    137 	if (uvm.pagedaemon_lwp == NULL)
    138 		panic("out of memory before the pagedaemon thread exists");
    139 
    140 	mutex_spin_enter(&uvmpd_lock);
    141 
    142 	/*
    143 	 * check for page daemon going to sleep (waiting for itself)
    144 	 */
    145 
    146 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    147 		/*
    148 		 * now we have a problem: the pagedaemon wants to go to
    149 		 * sleep until it frees more memory.   but how can it
    150 		 * free more memory if it is asleep?  that is a deadlock.
    151 		 * we have two options:
    152 		 *  [1] panic now
    153 		 *  [2] put a timeout on the sleep, thus causing the
    154 		 *      pagedaemon to only pause (rather than sleep forever)
    155 		 *
    156 		 * note that option [2] will only help us if we get lucky
    157 		 * and some other process on the system breaks the deadlock
    158 		 * by exiting or freeing memory (thus allowing the pagedaemon
    159 		 * to continue).  for now we panic if DEBUG is defined,
    160 		 * otherwise we hope for the best with option [2] (better
    161 		 * yet, this should never happen in the first place!).
    162 		 */
    163 
    164 		printf("pagedaemon: deadlock detected!\n");
    165 		timo = hz >> 3;		/* set timeout */
    166 #if defined(DEBUG)
    167 		/* DEBUG: panic so we can debug it */
    168 		panic("pagedaemon deadlock");
    169 #endif
    170 	}
    171 
    172 	uvm_pagedaemon_waiters++;
    173 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    174 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvmpd_lock, false, wmsg, timo);
    175 }
    176 
    177 /*
    178  * uvm_kick_pdaemon: perform checks to determine if we need to
    179  * give the pagedaemon a nudge, and do so if necessary.
    180  */
    181 
    182 void
    183 uvm_kick_pdaemon(void)
    184 {
    185 	int fpages = uvm_availmem(false);
    186 
    187 	if (fpages + uvmexp.paging < uvmexp.freemin ||
    188 	    (fpages + uvmexp.paging < uvmexp.freetarg &&
    189 	     uvmpdpol_needsscan_p()) ||
    190 	     uvm_km_va_starved_p()) {
    191 	     	mutex_spin_enter(&uvmpd_lock);
    192 		wakeup(&uvm.pagedaemon);
    193 	     	mutex_spin_exit(&uvmpd_lock);
    194 	}
    195 }
    196 
    197 /*
    198  * uvmpd_tune: tune paging parameters
    199  *
    200  * => called when ever memory is added (or removed?) to the system
    201  */
    202 
    203 static void
    204 uvmpd_tune(void)
    205 {
    206 	int val;
    207 
    208 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    209 
    210 	/*
    211 	 * try to keep 0.5% of available RAM free, but limit to between
    212 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
    213 	 */
    214 	val = uvmexp.npages / 200;
    215 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
    216 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
    217 	val *= ncpu;
    218 
    219 	/* Make sure there's always a user page free. */
    220 	if (val < uvmexp.reserve_kernel + 1)
    221 		val = uvmexp.reserve_kernel + 1;
    222 	uvmexp.freemin = val;
    223 
    224 	/* Calculate free target. */
    225 	val = (uvmexp.freemin * 4) / 3;
    226 	if (val <= uvmexp.freemin)
    227 		val = uvmexp.freemin + 1;
    228 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
    229 
    230 	uvmexp.wiredmax = uvmexp.npages / 3;
    231 	UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
    232 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    233 }
    234 
    235 /*
    236  * uvm_pageout: the main loop for the pagedaemon
    237  */
    238 
    239 void
    240 uvm_pageout(void *arg)
    241 {
    242 	int npages = 0;
    243 	int extrapages = 0;
    244 	int fpages;
    245 
    246 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    247 
    248 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    249 
    250 	mutex_init(&uvmpd_lock, MUTEX_DEFAULT, IPL_VM);
    251 	cv_init(&uvmpd_pool_drain_cv, "pooldrain");
    252 
    253 	/* Create the pool drainer kernel thread. */
    254 	if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL,
    255 	    uvmpd_pool_drain_thread, NULL, NULL, "pooldrain"))
    256 		panic("fork pooldrain");
    257 
    258 	/*
    259 	 * ensure correct priority and set paging parameters...
    260 	 */
    261 
    262 	uvm.pagedaemon_lwp = curlwp;
    263 	npages = uvmexp.npages;
    264 	uvmpd_tune();
    265 
    266 	/*
    267 	 * main loop
    268 	 */
    269 
    270 	for (;;) {
    271 		bool needsscan, needsfree, kmem_va_starved;
    272 
    273 		kmem_va_starved = uvm_km_va_starved_p();
    274 
    275 		mutex_spin_enter(&uvmpd_lock);
    276 		if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
    277 		    !kmem_va_starved) {
    278 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    279 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    280 			    &uvmpd_lock, false, "pgdaemon", 0);
    281 			uvmexp.pdwoke++;
    282 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    283 		} else {
    284 			mutex_spin_exit(&uvmpd_lock);
    285 		}
    286 
    287 		/*
    288 		 * now recompute inactive count
    289 		 */
    290 
    291 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    292 			npages = uvmexp.npages;
    293 			extrapages = uvm_extrapages;
    294 			uvmpd_tune();
    295 		}
    296 
    297 		uvmpdpol_tune();
    298 
    299 		/*
    300 		 * Estimate a hint.  Note that bufmem are returned to
    301 		 * system only when entire pool page is empty.
    302 		 */
    303 		fpages = uvm_availmem(false);
    304 		UVMHIST_LOG(pdhist,"  free/ftarg=%jd/%jd",
    305 		    fpages, uvmexp.freetarg, 0,0);
    306 
    307 		needsfree = fpages + uvmexp.paging < uvmexp.freetarg;
    308 		needsscan = needsfree || uvmpdpol_needsscan_p();
    309 
    310 		/*
    311 		 * scan if needed
    312 		 */
    313 		if (needsscan) {
    314 			uvmpd_scan();
    315 		}
    316 
    317 		/*
    318 		 * if there's any free memory to be had,
    319 		 * wake up any waiters.
    320 		 */
    321 		if (uvm_availmem(false) > uvmexp.reserve_kernel ||
    322 		    uvmexp.paging == 0) {
    323 			mutex_spin_enter(&uvmpd_lock);
    324 			wakeup(&uvmexp.free);
    325 			uvm_pagedaemon_waiters = 0;
    326 			mutex_spin_exit(&uvmpd_lock);
    327 		}
    328 
    329 		/*
    330 		 * scan done.  if we don't need free memory, we're done.
    331 		 */
    332 
    333 		if (!needsfree && !kmem_va_starved)
    334 			continue;
    335 
    336 		/*
    337 		 * kick the pool drainer thread.
    338 		 */
    339 
    340 		uvmpd_pool_drain_wakeup();
    341 	}
    342 	/*NOTREACHED*/
    343 }
    344 
    345 void
    346 uvm_pageout_start(int npages)
    347 {
    348 
    349 	atomic_add_int(&uvmexp.paging, npages);
    350 }
    351 
    352 void
    353 uvm_pageout_done(int npages)
    354 {
    355 
    356 	KASSERT(atomic_load_relaxed(&uvmexp.paging) >= npages);
    357 
    358 	if (npages == 0) {
    359 		return;
    360 	}
    361 
    362 	atomic_add_int(&uvmexp.paging, -npages);
    363 
    364 	/*
    365 	 * wake up either of pagedaemon or LWPs waiting for it.
    366 	 */
    367 
    368 	mutex_spin_enter(&uvmpd_lock);
    369 	if (uvm_availmem(false) <= uvmexp.reserve_kernel) {
    370 		wakeup(&uvm.pagedaemon);
    371 	} else if (uvm_pagedaemon_waiters != 0) {
    372 		wakeup(&uvmexp.free);
    373 		uvm_pagedaemon_waiters = 0;
    374 	}
    375 	mutex_spin_exit(&uvmpd_lock);
    376 }
    377 
    378 static krwlock_t *
    379 uvmpd_page_owner_lock(struct vm_page *pg)
    380 {
    381 	struct uvm_object *uobj = pg->uobject;
    382 	struct vm_anon *anon = pg->uanon;
    383 	krwlock_t *slock;
    384 
    385 	KASSERT(mutex_owned(&pg->interlock));
    386 
    387 #ifdef DEBUG
    388 	if (uobj == (void *)0xdeadbeef || anon == (void *)0xdeadbeef) {
    389 		return NULL;
    390 	}
    391 #endif
    392 	if (uobj != NULL) {
    393 		slock = uobj->vmobjlock;
    394 		KASSERTMSG(slock != NULL, "pg %p uobj %p, NULL lock", pg, uobj);
    395 	} else if (anon != NULL) {
    396 		slock = anon->an_lock;
    397 		KASSERTMSG(slock != NULL, "pg %p anon %p, NULL lock", pg, anon);
    398 	} else {
    399 		slock = NULL;
    400 	}
    401 	return slock;
    402 }
    403 
    404 /*
    405  * uvmpd_trylockowner: trylock the page's owner.
    406  *
    407  * => called with page interlock held.
    408  * => resolve orphaned O->A loaned page.
    409  * => return the locked mutex on success.  otherwise, return NULL.
    410  */
    411 
    412 krwlock_t *
    413 uvmpd_trylockowner(struct vm_page *pg)
    414 {
    415 	krwlock_t *slock, *heldslock;
    416 
    417 	KASSERT(mutex_owned(&pg->interlock));
    418 
    419 	slock = uvmpd_page_owner_lock(pg);
    420 	if (slock == NULL) {
    421 		/* Page may be in state of flux - ignore. */
    422 		mutex_exit(&pg->interlock);
    423 		return NULL;
    424 	}
    425 
    426 	if (rw_tryenter(slock, RW_WRITER)) {
    427 		goto success;
    428 	}
    429 
    430 	/*
    431 	 * The try-lock didn't work, so now do a blocking lock after
    432 	 * dropping the page interlock.  Prevent the owner lock from
    433 	 * being freed by taking a hold on it first.
    434 	 */
    435 
    436 	rw_obj_hold(slock);
    437 	mutex_exit(&pg->interlock);
    438 	rw_enter(slock, RW_WRITER);
    439 	heldslock = slock;
    440 
    441 	/*
    442 	 * Now we hold some owner lock.  Check if the lock we hold
    443 	 * is still the lock for the owner of the page.
    444 	 * If it is then return it, otherwise release it and return NULL.
    445 	 */
    446 
    447 	mutex_enter(&pg->interlock);
    448 	slock = uvmpd_page_owner_lock(pg);
    449 	if (heldslock != slock) {
    450 		rw_exit(heldslock);
    451 		slock = NULL;
    452 	}
    453 	rw_obj_free(heldslock);
    454 	if (slock != NULL) {
    455 success:
    456 		/*
    457 		 * Set PG_ANON if it isn't set already.
    458 		 */
    459 		if (pg->uobject == NULL && (pg->flags & PG_ANON) == 0) {
    460 			KASSERT(pg->loan_count > 0);
    461 			pg->loan_count--;
    462 			pg->flags |= PG_ANON;
    463 			/* anon now owns it */
    464 		}
    465 	}
    466 	mutex_exit(&pg->interlock);
    467 	return slock;
    468 }
    469 
    470 #if defined(VMSWAP)
    471 struct swapcluster {
    472 	int swc_slot;
    473 	int swc_nallocated;
    474 	int swc_nused;
    475 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    476 };
    477 
    478 static void
    479 swapcluster_init(struct swapcluster *swc)
    480 {
    481 
    482 	swc->swc_slot = 0;
    483 	swc->swc_nused = 0;
    484 }
    485 
    486 static int
    487 swapcluster_allocslots(struct swapcluster *swc)
    488 {
    489 	int slot;
    490 	int npages;
    491 
    492 	if (swc->swc_slot != 0) {
    493 		return 0;
    494 	}
    495 
    496 	/* Even with strange MAXPHYS, the shift
    497 	   implicitly rounds down to a page. */
    498 	npages = MAXPHYS >> PAGE_SHIFT;
    499 	slot = uvm_swap_alloc(&npages, true);
    500 	if (slot == 0) {
    501 		return ENOMEM;
    502 	}
    503 	swc->swc_slot = slot;
    504 	swc->swc_nallocated = npages;
    505 	swc->swc_nused = 0;
    506 
    507 	return 0;
    508 }
    509 
    510 static int
    511 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    512 {
    513 	int slot;
    514 	struct uvm_object *uobj;
    515 
    516 	KASSERT(swc->swc_slot != 0);
    517 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    518 	KASSERT((pg->flags & PG_SWAPBACKED) != 0);
    519 
    520 	slot = swc->swc_slot + swc->swc_nused;
    521 	uobj = pg->uobject;
    522 	if (uobj == NULL) {
    523 		KASSERT(rw_write_held(pg->uanon->an_lock));
    524 		pg->uanon->an_swslot = slot;
    525 	} else {
    526 		int result;
    527 
    528 		KASSERT(rw_write_held(uobj->vmobjlock));
    529 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    530 		if (result == -1) {
    531 			return ENOMEM;
    532 		}
    533 	}
    534 	swc->swc_pages[swc->swc_nused] = pg;
    535 	swc->swc_nused++;
    536 
    537 	return 0;
    538 }
    539 
    540 static void
    541 swapcluster_flush(struct swapcluster *swc, bool now)
    542 {
    543 	int slot;
    544 	int nused;
    545 	int nallocated;
    546 	int error __diagused;
    547 
    548 	if (swc->swc_slot == 0) {
    549 		return;
    550 	}
    551 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    552 
    553 	slot = swc->swc_slot;
    554 	nused = swc->swc_nused;
    555 	nallocated = swc->swc_nallocated;
    556 
    557 	/*
    558 	 * if this is the final pageout we could have a few
    559 	 * unused swap blocks.  if so, free them now.
    560 	 */
    561 
    562 	if (nused < nallocated) {
    563 		if (!now) {
    564 			return;
    565 		}
    566 		uvm_swap_free(slot + nused, nallocated - nused);
    567 	}
    568 
    569 	/*
    570 	 * now start the pageout.
    571 	 */
    572 
    573 	if (nused > 0) {
    574 		uvmexp.pdpageouts++;
    575 		uvm_pageout_start(nused);
    576 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    577 		KASSERT(error == 0 || error == ENOMEM);
    578 	}
    579 
    580 	/*
    581 	 * zero swslot to indicate that we are
    582 	 * no longer building a swap-backed cluster.
    583 	 */
    584 
    585 	swc->swc_slot = 0;
    586 	swc->swc_nused = 0;
    587 }
    588 
    589 static int
    590 swapcluster_nused(struct swapcluster *swc)
    591 {
    592 
    593 	return swc->swc_nused;
    594 }
    595 
    596 /*
    597  * uvmpd_dropswap: free any swap allocated to this page.
    598  *
    599  * => called with owner locked.
    600  * => return true if a page had an associated slot.
    601  */
    602 
    603 bool
    604 uvmpd_dropswap(struct vm_page *pg)
    605 {
    606 	bool result = false;
    607 	struct vm_anon *anon = pg->uanon;
    608 
    609 	if ((pg->flags & PG_ANON) && anon->an_swslot) {
    610 		uvm_swap_free(anon->an_swslot, 1);
    611 		anon->an_swslot = 0;
    612 		uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    613 		result = true;
    614 	} else if (pg->flags & PG_AOBJ) {
    615 		int slot = uao_set_swslot(pg->uobject,
    616 		    pg->offset >> PAGE_SHIFT, 0);
    617 		if (slot) {
    618 			uvm_swap_free(slot, 1);
    619 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    620 			result = true;
    621 		}
    622 	}
    623 
    624 	return result;
    625 }
    626 
    627 #endif /* defined(VMSWAP) */
    628 
    629 /*
    630  * uvmpd_scan_queue: scan an replace candidate list for pages
    631  * to clean or free.
    632  *
    633  * => we work on meeting our free target by converting inactive pages
    634  *    into free pages.
    635  * => we handle the building of swap-backed clusters
    636  */
    637 
    638 static void
    639 uvmpd_scan_queue(void)
    640 {
    641 	struct vm_page *p;
    642 	struct uvm_object *uobj;
    643 	struct vm_anon *anon;
    644 #if defined(VMSWAP)
    645 	struct swapcluster swc;
    646 #endif /* defined(VMSWAP) */
    647 	int dirtyreacts;
    648 	krwlock_t *slock;
    649 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    650 
    651 	/*
    652 	 * swslot is non-zero if we are building a swap cluster.  we want
    653 	 * to stay in the loop while we have a page to scan or we have
    654 	 * a swap-cluster to build.
    655 	 */
    656 
    657 #if defined(VMSWAP)
    658 	swapcluster_init(&swc);
    659 #endif /* defined(VMSWAP) */
    660 
    661 	dirtyreacts = 0;
    662 	uvmpdpol_scaninit();
    663 
    664 	while (/* CONSTCOND */ 1) {
    665 
    666 		/*
    667 		 * see if we've met the free target.
    668 		 */
    669 
    670 		if (uvm_availmem(false) + uvmexp.paging
    671 #if defined(VMSWAP)
    672 		    + swapcluster_nused(&swc)
    673 #endif /* defined(VMSWAP) */
    674 		    >= uvmexp.freetarg << 2 ||
    675 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    676 			UVMHIST_LOG(pdhist,"  met free target: "
    677 				    "exit loop", 0, 0, 0, 0);
    678 			break;
    679 		}
    680 
    681 		/*
    682 		 * first we have the pdpolicy select a victim page
    683 		 * and attempt to lock the object that the page
    684 		 * belongs to.  if our attempt fails we skip on to
    685 		 * the next page (no harm done).  it is important to
    686 		 * "try" locking the object as we are locking in the
    687 		 * wrong order (pageq -> object) and we don't want to
    688 		 * deadlock.
    689 		 *
    690 		 * the only time we expect to see an ownerless page
    691 		 * (i.e. a page with no uobject and !PG_ANON) is if an
    692 		 * anon has loaned a page from a uvm_object and the
    693 		 * uvm_object has dropped the ownership.  in that
    694 		 * case, the anon can "take over" the loaned page
    695 		 * and make it its own.
    696 		 */
    697 
    698 		p = uvmpdpol_selectvictim(&slock);
    699 		if (p == NULL) {
    700 			break;
    701 		}
    702 		KASSERT(uvmpdpol_pageisqueued_p(p));
    703 		KASSERT(uvm_page_owner_locked_p(p, true));
    704 		KASSERT(p->wire_count == 0);
    705 
    706 		/*
    707 		 * we are below target and have a new page to consider.
    708 		 */
    709 
    710 		anon = p->uanon;
    711 		uobj = p->uobject;
    712 
    713 		if (p->flags & PG_BUSY) {
    714 			rw_exit(slock);
    715 			uvmexp.pdbusy++;
    716 			continue;
    717 		}
    718 
    719 		/* does the page belong to an object? */
    720 		if (uobj != NULL) {
    721 			uvmexp.pdobscan++;
    722 		} else {
    723 #if defined(VMSWAP)
    724 			KASSERT(anon != NULL);
    725 			uvmexp.pdanscan++;
    726 #else /* defined(VMSWAP) */
    727 			panic("%s: anon", __func__);
    728 #endif /* defined(VMSWAP) */
    729 		}
    730 
    731 
    732 		/*
    733 		 * we now have the object locked.
    734 		 * if the page is not swap-backed, call the object's
    735 		 * pager to flush and free the page.
    736 		 */
    737 
    738 #if defined(READAHEAD_STATS)
    739 		if ((p->flags & PG_READAHEAD) != 0) {
    740 			p->flags &= ~PG_READAHEAD;
    741 			uvm_ra_miss.ev_count++;
    742 		}
    743 #endif /* defined(READAHEAD_STATS) */
    744 
    745 		if ((p->flags & PG_SWAPBACKED) == 0) {
    746 			KASSERT(uobj != NULL);
    747 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    748 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    749 			continue;
    750 		}
    751 
    752 		/*
    753 		 * the page is swap-backed.  remove all the permissions
    754 		 * from the page so we can sync the modified info
    755 		 * without any race conditions.  if the page is clean
    756 		 * we can free it now and continue.
    757 		 */
    758 
    759 		pmap_page_protect(p, VM_PROT_NONE);
    760 		if (uvm_pagegetdirty(p) == UVM_PAGE_STATUS_UNKNOWN) {
    761 			if (pmap_clear_modify(p)) {
    762 				uvm_pagemarkdirty(p, UVM_PAGE_STATUS_DIRTY);
    763 			} else {
    764 				uvm_pagemarkdirty(p, UVM_PAGE_STATUS_CLEAN);
    765 			}
    766 		}
    767 		if (uvm_pagegetdirty(p) != UVM_PAGE_STATUS_DIRTY) {
    768 			int slot;
    769 			int pageidx;
    770 
    771 			pageidx = p->offset >> PAGE_SHIFT;
    772 			uvm_pagefree(p);
    773 			atomic_inc_uint(&uvmexp.pdfreed);
    774 
    775 			/*
    776 			 * for anons, we need to remove the page
    777 			 * from the anon ourselves.  for aobjs,
    778 			 * pagefree did that for us.
    779 			 */
    780 
    781 			if (anon) {
    782 				KASSERT(anon->an_swslot != 0);
    783 				anon->an_page = NULL;
    784 				slot = anon->an_swslot;
    785 			} else {
    786 				slot = uao_find_swslot(uobj, pageidx);
    787 			}
    788 			if (slot > 0) {
    789 				/* this page is now only in swap. */
    790 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    791 				atomic_inc_uint(&uvmexp.swpgonly);
    792 			}
    793 			rw_exit(slock);
    794 			continue;
    795 		}
    796 
    797 #if defined(VMSWAP)
    798 		/*
    799 		 * this page is dirty, skip it if we'll have met our
    800 		 * free target when all the current pageouts complete.
    801 		 */
    802 
    803 		if (uvm_availmem(false) + uvmexp.paging >
    804 		    uvmexp.freetarg << 2) {
    805 			rw_exit(slock);
    806 			continue;
    807 		}
    808 
    809 		/*
    810 		 * free any swap space allocated to the page since
    811 		 * we'll have to write it again with its new data.
    812 		 */
    813 
    814 		uvmpd_dropswap(p);
    815 
    816 		/*
    817 		 * start new swap pageout cluster (if necessary).
    818 		 *
    819 		 * if swap is full reactivate this page so that
    820 		 * we eventually cycle all pages through the
    821 		 * inactive queue.
    822 		 */
    823 
    824 		if (swapcluster_allocslots(&swc)) {
    825 			dirtyreacts++;
    826 			uvm_pagelock(p);
    827 			uvm_pageactivate(p);
    828 			uvm_pageunlock(p);
    829 			rw_exit(slock);
    830 			continue;
    831 		}
    832 
    833 		/*
    834 		 * at this point, we're definitely going reuse this
    835 		 * page.  mark the page busy and delayed-free.
    836 		 * we should remove the page from the page queues
    837 		 * so we don't ever look at it again.
    838 		 * adjust counters and such.
    839 		 */
    840 
    841 		p->flags |= PG_BUSY;
    842 		UVM_PAGE_OWN(p, "scan_queue");
    843 		p->flags |= PG_PAGEOUT;
    844 		uvmexp.pgswapout++;
    845 
    846 		uvm_pagelock(p);
    847 		uvm_pagedequeue(p);
    848 		uvm_pageunlock(p);
    849 
    850 		/*
    851 		 * add the new page to the cluster.
    852 		 */
    853 
    854 		if (swapcluster_add(&swc, p)) {
    855 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    856 			UVM_PAGE_OWN(p, NULL);
    857 			dirtyreacts++;
    858 			uvm_pagelock(p);
    859 			uvm_pageactivate(p);
    860 			uvm_pageunlock(p);
    861 			rw_exit(slock);
    862 			continue;
    863 		}
    864 		rw_exit(slock);
    865 
    866 		swapcluster_flush(&swc, false);
    867 
    868 		/*
    869 		 * the pageout is in progress.  bump counters and set up
    870 		 * for the next loop.
    871 		 */
    872 
    873 		atomic_inc_uint(&uvmexp.pdpending);
    874 
    875 #else /* defined(VMSWAP) */
    876 		uvm_pagelock(p);
    877 		uvm_pageactivate(p);
    878 		uvm_pageunlock(p);
    879 		rw_exit(slock);
    880 #endif /* defined(VMSWAP) */
    881 	}
    882 
    883 	uvmpdpol_scanfini();
    884 
    885 #if defined(VMSWAP)
    886 	swapcluster_flush(&swc, true);
    887 #endif /* defined(VMSWAP) */
    888 }
    889 
    890 /*
    891  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    892  */
    893 
    894 static void
    895 uvmpd_scan(void)
    896 {
    897 	int swap_shortage, pages_freed, fpages;
    898 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    899 
    900 	uvmexp.pdrevs++;
    901 
    902 	/*
    903 	 * work on meeting our targets.   first we work on our free target
    904 	 * by converting inactive pages into free pages.  then we work on
    905 	 * meeting our inactive target by converting active pages to
    906 	 * inactive ones.
    907 	 */
    908 
    909 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    910 
    911 	pages_freed = uvmexp.pdfreed;
    912 	uvmpd_scan_queue();
    913 	pages_freed = uvmexp.pdfreed - pages_freed;
    914 
    915 	/*
    916 	 * detect if we're not going to be able to page anything out
    917 	 * until we free some swap resources from active pages.
    918 	 */
    919 
    920 	swap_shortage = 0;
    921 	fpages = uvm_availmem(false);
    922 	if (fpages < uvmexp.freetarg &&
    923 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    924 	    !uvm_swapisfull() &&
    925 	    pages_freed == 0) {
    926 		swap_shortage = uvmexp.freetarg - fpages;
    927 	}
    928 
    929 	uvmpdpol_balancequeue(swap_shortage);
    930 
    931 	/*
    932 	 * if still below the minimum target, try unloading kernel
    933 	 * modules.
    934 	 */
    935 
    936 	if (uvm_availmem(false) < uvmexp.freemin) {
    937 		module_thread_kick();
    938 	}
    939 }
    940 
    941 /*
    942  * uvm_reclaimable: decide whether to wait for pagedaemon.
    943  *
    944  * => return true if it seems to be worth to do uvm_wait.
    945  *
    946  * XXX should be tunable.
    947  * XXX should consider pools, etc?
    948  */
    949 
    950 bool
    951 uvm_reclaimable(void)
    952 {
    953 	int filepages;
    954 	int active, inactive;
    955 
    956 	/*
    957 	 * if swap is not full, no problem.
    958 	 */
    959 
    960 	if (!uvm_swapisfull()) {
    961 		return true;
    962 	}
    963 
    964 	/*
    965 	 * file-backed pages can be reclaimed even when swap is full.
    966 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    967 	 * NB: filepages calculation does not exclude EXECPAGES - intentional.
    968 	 *
    969 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    970 	 *
    971 	 * XXX should consider about other reclaimable memory.
    972 	 * XXX ie. pools, traditional buffer cache.
    973 	 */
    974 
    975 	cpu_count_sync(false);
    976 	filepages = (int)(cpu_count_get(CPU_COUNT_FILECLEAN) +
    977 	    cpu_count_get(CPU_COUNT_FILEUNKNOWN) +
    978 	    cpu_count_get(CPU_COUNT_FILEDIRTY) - uvmexp.wired);
    979 	uvm_estimatepageable(&active, &inactive);
    980 	if (filepages >= MIN((active + inactive) >> 4,
    981 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
    982 		return true;
    983 	}
    984 
    985 	/*
    986 	 * kill the process, fail allocation, etc..
    987 	 */
    988 
    989 	return false;
    990 }
    991 
    992 void
    993 uvm_estimatepageable(int *active, int *inactive)
    994 {
    995 
    996 	uvmpdpol_estimatepageable(active, inactive);
    997 }
    998 
    999 
   1000 /*
   1001  * Use a separate thread for draining pools.
   1002  * This work can't done from the main pagedaemon thread because
   1003  * some pool allocators need to take vm_map locks.
   1004  */
   1005 
   1006 static void
   1007 uvmpd_pool_drain_thread(void *arg)
   1008 {
   1009 	struct pool *firstpool, *curpool;
   1010 	int bufcnt, lastslept;
   1011 	bool cycled;
   1012 
   1013 	firstpool = NULL;
   1014 	cycled = true;
   1015 	for (;;) {
   1016 		/*
   1017 		 * sleep until awoken by the pagedaemon.
   1018 		 */
   1019 		mutex_enter(&uvmpd_lock);
   1020 		if (!uvmpd_pool_drain_run) {
   1021 			lastslept = getticks();
   1022 			cv_wait(&uvmpd_pool_drain_cv, &uvmpd_lock);
   1023 			if (getticks() != lastslept) {
   1024 				cycled = false;
   1025 				firstpool = NULL;
   1026 			}
   1027 		}
   1028 		uvmpd_pool_drain_run = false;
   1029 		mutex_exit(&uvmpd_lock);
   1030 
   1031 		/*
   1032 		 * rate limit draining, otherwise in desperate circumstances
   1033 		 * this can totally saturate the system with xcall activity.
   1034 		 */
   1035 		if (cycled) {
   1036 			kpause("uvmpdlmt", false, 1, NULL);
   1037 			cycled = false;
   1038 			firstpool = NULL;
   1039 		}
   1040 
   1041 		/*
   1042 		 * drain and temporarily disable the freelist cache.
   1043 		 */
   1044 		uvm_pgflcache_pause();
   1045 
   1046 		/*
   1047 		 * kill unused metadata buffers.
   1048 		 */
   1049 		bufcnt = uvmexp.freetarg - uvm_availmem(false);
   1050 		if (bufcnt < 0)
   1051 			bufcnt = 0;
   1052 
   1053 		mutex_enter(&bufcache_lock);
   1054 		buf_drain(bufcnt << PAGE_SHIFT);
   1055 		mutex_exit(&bufcache_lock);
   1056 
   1057 		/*
   1058 		 * drain a pool, and then re-enable the freelist cache.
   1059 		 */
   1060 		(void)pool_drain(&curpool);
   1061 		KASSERT(curpool != NULL);
   1062 		if (firstpool == NULL) {
   1063 			firstpool = curpool;
   1064 		} else if (firstpool == curpool) {
   1065 			cycled = true;
   1066 		}
   1067 		uvm_pgflcache_resume();
   1068 	}
   1069 	/*NOTREACHED*/
   1070 }
   1071 
   1072 static void
   1073 uvmpd_pool_drain_wakeup(void)
   1074 {
   1075 
   1076 	mutex_enter(&uvmpd_lock);
   1077 	uvmpd_pool_drain_run = true;
   1078 	cv_signal(&uvmpd_pool_drain_cv);
   1079 	mutex_exit(&uvmpd_lock);
   1080 }
   1081