Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.133
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.133 2021/04/17 21:37:21 mrg Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     37  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_pdaemon.c: the page daemon
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.133 2021/04/17 21:37:21 mrg Exp $");
     70 
     71 #include "opt_uvmhist.h"
     72 #include "opt_readahead.h"
     73 
     74 #define	__RWLOCK_PRIVATE
     75 
     76 #include <sys/param.h>
     77 #include <sys/proc.h>
     78 #include <sys/systm.h>
     79 #include <sys/kernel.h>
     80 #include <sys/pool.h>
     81 #include <sys/buf.h>
     82 #include <sys/module.h>
     83 #include <sys/atomic.h>
     84 #include <sys/kthread.h>
     85 
     86 #include <uvm/uvm.h>
     87 #include <uvm/uvm_pdpolicy.h>
     88 #include <uvm/uvm_pgflcache.h>
     89 
     90 #ifdef UVMHIST
     91 #ifndef UVMHIST_PDHIST_SIZE
     92 #define UVMHIST_PDHIST_SIZE 100
     93 #endif
     94 static struct kern_history_ent pdhistbuf[UVMHIST_PDHIST_SIZE];
     95 UVMHIST_DEFINE(pdhist) = UVMHIST_INITIALIZER(pdhisthist, pdhistbuf);
     96 #endif
     97 
     98 /*
     99  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
    100  * in a pass thru the inactive list when swap is full.  the value should be
    101  * "small"... if it's too large we'll cycle the active pages thru the inactive
    102  * queue too quickly to for them to be referenced and avoid being freed.
    103  */
    104 
    105 #define	UVMPD_NUMDIRTYREACTS	16
    106 
    107 /*
    108  * local prototypes
    109  */
    110 
    111 static void	uvmpd_scan(void);
    112 static void	uvmpd_scan_queue(void);
    113 static void	uvmpd_tune(void);
    114 static void	uvmpd_pool_drain_thread(void *);
    115 static void	uvmpd_pool_drain_wakeup(void);
    116 
    117 static unsigned int uvm_pagedaemon_waiters;
    118 
    119 /* State for the pool drainer thread */
    120 static kmutex_t uvmpd_lock __cacheline_aligned;
    121 static kcondvar_t uvmpd_pool_drain_cv;
    122 static bool uvmpd_pool_drain_run = false;
    123 
    124 /*
    125  * XXX hack to avoid hangs when large processes fork.
    126  */
    127 u_int uvm_extrapages;
    128 
    129 /*
    130  * uvm_wait: wait (sleep) for the page daemon to free some pages
    131  *
    132  * => should be called with all locks released
    133  * => should _not_ be called by the page daemon (to avoid deadlock)
    134  */
    135 
    136 void
    137 uvm_wait(const char *wmsg)
    138 {
    139 	int timo = 0;
    140 
    141 	if (uvm.pagedaemon_lwp == NULL)
    142 		panic("out of memory before the pagedaemon thread exists");
    143 
    144 	mutex_spin_enter(&uvmpd_lock);
    145 
    146 	/*
    147 	 * check for page daemon going to sleep (waiting for itself)
    148 	 */
    149 
    150 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    151 		/*
    152 		 * now we have a problem: the pagedaemon wants to go to
    153 		 * sleep until it frees more memory.   but how can it
    154 		 * free more memory if it is asleep?  that is a deadlock.
    155 		 * we have two options:
    156 		 *  [1] panic now
    157 		 *  [2] put a timeout on the sleep, thus causing the
    158 		 *      pagedaemon to only pause (rather than sleep forever)
    159 		 *
    160 		 * note that option [2] will only help us if we get lucky
    161 		 * and some other process on the system breaks the deadlock
    162 		 * by exiting or freeing memory (thus allowing the pagedaemon
    163 		 * to continue).  for now we panic if DEBUG is defined,
    164 		 * otherwise we hope for the best with option [2] (better
    165 		 * yet, this should never happen in the first place!).
    166 		 */
    167 
    168 		printf("pagedaemon: deadlock detected!\n");
    169 		timo = hz >> 3;		/* set timeout */
    170 #if defined(DEBUG)
    171 		/* DEBUG: panic so we can debug it */
    172 		panic("pagedaemon deadlock");
    173 #endif
    174 	}
    175 
    176 	uvm_pagedaemon_waiters++;
    177 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    178 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvmpd_lock, false, wmsg, timo);
    179 }
    180 
    181 /*
    182  * uvm_kick_pdaemon: perform checks to determine if we need to
    183  * give the pagedaemon a nudge, and do so if necessary.
    184  */
    185 
    186 void
    187 uvm_kick_pdaemon(void)
    188 {
    189 	int fpages = uvm_availmem(false);
    190 
    191 	if (fpages + uvmexp.paging < uvmexp.freemin ||
    192 	    (fpages + uvmexp.paging < uvmexp.freetarg &&
    193 	     uvmpdpol_needsscan_p()) ||
    194 	     uvm_km_va_starved_p()) {
    195 	     	mutex_spin_enter(&uvmpd_lock);
    196 		wakeup(&uvm.pagedaemon);
    197 	     	mutex_spin_exit(&uvmpd_lock);
    198 	}
    199 }
    200 
    201 /*
    202  * uvmpd_tune: tune paging parameters
    203  *
    204  * => called when ever memory is added (or removed?) to the system
    205  */
    206 
    207 static void
    208 uvmpd_tune(void)
    209 {
    210 	int val;
    211 
    212 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    213 
    214 	/*
    215 	 * try to keep 0.5% of available RAM free, but limit to between
    216 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
    217 	 */
    218 	val = uvmexp.npages / 200;
    219 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
    220 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
    221 	val *= ncpu;
    222 
    223 	/* Make sure there's always a user page free. */
    224 	if (val < uvmexp.reserve_kernel + 1)
    225 		val = uvmexp.reserve_kernel + 1;
    226 	uvmexp.freemin = val;
    227 
    228 	/* Calculate free target. */
    229 	val = (uvmexp.freemin * 4) / 3;
    230 	if (val <= uvmexp.freemin)
    231 		val = uvmexp.freemin + 1;
    232 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
    233 
    234 	uvmexp.wiredmax = uvmexp.npages / 3;
    235 	UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
    236 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    237 }
    238 
    239 /*
    240  * uvm_pageout: the main loop for the pagedaemon
    241  */
    242 
    243 void
    244 uvm_pageout(void *arg)
    245 {
    246 	int npages = 0;
    247 	int extrapages = 0;
    248 	int fpages;
    249 
    250 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    251 
    252 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    253 
    254 	mutex_init(&uvmpd_lock, MUTEX_DEFAULT, IPL_VM);
    255 	cv_init(&uvmpd_pool_drain_cv, "pooldrain");
    256 
    257 	/* Create the pool drainer kernel thread. */
    258 	if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL,
    259 	    uvmpd_pool_drain_thread, NULL, NULL, "pooldrain"))
    260 		panic("fork pooldrain");
    261 
    262 	/*
    263 	 * ensure correct priority and set paging parameters...
    264 	 */
    265 
    266 	uvm.pagedaemon_lwp = curlwp;
    267 	npages = uvmexp.npages;
    268 	uvmpd_tune();
    269 
    270 	/*
    271 	 * main loop
    272 	 */
    273 
    274 	for (;;) {
    275 		bool needsscan, needsfree, kmem_va_starved;
    276 
    277 		kmem_va_starved = uvm_km_va_starved_p();
    278 
    279 		mutex_spin_enter(&uvmpd_lock);
    280 		if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
    281 		    !kmem_va_starved) {
    282 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    283 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    284 			    &uvmpd_lock, false, "pgdaemon", 0);
    285 			uvmexp.pdwoke++;
    286 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    287 		} else {
    288 			mutex_spin_exit(&uvmpd_lock);
    289 		}
    290 
    291 		/*
    292 		 * now recompute inactive count
    293 		 */
    294 
    295 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    296 			npages = uvmexp.npages;
    297 			extrapages = uvm_extrapages;
    298 			uvmpd_tune();
    299 		}
    300 
    301 		uvmpdpol_tune();
    302 
    303 		/*
    304 		 * Estimate a hint.  Note that bufmem are returned to
    305 		 * system only when entire pool page is empty.
    306 		 */
    307 		fpages = uvm_availmem(false);
    308 		UVMHIST_LOG(pdhist,"  free/ftarg=%jd/%jd",
    309 		    fpages, uvmexp.freetarg, 0,0);
    310 
    311 		needsfree = fpages + uvmexp.paging < uvmexp.freetarg;
    312 		needsscan = needsfree || uvmpdpol_needsscan_p();
    313 
    314 		/*
    315 		 * scan if needed
    316 		 */
    317 		if (needsscan) {
    318 			uvmpd_scan();
    319 		}
    320 
    321 		/*
    322 		 * if there's any free memory to be had,
    323 		 * wake up any waiters.
    324 		 */
    325 		if (uvm_availmem(false) > uvmexp.reserve_kernel ||
    326 		    uvmexp.paging == 0) {
    327 			mutex_spin_enter(&uvmpd_lock);
    328 			wakeup(&uvmexp.free);
    329 			uvm_pagedaemon_waiters = 0;
    330 			mutex_spin_exit(&uvmpd_lock);
    331 		}
    332 
    333 		/*
    334 		 * scan done.  if we don't need free memory, we're done.
    335 		 */
    336 
    337 		if (!needsfree && !kmem_va_starved)
    338 			continue;
    339 
    340 		/*
    341 		 * kick the pool drainer thread.
    342 		 */
    343 
    344 		uvmpd_pool_drain_wakeup();
    345 	}
    346 	/*NOTREACHED*/
    347 }
    348 
    349 void
    350 uvm_pageout_start(int npages)
    351 {
    352 
    353 	atomic_add_int(&uvmexp.paging, npages);
    354 }
    355 
    356 void
    357 uvm_pageout_done(int npages)
    358 {
    359 
    360 	KASSERT(atomic_load_relaxed(&uvmexp.paging) >= npages);
    361 
    362 	if (npages == 0) {
    363 		return;
    364 	}
    365 
    366 	atomic_add_int(&uvmexp.paging, -npages);
    367 
    368 	/*
    369 	 * wake up either of pagedaemon or LWPs waiting for it.
    370 	 */
    371 
    372 	mutex_spin_enter(&uvmpd_lock);
    373 	if (uvm_availmem(false) <= uvmexp.reserve_kernel) {
    374 		wakeup(&uvm.pagedaemon);
    375 	} else if (uvm_pagedaemon_waiters != 0) {
    376 		wakeup(&uvmexp.free);
    377 		uvm_pagedaemon_waiters = 0;
    378 	}
    379 	mutex_spin_exit(&uvmpd_lock);
    380 }
    381 
    382 static krwlock_t *
    383 uvmpd_page_owner_lock(struct vm_page *pg)
    384 {
    385 	struct uvm_object *uobj = pg->uobject;
    386 	struct vm_anon *anon = pg->uanon;
    387 	krwlock_t *slock;
    388 
    389 	KASSERT(mutex_owned(&pg->interlock));
    390 
    391 #ifdef DEBUG
    392 	if (uobj == (void *)0xdeadbeef || anon == (void *)0xdeadbeef) {
    393 		return NULL;
    394 	}
    395 #endif
    396 	if (uobj != NULL) {
    397 		slock = uobj->vmobjlock;
    398 		KASSERTMSG(slock != NULL, "pg %p uobj %p, NULL lock", pg, uobj);
    399 	} else if (anon != NULL) {
    400 		slock = anon->an_lock;
    401 		KASSERTMSG(slock != NULL, "pg %p anon %p, NULL lock", pg, anon);
    402 	} else {
    403 		slock = NULL;
    404 	}
    405 	return slock;
    406 }
    407 
    408 /*
    409  * uvmpd_trylockowner: trylock the page's owner.
    410  *
    411  * => called with page interlock held.
    412  * => resolve orphaned O->A loaned page.
    413  * => return the locked mutex on success.  otherwise, return NULL.
    414  */
    415 
    416 krwlock_t *
    417 uvmpd_trylockowner(struct vm_page *pg)
    418 {
    419 	krwlock_t *slock, *heldslock;
    420 
    421 	KASSERT(mutex_owned(&pg->interlock));
    422 
    423 	slock = uvmpd_page_owner_lock(pg);
    424 	if (slock == NULL) {
    425 		/* Page may be in state of flux - ignore. */
    426 		mutex_exit(&pg->interlock);
    427 		return NULL;
    428 	}
    429 
    430 	if (rw_tryenter(slock, RW_WRITER)) {
    431 		goto success;
    432 	}
    433 
    434 	/*
    435 	 * The try-lock didn't work, so now do a blocking lock after
    436 	 * dropping the page interlock.  Prevent the owner lock from
    437 	 * being freed by taking a hold on it first.
    438 	 */
    439 
    440 	rw_obj_hold(slock);
    441 	mutex_exit(&pg->interlock);
    442 	rw_enter(slock, RW_WRITER);
    443 	heldslock = slock;
    444 
    445 	/*
    446 	 * Now we hold some owner lock.  Check if the lock we hold
    447 	 * is still the lock for the owner of the page.
    448 	 * If it is then return it, otherwise release it and return NULL.
    449 	 */
    450 
    451 	mutex_enter(&pg->interlock);
    452 	slock = uvmpd_page_owner_lock(pg);
    453 	if (heldslock != slock) {
    454 		rw_exit(heldslock);
    455 		slock = NULL;
    456 	}
    457 	rw_obj_free(heldslock);
    458 	if (slock != NULL) {
    459 success:
    460 		/*
    461 		 * Set PG_ANON if it isn't set already.
    462 		 */
    463 		if (pg->uobject == NULL && (pg->flags & PG_ANON) == 0) {
    464 			KASSERT(pg->loan_count > 0);
    465 			pg->loan_count--;
    466 			pg->flags |= PG_ANON;
    467 			/* anon now owns it */
    468 		}
    469 	}
    470 	mutex_exit(&pg->interlock);
    471 	return slock;
    472 }
    473 
    474 #if defined(VMSWAP)
    475 struct swapcluster {
    476 	int swc_slot;
    477 	int swc_nallocated;
    478 	int swc_nused;
    479 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    480 };
    481 
    482 static void
    483 swapcluster_init(struct swapcluster *swc)
    484 {
    485 
    486 	swc->swc_slot = 0;
    487 	swc->swc_nused = 0;
    488 }
    489 
    490 static int
    491 swapcluster_allocslots(struct swapcluster *swc)
    492 {
    493 	int slot;
    494 	int npages;
    495 
    496 	if (swc->swc_slot != 0) {
    497 		return 0;
    498 	}
    499 
    500 	/* Even with strange MAXPHYS, the shift
    501 	   implicitly rounds down to a page. */
    502 	npages = MAXPHYS >> PAGE_SHIFT;
    503 	slot = uvm_swap_alloc(&npages, true);
    504 	if (slot == 0) {
    505 		return ENOMEM;
    506 	}
    507 	swc->swc_slot = slot;
    508 	swc->swc_nallocated = npages;
    509 	swc->swc_nused = 0;
    510 
    511 	return 0;
    512 }
    513 
    514 static int
    515 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    516 {
    517 	int slot;
    518 	struct uvm_object *uobj;
    519 
    520 	KASSERT(swc->swc_slot != 0);
    521 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    522 	KASSERT((pg->flags & PG_SWAPBACKED) != 0);
    523 
    524 	slot = swc->swc_slot + swc->swc_nused;
    525 	uobj = pg->uobject;
    526 	if (uobj == NULL) {
    527 		KASSERT(rw_write_held(pg->uanon->an_lock));
    528 		pg->uanon->an_swslot = slot;
    529 	} else {
    530 		int result;
    531 
    532 		KASSERT(rw_write_held(uobj->vmobjlock));
    533 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    534 		if (result == -1) {
    535 			return ENOMEM;
    536 		}
    537 	}
    538 	swc->swc_pages[swc->swc_nused] = pg;
    539 	swc->swc_nused++;
    540 
    541 	return 0;
    542 }
    543 
    544 static void
    545 swapcluster_flush(struct swapcluster *swc, bool now)
    546 {
    547 	int slot;
    548 	int nused;
    549 	int nallocated;
    550 	int error __diagused;
    551 
    552 	if (swc->swc_slot == 0) {
    553 		return;
    554 	}
    555 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    556 
    557 	slot = swc->swc_slot;
    558 	nused = swc->swc_nused;
    559 	nallocated = swc->swc_nallocated;
    560 
    561 	/*
    562 	 * if this is the final pageout we could have a few
    563 	 * unused swap blocks.  if so, free them now.
    564 	 */
    565 
    566 	if (nused < nallocated) {
    567 		if (!now) {
    568 			return;
    569 		}
    570 		uvm_swap_free(slot + nused, nallocated - nused);
    571 	}
    572 
    573 	/*
    574 	 * now start the pageout.
    575 	 */
    576 
    577 	if (nused > 0) {
    578 		uvmexp.pdpageouts++;
    579 		uvm_pageout_start(nused);
    580 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    581 		KASSERT(error == 0 || error == ENOMEM);
    582 	}
    583 
    584 	/*
    585 	 * zero swslot to indicate that we are
    586 	 * no longer building a swap-backed cluster.
    587 	 */
    588 
    589 	swc->swc_slot = 0;
    590 	swc->swc_nused = 0;
    591 }
    592 
    593 static int
    594 swapcluster_nused(struct swapcluster *swc)
    595 {
    596 
    597 	return swc->swc_nused;
    598 }
    599 
    600 /*
    601  * uvmpd_dropswap: free any swap allocated to this page.
    602  *
    603  * => called with owner locked.
    604  * => return true if a page had an associated slot.
    605  */
    606 
    607 bool
    608 uvmpd_dropswap(struct vm_page *pg)
    609 {
    610 	bool result = false;
    611 	struct vm_anon *anon = pg->uanon;
    612 
    613 	if ((pg->flags & PG_ANON) && anon->an_swslot) {
    614 		uvm_swap_free(anon->an_swslot, 1);
    615 		anon->an_swslot = 0;
    616 		uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    617 		result = true;
    618 	} else if (pg->flags & PG_AOBJ) {
    619 		int slot = uao_set_swslot(pg->uobject,
    620 		    pg->offset >> PAGE_SHIFT, 0);
    621 		if (slot) {
    622 			uvm_swap_free(slot, 1);
    623 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    624 			result = true;
    625 		}
    626 	}
    627 
    628 	return result;
    629 }
    630 
    631 #endif /* defined(VMSWAP) */
    632 
    633 /*
    634  * uvmpd_scan_queue: scan an replace candidate list for pages
    635  * to clean or free.
    636  *
    637  * => we work on meeting our free target by converting inactive pages
    638  *    into free pages.
    639  * => we handle the building of swap-backed clusters
    640  */
    641 
    642 static void
    643 uvmpd_scan_queue(void)
    644 {
    645 	struct vm_page *p;
    646 	struct uvm_object *uobj;
    647 	struct vm_anon *anon;
    648 #if defined(VMSWAP)
    649 	struct swapcluster swc;
    650 #endif /* defined(VMSWAP) */
    651 	int dirtyreacts;
    652 	krwlock_t *slock;
    653 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    654 
    655 	/*
    656 	 * swslot is non-zero if we are building a swap cluster.  we want
    657 	 * to stay in the loop while we have a page to scan or we have
    658 	 * a swap-cluster to build.
    659 	 */
    660 
    661 #if defined(VMSWAP)
    662 	swapcluster_init(&swc);
    663 #endif /* defined(VMSWAP) */
    664 
    665 	dirtyreacts = 0;
    666 	uvmpdpol_scaninit();
    667 
    668 	while (/* CONSTCOND */ 1) {
    669 
    670 		/*
    671 		 * see if we've met the free target.
    672 		 */
    673 
    674 		if (uvm_availmem(false) + uvmexp.paging
    675 #if defined(VMSWAP)
    676 		    + swapcluster_nused(&swc)
    677 #endif /* defined(VMSWAP) */
    678 		    >= uvmexp.freetarg << 2 ||
    679 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    680 			UVMHIST_LOG(pdhist,"  met free target: "
    681 				    "exit loop", 0, 0, 0, 0);
    682 			break;
    683 		}
    684 
    685 		/*
    686 		 * first we have the pdpolicy select a victim page
    687 		 * and attempt to lock the object that the page
    688 		 * belongs to.  if our attempt fails we skip on to
    689 		 * the next page (no harm done).  it is important to
    690 		 * "try" locking the object as we are locking in the
    691 		 * wrong order (pageq -> object) and we don't want to
    692 		 * deadlock.
    693 		 *
    694 		 * the only time we expect to see an ownerless page
    695 		 * (i.e. a page with no uobject and !PG_ANON) is if an
    696 		 * anon has loaned a page from a uvm_object and the
    697 		 * uvm_object has dropped the ownership.  in that
    698 		 * case, the anon can "take over" the loaned page
    699 		 * and make it its own.
    700 		 */
    701 
    702 		p = uvmpdpol_selectvictim(&slock);
    703 		if (p == NULL) {
    704 			break;
    705 		}
    706 		KASSERT(uvmpdpol_pageisqueued_p(p));
    707 		KASSERT(uvm_page_owner_locked_p(p, true));
    708 		KASSERT(p->wire_count == 0);
    709 
    710 		/*
    711 		 * we are below target and have a new page to consider.
    712 		 */
    713 
    714 		anon = p->uanon;
    715 		uobj = p->uobject;
    716 
    717 		if (p->flags & PG_BUSY) {
    718 			rw_exit(slock);
    719 			uvmexp.pdbusy++;
    720 			continue;
    721 		}
    722 
    723 		/* does the page belong to an object? */
    724 		if (uobj != NULL) {
    725 			uvmexp.pdobscan++;
    726 		} else {
    727 #if defined(VMSWAP)
    728 			KASSERT(anon != NULL);
    729 			uvmexp.pdanscan++;
    730 #else /* defined(VMSWAP) */
    731 			panic("%s: anon", __func__);
    732 #endif /* defined(VMSWAP) */
    733 		}
    734 
    735 
    736 		/*
    737 		 * we now have the object locked.
    738 		 * if the page is not swap-backed, call the object's
    739 		 * pager to flush and free the page.
    740 		 */
    741 
    742 #if defined(READAHEAD_STATS)
    743 		if ((p->flags & PG_READAHEAD) != 0) {
    744 			p->flags &= ~PG_READAHEAD;
    745 			uvm_ra_miss.ev_count++;
    746 		}
    747 #endif /* defined(READAHEAD_STATS) */
    748 
    749 		if ((p->flags & PG_SWAPBACKED) == 0) {
    750 			KASSERT(uobj != NULL);
    751 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    752 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    753 			continue;
    754 		}
    755 
    756 		/*
    757 		 * the page is swap-backed.  remove all the permissions
    758 		 * from the page so we can sync the modified info
    759 		 * without any race conditions.  if the page is clean
    760 		 * we can free it now and continue.
    761 		 */
    762 
    763 		pmap_page_protect(p, VM_PROT_NONE);
    764 		if (uvm_pagegetdirty(p) == UVM_PAGE_STATUS_UNKNOWN) {
    765 			if (pmap_clear_modify(p)) {
    766 				uvm_pagemarkdirty(p, UVM_PAGE_STATUS_DIRTY);
    767 			} else {
    768 				uvm_pagemarkdirty(p, UVM_PAGE_STATUS_CLEAN);
    769 			}
    770 		}
    771 		if (uvm_pagegetdirty(p) != UVM_PAGE_STATUS_DIRTY) {
    772 			int slot;
    773 			int pageidx;
    774 
    775 			pageidx = p->offset >> PAGE_SHIFT;
    776 			uvm_pagefree(p);
    777 			atomic_inc_uint(&uvmexp.pdfreed);
    778 
    779 			/*
    780 			 * for anons, we need to remove the page
    781 			 * from the anon ourselves.  for aobjs,
    782 			 * pagefree did that for us.
    783 			 */
    784 
    785 			if (anon) {
    786 				KASSERT(anon->an_swslot != 0);
    787 				anon->an_page = NULL;
    788 				slot = anon->an_swslot;
    789 			} else {
    790 				slot = uao_find_swslot(uobj, pageidx);
    791 			}
    792 			if (slot > 0) {
    793 				/* this page is now only in swap. */
    794 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    795 				atomic_inc_uint(&uvmexp.swpgonly);
    796 			}
    797 			rw_exit(slock);
    798 			continue;
    799 		}
    800 
    801 #if defined(VMSWAP)
    802 		/*
    803 		 * this page is dirty, skip it if we'll have met our
    804 		 * free target when all the current pageouts complete.
    805 		 */
    806 
    807 		if (uvm_availmem(false) + uvmexp.paging >
    808 		    uvmexp.freetarg << 2) {
    809 			rw_exit(slock);
    810 			continue;
    811 		}
    812 
    813 		/*
    814 		 * free any swap space allocated to the page since
    815 		 * we'll have to write it again with its new data.
    816 		 */
    817 
    818 		uvmpd_dropswap(p);
    819 
    820 		/*
    821 		 * start new swap pageout cluster (if necessary).
    822 		 *
    823 		 * if swap is full reactivate this page so that
    824 		 * we eventually cycle all pages through the
    825 		 * inactive queue.
    826 		 */
    827 
    828 		if (swapcluster_allocslots(&swc)) {
    829 			dirtyreacts++;
    830 			uvm_pagelock(p);
    831 			uvm_pageactivate(p);
    832 			uvm_pageunlock(p);
    833 			rw_exit(slock);
    834 			continue;
    835 		}
    836 
    837 		/*
    838 		 * at this point, we're definitely going reuse this
    839 		 * page.  mark the page busy and delayed-free.
    840 		 * we should remove the page from the page queues
    841 		 * so we don't ever look at it again.
    842 		 * adjust counters and such.
    843 		 */
    844 
    845 		p->flags |= PG_BUSY;
    846 		UVM_PAGE_OWN(p, "scan_queue");
    847 		p->flags |= PG_PAGEOUT;
    848 		uvmexp.pgswapout++;
    849 
    850 		uvm_pagelock(p);
    851 		uvm_pagedequeue(p);
    852 		uvm_pageunlock(p);
    853 
    854 		/*
    855 		 * add the new page to the cluster.
    856 		 */
    857 
    858 		if (swapcluster_add(&swc, p)) {
    859 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    860 			UVM_PAGE_OWN(p, NULL);
    861 			dirtyreacts++;
    862 			uvm_pagelock(p);
    863 			uvm_pageactivate(p);
    864 			uvm_pageunlock(p);
    865 			rw_exit(slock);
    866 			continue;
    867 		}
    868 		rw_exit(slock);
    869 
    870 		swapcluster_flush(&swc, false);
    871 
    872 		/*
    873 		 * the pageout is in progress.  bump counters and set up
    874 		 * for the next loop.
    875 		 */
    876 
    877 		atomic_inc_uint(&uvmexp.pdpending);
    878 
    879 #else /* defined(VMSWAP) */
    880 		uvm_pagelock(p);
    881 		uvm_pageactivate(p);
    882 		uvm_pageunlock(p);
    883 		rw_exit(slock);
    884 #endif /* defined(VMSWAP) */
    885 	}
    886 
    887 	uvmpdpol_scanfini();
    888 
    889 #if defined(VMSWAP)
    890 	swapcluster_flush(&swc, true);
    891 #endif /* defined(VMSWAP) */
    892 }
    893 
    894 /*
    895  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    896  */
    897 
    898 static void
    899 uvmpd_scan(void)
    900 {
    901 	int swap_shortage, pages_freed, fpages;
    902 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    903 
    904 	uvmexp.pdrevs++;
    905 
    906 	/*
    907 	 * work on meeting our targets.   first we work on our free target
    908 	 * by converting inactive pages into free pages.  then we work on
    909 	 * meeting our inactive target by converting active pages to
    910 	 * inactive ones.
    911 	 */
    912 
    913 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    914 
    915 	pages_freed = uvmexp.pdfreed;
    916 	uvmpd_scan_queue();
    917 	pages_freed = uvmexp.pdfreed - pages_freed;
    918 
    919 	/*
    920 	 * detect if we're not going to be able to page anything out
    921 	 * until we free some swap resources from active pages.
    922 	 */
    923 
    924 	swap_shortage = 0;
    925 	fpages = uvm_availmem(false);
    926 	if (fpages < uvmexp.freetarg &&
    927 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    928 	    !uvm_swapisfull() &&
    929 	    pages_freed == 0) {
    930 		swap_shortage = uvmexp.freetarg - fpages;
    931 	}
    932 
    933 	uvmpdpol_balancequeue(swap_shortage);
    934 
    935 	/*
    936 	 * if still below the minimum target, try unloading kernel
    937 	 * modules.
    938 	 */
    939 
    940 	if (uvm_availmem(false) < uvmexp.freemin) {
    941 		module_thread_kick();
    942 	}
    943 }
    944 
    945 /*
    946  * uvm_reclaimable: decide whether to wait for pagedaemon.
    947  *
    948  * => return true if it seems to be worth to do uvm_wait.
    949  *
    950  * XXX should be tunable.
    951  * XXX should consider pools, etc?
    952  */
    953 
    954 bool
    955 uvm_reclaimable(void)
    956 {
    957 	int filepages;
    958 	int active, inactive;
    959 
    960 	/*
    961 	 * if swap is not full, no problem.
    962 	 */
    963 
    964 	if (!uvm_swapisfull()) {
    965 		return true;
    966 	}
    967 
    968 	/*
    969 	 * file-backed pages can be reclaimed even when swap is full.
    970 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    971 	 * NB: filepages calculation does not exclude EXECPAGES - intentional.
    972 	 *
    973 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    974 	 *
    975 	 * XXX should consider about other reclaimable memory.
    976 	 * XXX ie. pools, traditional buffer cache.
    977 	 */
    978 
    979 	cpu_count_sync(false);
    980 	filepages = (int)(cpu_count_get(CPU_COUNT_FILECLEAN) +
    981 	    cpu_count_get(CPU_COUNT_FILEUNKNOWN) +
    982 	    cpu_count_get(CPU_COUNT_FILEDIRTY) - uvmexp.wired);
    983 	uvm_estimatepageable(&active, &inactive);
    984 	if (filepages >= MIN((active + inactive) >> 4,
    985 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
    986 		return true;
    987 	}
    988 
    989 	/*
    990 	 * kill the process, fail allocation, etc..
    991 	 */
    992 
    993 	return false;
    994 }
    995 
    996 void
    997 uvm_estimatepageable(int *active, int *inactive)
    998 {
    999 
   1000 	uvmpdpol_estimatepageable(active, inactive);
   1001 }
   1002 
   1003 
   1004 /*
   1005  * Use a separate thread for draining pools.
   1006  * This work can't done from the main pagedaemon thread because
   1007  * some pool allocators need to take vm_map locks.
   1008  */
   1009 
   1010 static void
   1011 uvmpd_pool_drain_thread(void *arg)
   1012 {
   1013 	struct pool *firstpool, *curpool;
   1014 	int bufcnt, lastslept;
   1015 	bool cycled;
   1016 
   1017 	firstpool = NULL;
   1018 	cycled = true;
   1019 	for (;;) {
   1020 		/*
   1021 		 * sleep until awoken by the pagedaemon.
   1022 		 */
   1023 		mutex_enter(&uvmpd_lock);
   1024 		if (!uvmpd_pool_drain_run) {
   1025 			lastslept = getticks();
   1026 			cv_wait(&uvmpd_pool_drain_cv, &uvmpd_lock);
   1027 			if (getticks() != lastslept) {
   1028 				cycled = false;
   1029 				firstpool = NULL;
   1030 			}
   1031 		}
   1032 		uvmpd_pool_drain_run = false;
   1033 		mutex_exit(&uvmpd_lock);
   1034 
   1035 		/*
   1036 		 * rate limit draining, otherwise in desperate circumstances
   1037 		 * this can totally saturate the system with xcall activity.
   1038 		 */
   1039 		if (cycled) {
   1040 			kpause("uvmpdlmt", false, 1, NULL);
   1041 			cycled = false;
   1042 			firstpool = NULL;
   1043 		}
   1044 
   1045 		/*
   1046 		 * drain and temporarily disable the freelist cache.
   1047 		 */
   1048 		uvm_pgflcache_pause();
   1049 
   1050 		/*
   1051 		 * kill unused metadata buffers.
   1052 		 */
   1053 		bufcnt = uvmexp.freetarg - uvm_availmem(false);
   1054 		if (bufcnt < 0)
   1055 			bufcnt = 0;
   1056 
   1057 		mutex_enter(&bufcache_lock);
   1058 		buf_drain(bufcnt << PAGE_SHIFT);
   1059 		mutex_exit(&bufcache_lock);
   1060 
   1061 		/*
   1062 		 * drain a pool, and then re-enable the freelist cache.
   1063 		 */
   1064 		(void)pool_drain(&curpool);
   1065 		KASSERT(curpool != NULL);
   1066 		if (firstpool == NULL) {
   1067 			firstpool = curpool;
   1068 		} else if (firstpool == curpool) {
   1069 			cycled = true;
   1070 		}
   1071 		uvm_pgflcache_resume();
   1072 	}
   1073 	/*NOTREACHED*/
   1074 }
   1075 
   1076 static void
   1077 uvmpd_pool_drain_wakeup(void)
   1078 {
   1079 
   1080 	mutex_enter(&uvmpd_lock);
   1081 	uvmpd_pool_drain_run = true;
   1082 	cv_signal(&uvmpd_pool_drain_cv);
   1083 	mutex_exit(&uvmpd_lock);
   1084 }
   1085