Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.14
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.14 1999/03/26 17:33:30 chs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include "opt_uvmhist.h"
     70 
     71 /*
     72  * uvm_pdaemon.c: the page daemon
     73  */
     74 
     75 #include <sys/param.h>
     76 #include <sys/proc.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/pool.h>
     80 
     81 #include <vm/vm.h>
     82 #include <vm/vm_page.h>
     83 #include <vm/vm_kern.h>
     84 
     85 #include <uvm/uvm.h>
     86 
     87 /*
     88  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
     89  * in a pass thru the inactive list when swap is full.  the value should be
     90  * "small"... if it's too large we'll cycle the active pages thru the inactive
     91  * queue too quickly to for them to be referenced and avoid being freed.
     92  */
     93 
     94 #define UVMPD_NUMDIRTYREACTS 16
     95 
     96 
     97 /*
     98  * local prototypes
     99  */
    100 
    101 static void		uvmpd_scan __P((void));
    102 static boolean_t	uvmpd_scan_inactive __P((struct pglist *));
    103 static void		uvmpd_tune __P((void));
    104 
    105 
    106 /*
    107  * uvm_wait: wait (sleep) for the page daemon to free some pages
    108  *
    109  * => should be called with all locks released
    110  * => should _not_ be called by the page daemon (to avoid deadlock)
    111  */
    112 
    113 void uvm_wait(wmsg)
    114 	char *wmsg;
    115 {
    116 	int timo = 0;
    117 	int s = splbio();
    118 
    119 	/*
    120 	 * check for page daemon going to sleep (waiting for itself)
    121 	 */
    122 
    123 	if (curproc == uvm.pagedaemon_proc) {
    124 		/*
    125 		 * now we have a problem: the pagedaemon wants to go to
    126 		 * sleep until it frees more memory.   but how can it
    127 		 * free more memory if it is asleep?  that is a deadlock.
    128 		 * we have two options:
    129 		 *  [1] panic now
    130 		 *  [2] put a timeout on the sleep, thus causing the
    131 		 *      pagedaemon to only pause (rather than sleep forever)
    132 		 *
    133 		 * note that option [2] will only help us if we get lucky
    134 		 * and some other process on the system breaks the deadlock
    135 		 * by exiting or freeing memory (thus allowing the pagedaemon
    136 		 * to continue).  for now we panic if DEBUG is defined,
    137 		 * otherwise we hope for the best with option [2] (better
    138 		 * yet, this should never happen in the first place!).
    139 		 */
    140 
    141 		printf("pagedaemon: deadlock detected!\n");
    142 		timo = hz >> 3;		/* set timeout */
    143 #if defined(DEBUG)
    144 		/* DEBUG: panic so we can debug it */
    145 		panic("pagedaemon deadlock");
    146 #endif
    147 	}
    148 
    149 	simple_lock(&uvm.pagedaemon_lock);
    150 	thread_wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    151 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    152 	    timo);
    153 
    154 	splx(s);
    155 }
    156 
    157 
    158 /*
    159  * uvmpd_tune: tune paging parameters
    160  *
    161  * => called when ever memory is added (or removed?) to the system
    162  * => caller must call with page queues locked
    163  */
    164 
    165 static void
    166 uvmpd_tune()
    167 {
    168 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    169 
    170 	uvmexp.freemin = uvmexp.npages / 20;
    171 
    172 	/* between 16k and 256k */
    173 	/* XXX:  what are these values good for? */
    174 	uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    175 	uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    176 
    177 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    178 	if (uvmexp.freetarg <= uvmexp.freemin)
    179 		uvmexp.freetarg = uvmexp.freemin + 1;
    180 
    181 	/* uvmexp.inactarg: computed in main daemon loop */
    182 
    183 	uvmexp.wiredmax = uvmexp.npages / 3;
    184 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    185 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    186 }
    187 
    188 /*
    189  * uvm_pageout: the main loop for the pagedaemon
    190  */
    191 
    192 void
    193 uvm_pageout()
    194 {
    195 	int npages = 0;
    196 	int s;
    197 	struct uvm_aiodesc *aio, *nextaio;
    198 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    199 
    200 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    201 
    202 	/*
    203 	 * ensure correct priority and set paging parameters...
    204 	 */
    205 
    206 	uvm.pagedaemon_proc = curproc;
    207 	(void) spl0();
    208 	uvm_lock_pageq();
    209 	npages = uvmexp.npages;
    210 	uvmpd_tune();
    211 	uvm_unlock_pageq();
    212 
    213 	/*
    214 	 * main loop
    215 	 */
    216 	while (TRUE) {
    217 
    218 		/*
    219 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    220 		 * we need splbio because we want to make sure the aio_done list
    221 		 * is totally empty before we go to sleep.
    222 		 */
    223 
    224 		s = splbio();
    225 		simple_lock(&uvm.pagedaemon_lock);
    226 
    227 		/*
    228 		 * if we've got done aio's, then bypass the sleep
    229 		 */
    230 
    231 		if (uvm.aio_done.tqh_first == NULL) {
    232 			UVMHIST_LOG(maphist,"  <<SLEEPING>>",0,0,0,0);
    233 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    234 			    &uvm.pagedaemon_lock, FALSE, "daemon_slp", 0);
    235 			uvmexp.pdwoke++;
    236 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    237 
    238 			/* relock pagedaemon_lock, still at splbio */
    239 			simple_lock(&uvm.pagedaemon_lock);
    240 		}
    241 
    242 		/*
    243 		 * check for done aio structures
    244 		 */
    245 
    246 		aio = uvm.aio_done.tqh_first;	/* save current list (if any)*/
    247 		if (aio) {
    248 			TAILQ_INIT(&uvm.aio_done);	/* zero global list */
    249 		}
    250 
    251 		simple_unlock(&uvm.pagedaemon_lock);	/* unlock */
    252 		splx(s);				/* drop splbio */
    253 
    254 		/*
    255 		 * first clear out any pending aios (to free space in case we
    256 		 * want to pageout more stuff).
    257 		 */
    258 
    259 		for (/*null*/; aio != NULL ; aio = nextaio) {
    260 
    261 			uvmexp.paging -= aio->npages;
    262 			nextaio = aio->aioq.tqe_next;
    263 			aio->aiodone(aio);
    264 
    265 		}
    266 
    267 		/* Next, drain pool resources */
    268 		pool_drain(0);
    269 
    270 		/*
    271 		 * now lock page queues and recompute inactive count
    272 		 */
    273 		uvm_lock_pageq();
    274 
    275 		if (npages != uvmexp.npages) {	/* check for new pages? */
    276 			npages = uvmexp.npages;
    277 			uvmpd_tune();
    278 		}
    279 
    280 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    281 		if (uvmexp.inactarg <= uvmexp.freetarg)
    282 			uvmexp.inactarg = uvmexp.freetarg + 1;
    283 
    284 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    285 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    286 		    uvmexp.inactarg);
    287 
    288 		/*
    289 		 * scan if needed
    290 		 * [XXX: note we are reading uvm.free without locking]
    291 		 */
    292 		if (uvmexp.free < uvmexp.freetarg ||
    293 		    uvmexp.inactive < uvmexp.inactarg)
    294 			uvmpd_scan();
    295 
    296 		/*
    297 		 * done scan.  unlock page queues (the only lock we are holding)
    298 		 */
    299 		uvm_unlock_pageq();
    300 
    301 		/*
    302 		 * done!    restart loop.
    303 		 */
    304 		if (uvmexp.free >= uvmexp.reserve_kernel ||
    305 		    uvmexp.paging == 0)
    306 			thread_wakeup(&uvmexp.free);
    307 	}
    308 	/*NOTREACHED*/
    309 }
    310 
    311 /*
    312  * uvmpd_scan_inactive: the first loop of uvmpd_scan broken out into
    313  * 	its own function for ease of reading.
    314  *
    315  * => called with page queues locked
    316  * => we work on meeting our free target by converting inactive pages
    317  *    into free pages.
    318  * => we handle the building of swap-backed clusters
    319  * => we return TRUE if we are exiting because we met our target
    320  */
    321 
    322 static boolean_t
    323 uvmpd_scan_inactive(pglst)
    324 	struct pglist *pglst;
    325 {
    326 	boolean_t retval = FALSE;	/* assume we haven't hit target */
    327 	int s, free, result;
    328 	struct vm_page *p, *nextpg;
    329 	struct uvm_object *uobj;
    330 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
    331 	int npages;
    332 	struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; 	/* XXX: see below */
    333 	int swnpages, swcpages;				/* XXX: see below */
    334 	int swslot;
    335 	struct vm_anon *anon;
    336 	boolean_t swap_backed;
    337 	vaddr_t start;
    338 	int dirtyreacts;
    339 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    340 
    341 	/*
    342 	 * note: we currently keep swap-backed pages on a seperate inactive
    343 	 * list from object-backed pages.   however, merging the two lists
    344 	 * back together again hasn't been ruled out.   thus, we keep our
    345 	 * swap cluster in "swpps" rather than in pps (allows us to mix
    346 	 * clustering types in the event of a mixed inactive queue).
    347 	 */
    348 
    349 	/*
    350 	 * swslot is non-zero if we are building a swap cluster.  we want
    351 	 * to stay in the loop while we have a page to scan or we have
    352 	 * a swap-cluster to build.
    353 	 */
    354 	swslot = 0;
    355 	swnpages = swcpages = 0;
    356 	free = 0;
    357 	dirtyreacts = 0;
    358 
    359 	for (p = pglst->tqh_first ; p != NULL || swslot != 0 ; p = nextpg) {
    360 
    361 		/*
    362 		 * note that p can be NULL iff we have traversed the whole
    363 		 * list and need to do one final swap-backed clustered pageout.
    364 		 */
    365 		if (p) {
    366 			/*
    367 			 * update our copy of "free" and see if we've met
    368 			 * our target
    369 			 */
    370 			s = splimp();
    371 			uvm_lock_fpageq();
    372 			free = uvmexp.free;
    373 			uvm_unlock_fpageq();
    374 			splx(s);
    375 
    376 			if (free + uvmexp.paging >= uvmexp.freetarg << 2 ||
    377 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    378 				UVMHIST_LOG(pdhist,"  met free target: "
    379 				    "exit loop", 0, 0, 0, 0);
    380 				retval = TRUE;		/* hit the target! */
    381 
    382 				if (swslot == 0)
    383 					/* exit now if no swap-i/o pending */
    384 					break;
    385 
    386 				/* set p to null to signal final swap i/o */
    387 				p = NULL;
    388 			}
    389 		}
    390 
    391 		uobj = NULL;	/* be safe and shut gcc up */
    392 		anon = NULL;	/* be safe and shut gcc up */
    393 
    394 		if (p) {	/* if (we have a new page to consider) */
    395 			/*
    396 			 * we are below target and have a new page to consider.
    397 			 */
    398 			uvmexp.pdscans++;
    399 			nextpg = p->pageq.tqe_next;
    400 
    401 			/*
    402 			 * move referenced pages back to active queue and
    403 			 * skip to next page (unlikely to happen since
    404 			 * inactive pages shouldn't have any valid mappings
    405 			 * and we cleared reference before deactivating).
    406 			 */
    407 			if (pmap_is_referenced(PMAP_PGARG(p))) {
    408 				uvm_pageactivate(p);
    409 				uvmexp.pdreact++;
    410 				continue;
    411 			}
    412 
    413 			/*
    414 			 * first we attempt to lock the object that this page
    415 			 * belongs to.  if our attempt fails we skip on to
    416 			 * the next page (no harm done).  it is important to
    417 			 * "try" locking the object as we are locking in the
    418 			 * wrong order (pageq -> object) and we don't want to
    419 			 * get deadlocked.
    420 			 *
    421 			 * the only time we exepct to see an ownerless page
    422 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    423 			 * anon has loaned a page from a uvm_object and the
    424 			 * uvm_object has dropped the ownership.  in that
    425 			 * case, the anon can "take over" the loaned page
    426 			 * and make it its own.
    427 			 */
    428 
    429 			/* is page part of an anon or ownerless ? */
    430 			if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
    431 
    432 				anon = p->uanon;
    433 
    434 #ifdef DIAGNOSTIC
    435 				/* to be on inactive q, page must be part
    436 				 * of _something_ */
    437 				if (anon == NULL)
    438 					panic("pagedaemon: page with no anon "
    439 					    "or object detected - loop 1");
    440 #endif
    441 
    442 				if (!simple_lock_try(&anon->an_lock))
    443 					/* lock failed, skip this page */
    444 					continue;
    445 
    446 				/*
    447 				 * if the page is ownerless, claim it in the
    448 				 * name of "anon"!
    449 				 */
    450 				if ((p->pqflags & PQ_ANON) == 0) {
    451 #ifdef DIAGNOSTIC
    452 					if (p->loan_count < 1)
    453 						panic("pagedaemon: non-loaned "
    454 						    "ownerless page detected -"
    455 						    " loop 1");
    456 #endif
    457 					p->loan_count--;
    458 					p->pqflags |= PQ_ANON;      /* anon now owns it */
    459 				}
    460 
    461 				if (p->flags & PG_BUSY) {
    462 					simple_unlock(&anon->an_lock);
    463 					uvmexp.pdbusy++;
    464 					/* someone else owns page, skip it */
    465 					continue;
    466 				}
    467 
    468 				uvmexp.pdanscan++;
    469 
    470 			} else {
    471 
    472 				uobj = p->uobject;
    473 
    474 				if (!simple_lock_try(&uobj->vmobjlock))
    475 					/* lock failed, skip this page */
    476 					continue;
    477 
    478 				if (p->flags & PG_BUSY) {
    479 					simple_unlock(&uobj->vmobjlock);
    480 					uvmexp.pdbusy++;
    481 					/* someone else owns page, skip it */
    482 					continue;
    483 				}
    484 
    485 				uvmexp.pdobscan++;
    486 			}
    487 
    488 			/*
    489 			 * we now have the object and the page queues locked.
    490 			 * the page is not busy.   if the page is clean we
    491 			 * can free it now and continue.
    492 			 */
    493 
    494 			if (p->flags & PG_CLEAN) {
    495 				if (p->pqflags & PQ_SWAPBACKED) {
    496 					/* this page now lives only in swap */
    497 					simple_lock(&uvm.swap_data_lock);
    498 					uvmexp.swpgonly++;
    499 					simple_unlock(&uvm.swap_data_lock);
    500 				}
    501 
    502 				/* zap all mappings with pmap_page_protect... */
    503 				pmap_page_protect(PMAP_PGARG(p), VM_PROT_NONE);
    504 				uvm_pagefree(p);
    505 				uvmexp.pdfreed++;
    506 
    507 				if (anon) {
    508 #ifdef DIAGNOSTIC
    509 					/*
    510 					 * an anonymous page can only be clean
    511 					 * if it has valid backing store.
    512 					 */
    513 					if (anon->an_swslot == 0)
    514 						panic("pagedaemon: clean anon "
    515 						 "page without backing store?");
    516 #endif
    517 					/* remove from object */
    518 					anon->u.an_page = NULL;
    519 					simple_unlock(&anon->an_lock);
    520 				} else {
    521 					/* pagefree has already removed the
    522 					 * page from the object */
    523 					simple_unlock(&uobj->vmobjlock);
    524 				}
    525 				continue;
    526 			}
    527 
    528 			/*
    529 			 * this page is dirty, skip it if we'll have met our
    530 			 * free target when all the current pageouts complete.
    531 			 */
    532 			if (free + uvmexp.paging > uvmexp.freetarg << 2) {
    533 				if (anon) {
    534 					simple_unlock(&anon->an_lock);
    535 				} else {
    536 					simple_unlock(&uobj->vmobjlock);
    537 				}
    538 				continue;
    539 			}
    540 
    541 			/*
    542 			 * this page is dirty, but we can't page it out
    543 			 * since all pages in swap are only in swap.
    544 			 * reactivate it so that we eventually cycle
    545 			 * all pages thru the inactive queue.
    546 			 */
    547 #ifdef DIAGNOSTIC
    548 			if (uvmexp.swpgonly > uvmexp.swpages) {
    549 				panic("uvmexp.swpgonly botch");
    550 			}
    551 #endif
    552 			if ((p->pqflags & PQ_SWAPBACKED) &&
    553 			    uvmexp.swpgonly == uvmexp.swpages) {
    554 				dirtyreacts++;
    555 				uvm_pageactivate(p);
    556 				if (anon) {
    557 					simple_unlock(&anon->an_lock);
    558 				} else {
    559 					simple_unlock(&uobj->vmobjlock);
    560 				}
    561 				continue;
    562 			}
    563 
    564 			/*
    565 			 * if the page is swap-backed and dirty and swap space
    566 			 * is full, free any swap allocated to the page
    567 			 * so that other pages can be paged out.
    568 			 */
    569 #ifdef DIAGNOSTIC
    570 			if (uvmexp.swpginuse > uvmexp.swpages) {
    571 				panic("uvmexp.swpginuse botch");
    572 			}
    573 #endif
    574 			if ((p->pqflags & PQ_SWAPBACKED) &&
    575 			    uvmexp.swpginuse == uvmexp.swpages) {
    576 
    577 				if ((p->pqflags & PQ_ANON) &&
    578 				    p->uanon->an_swslot) {
    579 					uvm_swap_free(p->uanon->an_swslot, 1);
    580 					p->uanon->an_swslot = 0;
    581 				}
    582 				if (p->pqflags & PQ_AOBJ) {
    583 					uao_dropswap(p->uobject,
    584 						     p->offset >> PAGE_SHIFT);
    585 				}
    586 			}
    587 
    588 			/*
    589 			 * the page we are looking at is dirty.   we must
    590 			 * clean it before it can be freed.  to do this we
    591 			 * first mark the page busy so that no one else will
    592 			 * touch the page.   we write protect all the mappings
    593 			 * of the page so that no one touches it while it is
    594 			 * in I/O.
    595 			 */
    596 
    597 			swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
    598 			p->flags |= PG_BUSY;		/* now we own it */
    599 			UVM_PAGE_OWN(p, "scan_inactive");
    600 			pmap_page_protect(PMAP_PGARG(p), VM_PROT_READ);
    601 			uvmexp.pgswapout++;
    602 
    603 			/*
    604 			 * for swap-backed pages we need to (re)allocate
    605 			 * swap space.
    606 			 */
    607 			if (swap_backed) {
    608 
    609 				/*
    610 				 * free old swap slot (if any)
    611 				 */
    612 				if (anon) {
    613 					if (anon->an_swslot) {
    614 						uvm_swap_free(anon->an_swslot,
    615 						    1);
    616 						anon->an_swslot = 0;
    617 					}
    618 				} else {
    619 					uao_dropswap(uobj,
    620 						     p->offset >> PAGE_SHIFT);
    621 				}
    622 
    623 				/*
    624 				 * start new cluster (if necessary)
    625 				 */
    626 				if (swslot == 0) {
    627 					/* want this much */
    628 					swnpages = MAXBSIZE >> PAGE_SHIFT;
    629 
    630 					swslot = uvm_swap_alloc(&swnpages,
    631 					    TRUE);
    632 
    633 					if (swslot == 0) {
    634 						/* no swap?  give up! */
    635 						p->flags &= ~PG_BUSY;
    636 						UVM_PAGE_OWN(p, NULL);
    637 						if (anon)
    638 							simple_unlock(
    639 							    &anon->an_lock);
    640 						else
    641 							simple_unlock(
    642 							    &uobj->vmobjlock);
    643 						continue;
    644 					}
    645 					swcpages = 0;	/* cluster is empty */
    646 				}
    647 
    648 				/*
    649 				 * add block to cluster
    650 				 */
    651 				swpps[swcpages] = p;
    652 				if (anon)
    653 					anon->an_swslot = swslot + swcpages;
    654 				else
    655 					uao_set_swslot(uobj,
    656 					    p->offset >> PAGE_SHIFT,
    657 					    swslot + swcpages);
    658 				swcpages++;
    659 
    660 				/* done (swap-backed) */
    661 			}
    662 
    663 			/* end: if (p) ["if we have new page to consider"] */
    664 		} else {
    665 
    666 			/* if p == NULL we must be doing a last swap i/o */
    667 			swap_backed = TRUE;
    668 		}
    669 
    670 		/*
    671 		 * now consider doing the pageout.
    672 		 *
    673 		 * for swap-backed pages, we do the pageout if we have either
    674 		 * filled the cluster (in which case (swnpages == swcpages) or
    675 		 * run out of pages (p == NULL).
    676 		 *
    677 		 * for object pages, we always do the pageout.
    678 		 */
    679 		if (swap_backed) {
    680 
    681 			if (p) {	/* if we just added a page to cluster */
    682 				if (anon)
    683 					simple_unlock(&anon->an_lock);
    684 				else
    685 					simple_unlock(&uobj->vmobjlock);
    686 
    687 				/* cluster not full yet? */
    688 				if (swcpages < swnpages)
    689 					continue;
    690 			}
    691 
    692 			/* starting I/O now... set up for it */
    693 			npages = swcpages;
    694 			ppsp = swpps;
    695 			/* for swap-backed pages only */
    696 			start = (vaddr_t) swslot;
    697 
    698 			/* if this is final pageout we could have a few
    699 			 * extra swap blocks */
    700 			if (swcpages < swnpages) {
    701 				uvm_swap_free(swslot + swcpages,
    702 				    (swnpages - swcpages));
    703 			}
    704 
    705 		} else {
    706 
    707 			/* normal object pageout */
    708 			ppsp = pps;
    709 			npages = sizeof(pps) / sizeof(struct vm_page *);
    710 			/* not looked at because PGO_ALLPAGES is set */
    711 			start = 0;
    712 
    713 		}
    714 
    715 		/*
    716 		 * now do the pageout.
    717 		 *
    718 		 * for swap_backed pages we have already built the cluster.
    719 		 * for !swap_backed pages, uvm_pager_put will call the object's
    720 		 * "make put cluster" function to build a cluster on our behalf.
    721 		 *
    722 		 * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
    723 		 * it to free the cluster pages for us on a successful I/O (it
    724 		 * always does this for un-successful I/O requests).  this
    725 		 * allows us to do clustered pageout without having to deal
    726 		 * with cluster pages at this level.
    727 		 *
    728 		 * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
    729 		 *  IN: locked: uobj (if !swap_backed), page queues
    730 		 * OUT: locked: uobj (if !swap_backed && result !=VM_PAGER_PEND)
    731 		 *     !locked: pageqs, uobj (if swap_backed || VM_PAGER_PEND)
    732 		 *
    733 		 * [the bit about VM_PAGER_PEND saves us one lock-unlock pair]
    734 		 */
    735 
    736 		/* locked: uobj (if !swap_backed), page queues */
    737 		uvmexp.pdpageouts++;
    738 		result = uvm_pager_put((swap_backed) ? NULL : uobj, p,
    739 		    &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
    740 		/* locked: uobj (if !swap_backed && result != PEND) */
    741 		/* unlocked: pageqs, object (if swap_backed ||result == PEND) */
    742 
    743 		/*
    744 		 * if we did i/o to swap, zero swslot to indicate that we are
    745 		 * no longer building a swap-backed cluster.
    746 		 */
    747 
    748 		if (swap_backed)
    749 			swslot = 0;		/* done with this cluster */
    750 
    751 		/*
    752 		 * first, we check for VM_PAGER_PEND which means that the
    753 		 * async I/O is in progress and the async I/O done routine
    754 		 * will clean up after us.   in this case we move on to the
    755 		 * next page.
    756 		 *
    757 		 * there is a very remote chance that the pending async i/o can
    758 		 * finish _before_ we get here.   if that happens, our page "p"
    759 		 * may no longer be on the inactive queue.   so we verify this
    760 		 * when determining the next page (starting over at the head if
    761 		 * we've lost our inactive page).
    762 		 */
    763 
    764 		if (result == VM_PAGER_PEND) {
    765 			uvmexp.paging += npages;
    766 			uvm_lock_pageq();		/* relock page queues */
    767 			uvmexp.pdpending++;
    768 			if (p) {
    769 				if (p->pqflags & PQ_INACTIVE)
    770 					/* reload! */
    771 					nextpg = p->pageq.tqe_next;
    772 				else
    773 					/* reload! */
    774 					nextpg = pglst->tqh_first;
    775 				} else {
    776 					nextpg = NULL;		/* done list */
    777 			}
    778 			continue;
    779 		}
    780 
    781 		/*
    782 		 * clean up "p" if we have one
    783 		 */
    784 
    785 		if (p) {
    786 			/*
    787 			 * the I/O request to "p" is done and uvm_pager_put
    788 			 * has freed any cluster pages it may have allocated
    789 			 * during I/O.  all that is left for us to do is
    790 			 * clean up page "p" (which is still PG_BUSY).
    791 			 *
    792 			 * our result could be one of the following:
    793 			 *   VM_PAGER_OK: successful pageout
    794 			 *
    795 			 *   VM_PAGER_AGAIN: tmp resource shortage, we skip
    796 			 *     to next page
    797 			 *   VM_PAGER_{FAIL,ERROR,BAD}: an error.   we
    798 			 *     "reactivate" page to get it out of the way (it
    799 			 *     will eventually drift back into the inactive
    800 			 *     queue for a retry).
    801 			 *   VM_PAGER_UNLOCK: should never see this as it is
    802 			 *     only valid for "get" operations
    803 			 */
    804 
    805 			/* relock p's object: page queues not lock yet, so
    806 			 * no need for "try" */
    807 
    808 			/* !swap_backed case: already locked... */
    809 			if (swap_backed) {
    810 				if (anon)
    811 					simple_lock(&anon->an_lock);
    812 				else
    813 					simple_lock(&uobj->vmobjlock);
    814 			}
    815 
    816 #ifdef DIAGNOSTIC
    817 			if (result == VM_PAGER_UNLOCK)
    818 				panic("pagedaemon: pageout returned "
    819 				    "invalid 'unlock' code");
    820 #endif
    821 
    822 			/* handle PG_WANTED now */
    823 			if (p->flags & PG_WANTED)
    824 				/* still holding object lock */
    825 				thread_wakeup(p);
    826 
    827 			p->flags &= ~(PG_BUSY|PG_WANTED);
    828 			UVM_PAGE_OWN(p, NULL);
    829 
    830 			/* released during I/O? */
    831 			if (p->flags & PG_RELEASED) {
    832 				if (anon) {
    833 					/* remove page so we can get nextpg */
    834 					anon->u.an_page = NULL;
    835 
    836 					simple_unlock(&anon->an_lock);
    837 					uvm_anfree(anon);	/* kills anon */
    838 					pmap_page_protect(PMAP_PGARG(p),
    839 					    VM_PROT_NONE);
    840 					anon = NULL;
    841 					uvm_lock_pageq();
    842 					nextpg = p->pageq.tqe_next;
    843 					/* free released page */
    844 					uvm_pagefree(p);
    845 
    846 				} else {
    847 
    848 #ifdef DIAGNOSTIC
    849 					if (uobj->pgops->pgo_releasepg == NULL)
    850 						panic("pagedaemon: no "
    851 						   "pgo_releasepg function");
    852 #endif
    853 
    854 					/*
    855 					 * pgo_releasepg nukes the page and
    856 					 * gets "nextpg" for us.  it returns
    857 					 * with the page queues locked (when
    858 					 * given nextpg ptr).
    859 					 */
    860 					if (!uobj->pgops->pgo_releasepg(p,
    861 					    &nextpg))
    862 						/* uobj died after release */
    863 						uobj = NULL;
    864 
    865 					/*
    866 					 * lock page queues here so that they're
    867 					 * always locked at the end of the loop.
    868 					 */
    869 					uvm_lock_pageq();
    870 				}
    871 
    872 			} else {	/* page was not released during I/O */
    873 
    874 				uvm_lock_pageq();
    875 				nextpg = p->pageq.tqe_next;
    876 
    877 				if (result != VM_PAGER_OK) {
    878 
    879 					/* pageout was a failure... */
    880 					if (result != VM_PAGER_AGAIN)
    881 						uvm_pageactivate(p);
    882 					pmap_clear_reference(PMAP_PGARG(p));
    883 					/* XXXCDC: if (swap_backed) FREE p's
    884 					 * swap block? */
    885 
    886 				} else {
    887 
    888 					/* pageout was a success... */
    889 					pmap_clear_reference(PMAP_PGARG(p));
    890 					pmap_clear_modify(PMAP_PGARG(p));
    891 					p->flags |= PG_CLEAN;
    892 					/* XXX: could free page here, but old
    893 					 * pagedaemon does not */
    894 
    895 				}
    896 			}
    897 
    898 			/*
    899 			 * drop object lock (if there is an object left).   do
    900 			 * a safety check of nextpg to make sure it is on the
    901 			 * inactive queue (it should be since PG_BUSY pages on
    902 			 * the inactive queue can't be re-queued [note: not
    903 			 * true for active queue]).
    904 			 */
    905 
    906 			if (anon)
    907 				simple_unlock(&anon->an_lock);
    908 			else if (uobj)
    909 				simple_unlock(&uobj->vmobjlock);
    910 
    911 		} /* if (p) */ else {
    912 
    913 			/* if p is null in this loop, make sure it stays null
    914 			 * in next loop */
    915 			nextpg = NULL;
    916 
    917 			/*
    918 			 * lock page queues here just so they're always locked
    919 			 * at the end of the loop.
    920 			 */
    921 			uvm_lock_pageq();
    922 		}
    923 
    924 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    925 			printf("pagedaemon: invalid nextpg!   reverting to "
    926 			    "queue head\n");
    927 			nextpg = pglst->tqh_first;	/* reload! */
    928 		}
    929 
    930 	}	/* end of "inactive" 'for' loop */
    931 	return (retval);
    932 }
    933 
    934 /*
    935  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    936  *
    937  * => called with pageq's locked
    938  */
    939 
    940 void
    941 uvmpd_scan()
    942 {
    943 	int s, free, inactive_shortage, swap_shortage, pages_freed;
    944 	struct vm_page *p, *nextpg;
    945 	struct uvm_object *uobj;
    946 	boolean_t got_it;
    947 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    948 
    949 	uvmexp.pdrevs++;		/* counter */
    950 
    951 #ifdef __GNUC__
    952 	uobj = NULL;	/* XXX gcc */
    953 #endif
    954 	/*
    955 	 * get current "free" page count
    956 	 */
    957 	s = splimp();
    958 	uvm_lock_fpageq();
    959 	free = uvmexp.free;
    960 	uvm_unlock_fpageq();
    961 	splx(s);
    962 
    963 #ifndef __SWAP_BROKEN
    964 	/*
    965 	 * swap out some processes if we are below our free target.
    966 	 * we need to unlock the page queues for this.
    967 	 */
    968 	if (free < uvmexp.freetarg) {
    969 
    970 		uvmexp.pdswout++;
    971 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout", free,
    972 		    uvmexp.freetarg, 0, 0);
    973 		uvm_unlock_pageq();
    974 		uvm_swapout_threads();
    975 		pmap_update();		/* update so we can scan inactive q */
    976 		uvm_lock_pageq();
    977 
    978 	}
    979 #endif
    980 
    981 	/*
    982 	 * now we want to work on meeting our targets.   first we work on our
    983 	 * free target by converting inactive pages into free pages.  then
    984 	 * we work on meeting our inactive target by converting active pages
    985 	 * to inactive ones.
    986 	 */
    987 
    988 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    989 
    990 	/*
    991 	 * do loop #1!   alternate starting queue between swap and object based
    992 	 * on the low bit of uvmexp.pdrevs (which we bump by one each call).
    993 	 */
    994 
    995 	got_it = FALSE;
    996 	pages_freed = uvmexp.pdfreed;
    997 	if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
    998 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
    999 	if (!got_it)
   1000 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
   1001 	if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
   1002 		(void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
   1003 	pages_freed = uvmexp.pdfreed - pages_freed;
   1004 
   1005 	/*
   1006 	 * we have done the scan to get free pages.   now we work on meeting
   1007 	 * our inactive target.
   1008 	 */
   1009 
   1010 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
   1011 
   1012 	/*
   1013 	 * detect if we're not going to be able to page anything out
   1014 	 * until we free some swap resources from active pages.
   1015 	 */
   1016 	swap_shortage = 0;
   1017 	if (uvmexp.free < uvmexp.freetarg &&
   1018 	    uvmexp.swpginuse == uvmexp.swpages &&
   1019 	    uvmexp.swpgonly < uvmexp.swpages &&
   1020 	    pages_freed == 0) {
   1021 		swap_shortage = uvmexp.freetarg - uvmexp.free;
   1022 	}
   1023 
   1024 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
   1025 		    inactive_shortage, swap_shortage,0,0);
   1026 	for (p = TAILQ_FIRST(&uvm.page_active);
   1027 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
   1028 	     p = nextpg) {
   1029 		nextpg = p->pageq.tqe_next;
   1030 		if (p->flags & PG_BUSY)
   1031 			continue;	/* quick check before trying to lock */
   1032 
   1033 		/*
   1034 		 * lock the page's owner.
   1035 		 */
   1036 		/* is page anon owned or ownerless? */
   1037 		if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
   1038 
   1039 #ifdef DIAGNOSTIC
   1040 			if (p->uanon == NULL)
   1041 				panic("pagedaemon: page with no anon or "
   1042 				    "object detected - loop 2");
   1043 #endif
   1044 			if (!simple_lock_try(&p->uanon->an_lock))
   1045 				continue;
   1046 
   1047 			/* take over the page? */
   1048 			if ((p->pqflags & PQ_ANON) == 0) {
   1049 #ifdef DIAGNOSTIC
   1050 				if (p->loan_count < 1)
   1051 					panic("pagedaemon: non-loaned "
   1052 					    "ownerless page detected - loop 2");
   1053 #endif
   1054 				p->loan_count--;
   1055 				p->pqflags |= PQ_ANON;
   1056 			}
   1057 		} else {
   1058 			if (!simple_lock_try(&p->uobject->vmobjlock))
   1059 				continue;
   1060 		}
   1061 		/*
   1062 		 * skip this page if it's busy.
   1063 		 */
   1064 		if ((p->flags & PG_BUSY) != 0) {
   1065 			if (p->pqflags & PQ_ANON)
   1066 				simple_unlock(&p->uanon->an_lock);
   1067 			else
   1068 				simple_unlock(&p->uobject->vmobjlock);
   1069 			continue;
   1070 		}
   1071 
   1072 		/*
   1073 		 * if there's a shortage of swap, free any swap allocated
   1074 		 * to this page so that other pages can be paged out.
   1075 		 */
   1076 		if (swap_shortage > 0) {
   1077 			if ((p->pqflags & PQ_ANON) && p->uanon->an_swslot) {
   1078 				uvm_swap_free(p->uanon->an_swslot, 1);
   1079 				p->uanon->an_swslot = 0;
   1080 				p->flags &= ~PG_CLEAN;
   1081 				swap_shortage--;
   1082 			}
   1083 			if (p->pqflags & PQ_AOBJ) {
   1084 				int slot = uao_set_swslot(p->uobject,
   1085 					p->offset >> PAGE_SHIFT, 0);
   1086 				if (slot) {
   1087 					uvm_swap_free(slot, 1);
   1088 					p->flags &= ~PG_CLEAN;
   1089 					swap_shortage--;
   1090 				}
   1091 			}
   1092 		}
   1093 
   1094 		/*
   1095 		 * deactivate this page if there's a shortage of
   1096 		 * inactive pages.
   1097 		 */
   1098 		if (inactive_shortage > 0) {
   1099 			pmap_page_protect(PMAP_PGARG(p), VM_PROT_NONE);
   1100 			/* no need to check wire_count as pg is "active" */
   1101 			uvm_pagedeactivate(p);
   1102 			uvmexp.pddeact++;
   1103 			inactive_shortage--;
   1104 		}
   1105 
   1106 		if (p->pqflags & PQ_ANON)
   1107 			simple_unlock(&p->uanon->an_lock);
   1108 		else
   1109 			simple_unlock(&p->uobject->vmobjlock);
   1110 	}
   1111 }
   1112