Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.19
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.19 1999/11/04 21:51:42 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include "opt_uvmhist.h"
     70 
     71 /*
     72  * uvm_pdaemon.c: the page daemon
     73  */
     74 
     75 #include <sys/param.h>
     76 #include <sys/proc.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/pool.h>
     80 
     81 #include <vm/vm.h>
     82 #include <vm/vm_page.h>
     83 #include <vm/vm_kern.h>
     84 
     85 #include <uvm/uvm.h>
     86 
     87 /*
     88  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
     89  * in a pass thru the inactive list when swap is full.  the value should be
     90  * "small"... if it's too large we'll cycle the active pages thru the inactive
     91  * queue too quickly to for them to be referenced and avoid being freed.
     92  */
     93 
     94 #define UVMPD_NUMDIRTYREACTS 16
     95 
     96 
     97 /*
     98  * local prototypes
     99  */
    100 
    101 static void		uvmpd_scan __P((void));
    102 static boolean_t	uvmpd_scan_inactive __P((struct pglist *));
    103 static void		uvmpd_tune __P((void));
    104 
    105 
    106 /*
    107  * uvm_wait: wait (sleep) for the page daemon to free some pages
    108  *
    109  * => should be called with all locks released
    110  * => should _not_ be called by the page daemon (to avoid deadlock)
    111  */
    112 
    113 void
    114 uvm_wait(wmsg)
    115 	const char *wmsg;
    116 {
    117 	int timo = 0;
    118 	int s = splbio();
    119 
    120 	/*
    121 	 * check for page daemon going to sleep (waiting for itself)
    122 	 */
    123 
    124 	if (curproc == uvm.pagedaemon_proc) {
    125 		/*
    126 		 * now we have a problem: the pagedaemon wants to go to
    127 		 * sleep until it frees more memory.   but how can it
    128 		 * free more memory if it is asleep?  that is a deadlock.
    129 		 * we have two options:
    130 		 *  [1] panic now
    131 		 *  [2] put a timeout on the sleep, thus causing the
    132 		 *      pagedaemon to only pause (rather than sleep forever)
    133 		 *
    134 		 * note that option [2] will only help us if we get lucky
    135 		 * and some other process on the system breaks the deadlock
    136 		 * by exiting or freeing memory (thus allowing the pagedaemon
    137 		 * to continue).  for now we panic if DEBUG is defined,
    138 		 * otherwise we hope for the best with option [2] (better
    139 		 * yet, this should never happen in the first place!).
    140 		 */
    141 
    142 		printf("pagedaemon: deadlock detected!\n");
    143 		timo = hz >> 3;		/* set timeout */
    144 #if defined(DEBUG)
    145 		/* DEBUG: panic so we can debug it */
    146 		panic("pagedaemon deadlock");
    147 #endif
    148 	}
    149 
    150 	simple_lock(&uvm.pagedaemon_lock);
    151 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    152 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    153 	    timo);
    154 
    155 	splx(s);
    156 }
    157 
    158 
    159 /*
    160  * uvmpd_tune: tune paging parameters
    161  *
    162  * => called when ever memory is added (or removed?) to the system
    163  * => caller must call with page queues locked
    164  */
    165 
    166 static void
    167 uvmpd_tune()
    168 {
    169 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    170 
    171 	uvmexp.freemin = uvmexp.npages / 20;
    172 
    173 	/* between 16k and 256k */
    174 	/* XXX:  what are these values good for? */
    175 	uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    176 	uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    177 
    178 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    179 	if (uvmexp.freetarg <= uvmexp.freemin)
    180 		uvmexp.freetarg = uvmexp.freemin + 1;
    181 
    182 	/* uvmexp.inactarg: computed in main daemon loop */
    183 
    184 	uvmexp.wiredmax = uvmexp.npages / 3;
    185 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    186 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    187 }
    188 
    189 /*
    190  * uvm_pageout: the main loop for the pagedaemon
    191  */
    192 
    193 void
    194 uvm_pageout()
    195 {
    196 	int npages = 0;
    197 	int s;
    198 	struct uvm_aiodesc *aio, *nextaio;
    199 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    200 
    201 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    202 
    203 	/*
    204 	 * ensure correct priority and set paging parameters...
    205 	 */
    206 
    207 	uvm.pagedaemon_proc = curproc;
    208 	(void) spl0();
    209 	uvm_lock_pageq();
    210 	npages = uvmexp.npages;
    211 	uvmpd_tune();
    212 	uvm_unlock_pageq();
    213 
    214 	/*
    215 	 * main loop
    216 	 */
    217 	while (TRUE) {
    218 
    219 		/*
    220 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    221 		 * we need splbio because we want to make sure the aio_done list
    222 		 * is totally empty before we go to sleep.
    223 		 */
    224 
    225 		s = splbio();
    226 		simple_lock(&uvm.pagedaemon_lock);
    227 
    228 		/*
    229 		 * if we've got done aio's, then bypass the sleep
    230 		 */
    231 
    232 		if (uvm.aio_done.tqh_first == NULL) {
    233 			UVMHIST_LOG(maphist,"  <<SLEEPING>>",0,0,0,0);
    234 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    235 			    &uvm.pagedaemon_lock, FALSE, "daemon_slp", 0);
    236 			uvmexp.pdwoke++;
    237 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    238 
    239 			/* relock pagedaemon_lock, still at splbio */
    240 			simple_lock(&uvm.pagedaemon_lock);
    241 		}
    242 
    243 		/*
    244 		 * check for done aio structures
    245 		 */
    246 
    247 		aio = uvm.aio_done.tqh_first;	/* save current list (if any)*/
    248 		if (aio) {
    249 			TAILQ_INIT(&uvm.aio_done);	/* zero global list */
    250 		}
    251 
    252 		simple_unlock(&uvm.pagedaemon_lock);	/* unlock */
    253 		splx(s);				/* drop splbio */
    254 
    255 		/*
    256 		 * first clear out any pending aios (to free space in case we
    257 		 * want to pageout more stuff).
    258 		 */
    259 
    260 		for (/*null*/; aio != NULL ; aio = nextaio) {
    261 
    262 			uvmexp.paging -= aio->npages;
    263 			nextaio = aio->aioq.tqe_next;
    264 			aio->aiodone(aio);
    265 
    266 		}
    267 
    268 		/* Next, drain pool resources */
    269 		pool_drain(0);
    270 
    271 		/*
    272 		 * now lock page queues and recompute inactive count
    273 		 */
    274 		uvm_lock_pageq();
    275 
    276 		if (npages != uvmexp.npages) {	/* check for new pages? */
    277 			npages = uvmexp.npages;
    278 			uvmpd_tune();
    279 		}
    280 
    281 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    282 		if (uvmexp.inactarg <= uvmexp.freetarg)
    283 			uvmexp.inactarg = uvmexp.freetarg + 1;
    284 
    285 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    286 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    287 		    uvmexp.inactarg);
    288 
    289 		/*
    290 		 * scan if needed
    291 		 * [XXX: note we are reading uvm.free without locking]
    292 		 */
    293 		if (uvmexp.free < uvmexp.freetarg ||
    294 		    uvmexp.inactive < uvmexp.inactarg)
    295 			uvmpd_scan();
    296 
    297 		/*
    298 		 * done scan.  unlock page queues (the only lock we are holding)
    299 		 */
    300 		uvm_unlock_pageq();
    301 
    302 		/*
    303 		 * done!    restart loop.
    304 		 */
    305 		if (uvmexp.free > uvmexp.reserve_kernel ||
    306 		    uvmexp.paging == 0)
    307 			wakeup(&uvmexp.free);
    308 	}
    309 	/*NOTREACHED*/
    310 }
    311 
    312 /*
    313  * uvmpd_scan_inactive: the first loop of uvmpd_scan broken out into
    314  * 	its own function for ease of reading.
    315  *
    316  * => called with page queues locked
    317  * => we work on meeting our free target by converting inactive pages
    318  *    into free pages.
    319  * => we handle the building of swap-backed clusters
    320  * => we return TRUE if we are exiting because we met our target
    321  */
    322 
    323 static boolean_t
    324 uvmpd_scan_inactive(pglst)
    325 	struct pglist *pglst;
    326 {
    327 	boolean_t retval = FALSE;	/* assume we haven't hit target */
    328 	int s, free, result;
    329 	struct vm_page *p, *nextpg;
    330 	struct uvm_object *uobj;
    331 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
    332 	int npages;
    333 	struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; 	/* XXX: see below */
    334 	int swnpages, swcpages;				/* XXX: see below */
    335 	int swslot;
    336 	struct vm_anon *anon;
    337 	boolean_t swap_backed;
    338 	vaddr_t start;
    339 	int dirtyreacts;
    340 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    341 
    342 	/*
    343 	 * note: we currently keep swap-backed pages on a seperate inactive
    344 	 * list from object-backed pages.   however, merging the two lists
    345 	 * back together again hasn't been ruled out.   thus, we keep our
    346 	 * swap cluster in "swpps" rather than in pps (allows us to mix
    347 	 * clustering types in the event of a mixed inactive queue).
    348 	 */
    349 
    350 	/*
    351 	 * swslot is non-zero if we are building a swap cluster.  we want
    352 	 * to stay in the loop while we have a page to scan or we have
    353 	 * a swap-cluster to build.
    354 	 */
    355 	swslot = 0;
    356 	swnpages = swcpages = 0;
    357 	free = 0;
    358 	dirtyreacts = 0;
    359 
    360 	for (p = pglst->tqh_first ; p != NULL || swslot != 0 ; p = nextpg) {
    361 
    362 		/*
    363 		 * note that p can be NULL iff we have traversed the whole
    364 		 * list and need to do one final swap-backed clustered pageout.
    365 		 */
    366 		if (p) {
    367 			/*
    368 			 * update our copy of "free" and see if we've met
    369 			 * our target
    370 			 */
    371 			s = uvm_lock_fpageq();
    372 			free = uvmexp.free;
    373 			uvm_unlock_fpageq(s);
    374 
    375 			if (free + uvmexp.paging >= uvmexp.freetarg << 2 ||
    376 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    377 				UVMHIST_LOG(pdhist,"  met free target: "
    378 				    "exit loop", 0, 0, 0, 0);
    379 				retval = TRUE;		/* hit the target! */
    380 
    381 				if (swslot == 0)
    382 					/* exit now if no swap-i/o pending */
    383 					break;
    384 
    385 				/* set p to null to signal final swap i/o */
    386 				p = NULL;
    387 			}
    388 		}
    389 
    390 		uobj = NULL;	/* be safe and shut gcc up */
    391 		anon = NULL;	/* be safe and shut gcc up */
    392 
    393 		if (p) {	/* if (we have a new page to consider) */
    394 			/*
    395 			 * we are below target and have a new page to consider.
    396 			 */
    397 			uvmexp.pdscans++;
    398 			nextpg = p->pageq.tqe_next;
    399 
    400 			/*
    401 			 * move referenced pages back to active queue and
    402 			 * skip to next page (unlikely to happen since
    403 			 * inactive pages shouldn't have any valid mappings
    404 			 * and we cleared reference before deactivating).
    405 			 */
    406 			if (pmap_is_referenced(p)) {
    407 				uvm_pageactivate(p);
    408 				uvmexp.pdreact++;
    409 				continue;
    410 			}
    411 
    412 			/*
    413 			 * first we attempt to lock the object that this page
    414 			 * belongs to.  if our attempt fails we skip on to
    415 			 * the next page (no harm done).  it is important to
    416 			 * "try" locking the object as we are locking in the
    417 			 * wrong order (pageq -> object) and we don't want to
    418 			 * get deadlocked.
    419 			 *
    420 			 * the only time we exepct to see an ownerless page
    421 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    422 			 * anon has loaned a page from a uvm_object and the
    423 			 * uvm_object has dropped the ownership.  in that
    424 			 * case, the anon can "take over" the loaned page
    425 			 * and make it its own.
    426 			 */
    427 
    428 			/* is page part of an anon or ownerless ? */
    429 			if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
    430 
    431 				anon = p->uanon;
    432 
    433 #ifdef DIAGNOSTIC
    434 				/* to be on inactive q, page must be part
    435 				 * of _something_ */
    436 				if (anon == NULL)
    437 					panic("pagedaemon: page with no anon "
    438 					    "or object detected - loop 1");
    439 #endif
    440 
    441 				if (!simple_lock_try(&anon->an_lock))
    442 					/* lock failed, skip this page */
    443 					continue;
    444 
    445 				/*
    446 				 * if the page is ownerless, claim it in the
    447 				 * name of "anon"!
    448 				 */
    449 				if ((p->pqflags & PQ_ANON) == 0) {
    450 #ifdef DIAGNOSTIC
    451 					if (p->loan_count < 1)
    452 						panic("pagedaemon: non-loaned "
    453 						    "ownerless page detected -"
    454 						    " loop 1");
    455 #endif
    456 					p->loan_count--;
    457 					p->pqflags |= PQ_ANON;      /* anon now owns it */
    458 				}
    459 
    460 				if (p->flags & PG_BUSY) {
    461 					simple_unlock(&anon->an_lock);
    462 					uvmexp.pdbusy++;
    463 					/* someone else owns page, skip it */
    464 					continue;
    465 				}
    466 
    467 				uvmexp.pdanscan++;
    468 
    469 			} else {
    470 
    471 				uobj = p->uobject;
    472 
    473 				if (!simple_lock_try(&uobj->vmobjlock))
    474 					/* lock failed, skip this page */
    475 					continue;
    476 
    477 				if (p->flags & PG_BUSY) {
    478 					simple_unlock(&uobj->vmobjlock);
    479 					uvmexp.pdbusy++;
    480 					/* someone else owns page, skip it */
    481 					continue;
    482 				}
    483 
    484 				uvmexp.pdobscan++;
    485 			}
    486 
    487 			/*
    488 			 * we now have the object and the page queues locked.
    489 			 * the page is not busy.   if the page is clean we
    490 			 * can free it now and continue.
    491 			 */
    492 
    493 			if (p->flags & PG_CLEAN) {
    494 				if (p->pqflags & PQ_SWAPBACKED) {
    495 					/* this page now lives only in swap */
    496 					simple_lock(&uvm.swap_data_lock);
    497 					uvmexp.swpgonly++;
    498 					simple_unlock(&uvm.swap_data_lock);
    499 				}
    500 
    501 				/* zap all mappings with pmap_page_protect... */
    502 				pmap_page_protect(p, VM_PROT_NONE);
    503 				uvm_pagefree(p);
    504 				uvmexp.pdfreed++;
    505 
    506 				if (anon) {
    507 #ifdef DIAGNOSTIC
    508 					/*
    509 					 * an anonymous page can only be clean
    510 					 * if it has valid backing store.
    511 					 */
    512 					if (anon->an_swslot == 0)
    513 						panic("pagedaemon: clean anon "
    514 						 "page without backing store?");
    515 #endif
    516 					/* remove from object */
    517 					anon->u.an_page = NULL;
    518 					simple_unlock(&anon->an_lock);
    519 				} else {
    520 					/* pagefree has already removed the
    521 					 * page from the object */
    522 					simple_unlock(&uobj->vmobjlock);
    523 				}
    524 				continue;
    525 			}
    526 
    527 			/*
    528 			 * this page is dirty, skip it if we'll have met our
    529 			 * free target when all the current pageouts complete.
    530 			 */
    531 			if (free + uvmexp.paging > uvmexp.freetarg << 2) {
    532 				if (anon) {
    533 					simple_unlock(&anon->an_lock);
    534 				} else {
    535 					simple_unlock(&uobj->vmobjlock);
    536 				}
    537 				continue;
    538 			}
    539 
    540 			/*
    541 			 * this page is dirty, but we can't page it out
    542 			 * since all pages in swap are only in swap.
    543 			 * reactivate it so that we eventually cycle
    544 			 * all pages thru the inactive queue.
    545 			 */
    546 #ifdef DIAGNOSTIC
    547 			if (uvmexp.swpgonly > uvmexp.swpages) {
    548 				panic("uvmexp.swpgonly botch");
    549 			}
    550 #endif
    551 			if ((p->pqflags & PQ_SWAPBACKED) &&
    552 			    uvmexp.swpgonly == uvmexp.swpages) {
    553 				dirtyreacts++;
    554 				uvm_pageactivate(p);
    555 				if (anon) {
    556 					simple_unlock(&anon->an_lock);
    557 				} else {
    558 					simple_unlock(&uobj->vmobjlock);
    559 				}
    560 				continue;
    561 			}
    562 
    563 			/*
    564 			 * if the page is swap-backed and dirty and swap space
    565 			 * is full, free any swap allocated to the page
    566 			 * so that other pages can be paged out.
    567 			 */
    568 #ifdef DIAGNOSTIC
    569 			if (uvmexp.swpginuse > uvmexp.swpages) {
    570 				panic("uvmexp.swpginuse botch");
    571 			}
    572 #endif
    573 			if ((p->pqflags & PQ_SWAPBACKED) &&
    574 			    uvmexp.swpginuse == uvmexp.swpages) {
    575 
    576 				if ((p->pqflags & PQ_ANON) &&
    577 				    p->uanon->an_swslot) {
    578 					uvm_swap_free(p->uanon->an_swslot, 1);
    579 					p->uanon->an_swslot = 0;
    580 				}
    581 				if (p->pqflags & PQ_AOBJ) {
    582 					uao_dropswap(p->uobject,
    583 						     p->offset >> PAGE_SHIFT);
    584 				}
    585 			}
    586 
    587 			/*
    588 			 * the page we are looking at is dirty.   we must
    589 			 * clean it before it can be freed.  to do this we
    590 			 * first mark the page busy so that no one else will
    591 			 * touch the page.   we write protect all the mappings
    592 			 * of the page so that no one touches it while it is
    593 			 * in I/O.
    594 			 */
    595 
    596 			swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
    597 			p->flags |= PG_BUSY;		/* now we own it */
    598 			UVM_PAGE_OWN(p, "scan_inactive");
    599 			pmap_page_protect(p, VM_PROT_READ);
    600 			uvmexp.pgswapout++;
    601 
    602 			/*
    603 			 * for swap-backed pages we need to (re)allocate
    604 			 * swap space.
    605 			 */
    606 			if (swap_backed) {
    607 
    608 				/*
    609 				 * free old swap slot (if any)
    610 				 */
    611 				if (anon) {
    612 					if (anon->an_swslot) {
    613 						uvm_swap_free(anon->an_swslot,
    614 						    1);
    615 						anon->an_swslot = 0;
    616 					}
    617 				} else {
    618 					uao_dropswap(uobj,
    619 						     p->offset >> PAGE_SHIFT);
    620 				}
    621 
    622 				/*
    623 				 * start new cluster (if necessary)
    624 				 */
    625 				if (swslot == 0) {
    626 					/* want this much */
    627 					swnpages = MAXBSIZE >> PAGE_SHIFT;
    628 
    629 					swslot = uvm_swap_alloc(&swnpages,
    630 					    TRUE);
    631 
    632 					if (swslot == 0) {
    633 						/* no swap?  give up! */
    634 						p->flags &= ~PG_BUSY;
    635 						UVM_PAGE_OWN(p, NULL);
    636 						if (anon)
    637 							simple_unlock(
    638 							    &anon->an_lock);
    639 						else
    640 							simple_unlock(
    641 							    &uobj->vmobjlock);
    642 						continue;
    643 					}
    644 					swcpages = 0;	/* cluster is empty */
    645 				}
    646 
    647 				/*
    648 				 * add block to cluster
    649 				 */
    650 				swpps[swcpages] = p;
    651 				if (anon)
    652 					anon->an_swslot = swslot + swcpages;
    653 				else
    654 					uao_set_swslot(uobj,
    655 					    p->offset >> PAGE_SHIFT,
    656 					    swslot + swcpages);
    657 				swcpages++;
    658 
    659 				/* done (swap-backed) */
    660 			}
    661 
    662 			/* end: if (p) ["if we have new page to consider"] */
    663 		} else {
    664 
    665 			/* if p == NULL we must be doing a last swap i/o */
    666 			swap_backed = TRUE;
    667 		}
    668 
    669 		/*
    670 		 * now consider doing the pageout.
    671 		 *
    672 		 * for swap-backed pages, we do the pageout if we have either
    673 		 * filled the cluster (in which case (swnpages == swcpages) or
    674 		 * run out of pages (p == NULL).
    675 		 *
    676 		 * for object pages, we always do the pageout.
    677 		 */
    678 		if (swap_backed) {
    679 
    680 			if (p) {	/* if we just added a page to cluster */
    681 				if (anon)
    682 					simple_unlock(&anon->an_lock);
    683 				else
    684 					simple_unlock(&uobj->vmobjlock);
    685 
    686 				/* cluster not full yet? */
    687 				if (swcpages < swnpages)
    688 					continue;
    689 			}
    690 
    691 			/* starting I/O now... set up for it */
    692 			npages = swcpages;
    693 			ppsp = swpps;
    694 			/* for swap-backed pages only */
    695 			start = (vaddr_t) swslot;
    696 
    697 			/* if this is final pageout we could have a few
    698 			 * extra swap blocks */
    699 			if (swcpages < swnpages) {
    700 				uvm_swap_free(swslot + swcpages,
    701 				    (swnpages - swcpages));
    702 			}
    703 
    704 		} else {
    705 
    706 			/* normal object pageout */
    707 			ppsp = pps;
    708 			npages = sizeof(pps) / sizeof(struct vm_page *);
    709 			/* not looked at because PGO_ALLPAGES is set */
    710 			start = 0;
    711 
    712 		}
    713 
    714 		/*
    715 		 * now do the pageout.
    716 		 *
    717 		 * for swap_backed pages we have already built the cluster.
    718 		 * for !swap_backed pages, uvm_pager_put will call the object's
    719 		 * "make put cluster" function to build a cluster on our behalf.
    720 		 *
    721 		 * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
    722 		 * it to free the cluster pages for us on a successful I/O (it
    723 		 * always does this for un-successful I/O requests).  this
    724 		 * allows us to do clustered pageout without having to deal
    725 		 * with cluster pages at this level.
    726 		 *
    727 		 * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
    728 		 *  IN: locked: uobj (if !swap_backed), page queues
    729 		 * OUT: locked: uobj (if !swap_backed && result !=VM_PAGER_PEND)
    730 		 *     !locked: pageqs, uobj (if swap_backed || VM_PAGER_PEND)
    731 		 *
    732 		 * [the bit about VM_PAGER_PEND saves us one lock-unlock pair]
    733 		 */
    734 
    735 		/* locked: uobj (if !swap_backed), page queues */
    736 		uvmexp.pdpageouts++;
    737 		result = uvm_pager_put((swap_backed) ? NULL : uobj, p,
    738 		    &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
    739 		/* locked: uobj (if !swap_backed && result != PEND) */
    740 		/* unlocked: pageqs, object (if swap_backed ||result == PEND) */
    741 
    742 		/*
    743 		 * if we did i/o to swap, zero swslot to indicate that we are
    744 		 * no longer building a swap-backed cluster.
    745 		 */
    746 
    747 		if (swap_backed)
    748 			swslot = 0;		/* done with this cluster */
    749 
    750 		/*
    751 		 * first, we check for VM_PAGER_PEND which means that the
    752 		 * async I/O is in progress and the async I/O done routine
    753 		 * will clean up after us.   in this case we move on to the
    754 		 * next page.
    755 		 *
    756 		 * there is a very remote chance that the pending async i/o can
    757 		 * finish _before_ we get here.   if that happens, our page "p"
    758 		 * may no longer be on the inactive queue.   so we verify this
    759 		 * when determining the next page (starting over at the head if
    760 		 * we've lost our inactive page).
    761 		 */
    762 
    763 		if (result == VM_PAGER_PEND) {
    764 			uvmexp.paging += npages;
    765 			uvm_lock_pageq();		/* relock page queues */
    766 			uvmexp.pdpending++;
    767 			if (p) {
    768 				if (p->pqflags & PQ_INACTIVE)
    769 					/* reload! */
    770 					nextpg = p->pageq.tqe_next;
    771 				else
    772 					/* reload! */
    773 					nextpg = pglst->tqh_first;
    774 				} else {
    775 					nextpg = NULL;		/* done list */
    776 			}
    777 			continue;
    778 		}
    779 
    780 		/*
    781 		 * clean up "p" if we have one
    782 		 */
    783 
    784 		if (p) {
    785 			/*
    786 			 * the I/O request to "p" is done and uvm_pager_put
    787 			 * has freed any cluster pages it may have allocated
    788 			 * during I/O.  all that is left for us to do is
    789 			 * clean up page "p" (which is still PG_BUSY).
    790 			 *
    791 			 * our result could be one of the following:
    792 			 *   VM_PAGER_OK: successful pageout
    793 			 *
    794 			 *   VM_PAGER_AGAIN: tmp resource shortage, we skip
    795 			 *     to next page
    796 			 *   VM_PAGER_{FAIL,ERROR,BAD}: an error.   we
    797 			 *     "reactivate" page to get it out of the way (it
    798 			 *     will eventually drift back into the inactive
    799 			 *     queue for a retry).
    800 			 *   VM_PAGER_UNLOCK: should never see this as it is
    801 			 *     only valid for "get" operations
    802 			 */
    803 
    804 			/* relock p's object: page queues not lock yet, so
    805 			 * no need for "try" */
    806 
    807 			/* !swap_backed case: already locked... */
    808 			if (swap_backed) {
    809 				if (anon)
    810 					simple_lock(&anon->an_lock);
    811 				else
    812 					simple_lock(&uobj->vmobjlock);
    813 			}
    814 
    815 #ifdef DIAGNOSTIC
    816 			if (result == VM_PAGER_UNLOCK)
    817 				panic("pagedaemon: pageout returned "
    818 				    "invalid 'unlock' code");
    819 #endif
    820 
    821 			/* handle PG_WANTED now */
    822 			if (p->flags & PG_WANTED)
    823 				/* still holding object lock */
    824 				wakeup(p);
    825 
    826 			p->flags &= ~(PG_BUSY|PG_WANTED);
    827 			UVM_PAGE_OWN(p, NULL);
    828 
    829 			/* released during I/O? */
    830 			if (p->flags & PG_RELEASED) {
    831 				if (anon) {
    832 					/* remove page so we can get nextpg */
    833 					anon->u.an_page = NULL;
    834 
    835 					simple_unlock(&anon->an_lock);
    836 					uvm_anfree(anon);	/* kills anon */
    837 					pmap_page_protect(p, VM_PROT_NONE);
    838 					anon = NULL;
    839 					uvm_lock_pageq();
    840 					nextpg = p->pageq.tqe_next;
    841 					/* free released page */
    842 					uvm_pagefree(p);
    843 
    844 				} else {
    845 
    846 #ifdef DIAGNOSTIC
    847 					if (uobj->pgops->pgo_releasepg == NULL)
    848 						panic("pagedaemon: no "
    849 						   "pgo_releasepg function");
    850 #endif
    851 
    852 					/*
    853 					 * pgo_releasepg nukes the page and
    854 					 * gets "nextpg" for us.  it returns
    855 					 * with the page queues locked (when
    856 					 * given nextpg ptr).
    857 					 */
    858 					if (!uobj->pgops->pgo_releasepg(p,
    859 					    &nextpg))
    860 						/* uobj died after release */
    861 						uobj = NULL;
    862 
    863 					/*
    864 					 * lock page queues here so that they're
    865 					 * always locked at the end of the loop.
    866 					 */
    867 					uvm_lock_pageq();
    868 				}
    869 
    870 			} else {	/* page was not released during I/O */
    871 
    872 				uvm_lock_pageq();
    873 				nextpg = p->pageq.tqe_next;
    874 
    875 				if (result != VM_PAGER_OK) {
    876 
    877 					/* pageout was a failure... */
    878 					if (result != VM_PAGER_AGAIN)
    879 						uvm_pageactivate(p);
    880 					pmap_clear_reference(p);
    881 					/* XXXCDC: if (swap_backed) FREE p's
    882 					 * swap block? */
    883 
    884 				} else {
    885 
    886 					/* pageout was a success... */
    887 					pmap_clear_reference(p);
    888 					pmap_clear_modify(p);
    889 					p->flags |= PG_CLEAN;
    890 					/* XXX: could free page here, but old
    891 					 * pagedaemon does not */
    892 
    893 				}
    894 			}
    895 
    896 			/*
    897 			 * drop object lock (if there is an object left).   do
    898 			 * a safety check of nextpg to make sure it is on the
    899 			 * inactive queue (it should be since PG_BUSY pages on
    900 			 * the inactive queue can't be re-queued [note: not
    901 			 * true for active queue]).
    902 			 */
    903 
    904 			if (anon)
    905 				simple_unlock(&anon->an_lock);
    906 			else if (uobj)
    907 				simple_unlock(&uobj->vmobjlock);
    908 
    909 		} /* if (p) */ else {
    910 
    911 			/* if p is null in this loop, make sure it stays null
    912 			 * in next loop */
    913 			nextpg = NULL;
    914 
    915 			/*
    916 			 * lock page queues here just so they're always locked
    917 			 * at the end of the loop.
    918 			 */
    919 			uvm_lock_pageq();
    920 		}
    921 
    922 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    923 			printf("pagedaemon: invalid nextpg!   reverting to "
    924 			    "queue head\n");
    925 			nextpg = pglst->tqh_first;	/* reload! */
    926 		}
    927 
    928 	}	/* end of "inactive" 'for' loop */
    929 	return (retval);
    930 }
    931 
    932 /*
    933  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    934  *
    935  * => called with pageq's locked
    936  */
    937 
    938 void
    939 uvmpd_scan()
    940 {
    941 	int s, free, inactive_shortage, swap_shortage, pages_freed;
    942 	struct vm_page *p, *nextpg;
    943 	struct uvm_object *uobj;
    944 	boolean_t got_it;
    945 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    946 
    947 	uvmexp.pdrevs++;		/* counter */
    948 
    949 #ifdef __GNUC__
    950 	uobj = NULL;	/* XXX gcc */
    951 #endif
    952 	/*
    953 	 * get current "free" page count
    954 	 */
    955 	s = uvm_lock_fpageq();
    956 	free = uvmexp.free;
    957 	uvm_unlock_fpageq(s);
    958 
    959 #ifndef __SWAP_BROKEN
    960 	/*
    961 	 * swap out some processes if we are below our free target.
    962 	 * we need to unlock the page queues for this.
    963 	 */
    964 	if (free < uvmexp.freetarg) {
    965 
    966 		uvmexp.pdswout++;
    967 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout", free,
    968 		    uvmexp.freetarg, 0, 0);
    969 		uvm_unlock_pageq();
    970 		uvm_swapout_threads();
    971 		pmap_update();		/* update so we can scan inactive q */
    972 		uvm_lock_pageq();
    973 
    974 	}
    975 #endif
    976 
    977 	/*
    978 	 * now we want to work on meeting our targets.   first we work on our
    979 	 * free target by converting inactive pages into free pages.  then
    980 	 * we work on meeting our inactive target by converting active pages
    981 	 * to inactive ones.
    982 	 */
    983 
    984 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    985 
    986 	/*
    987 	 * do loop #1!   alternate starting queue between swap and object based
    988 	 * on the low bit of uvmexp.pdrevs (which we bump by one each call).
    989 	 */
    990 
    991 	got_it = FALSE;
    992 	pages_freed = uvmexp.pdfreed;
    993 	if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
    994 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
    995 	if (!got_it)
    996 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
    997 	if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
    998 		(void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
    999 	pages_freed = uvmexp.pdfreed - pages_freed;
   1000 
   1001 	/*
   1002 	 * we have done the scan to get free pages.   now we work on meeting
   1003 	 * our inactive target.
   1004 	 */
   1005 
   1006 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
   1007 
   1008 	/*
   1009 	 * detect if we're not going to be able to page anything out
   1010 	 * until we free some swap resources from active pages.
   1011 	 */
   1012 	swap_shortage = 0;
   1013 	if (uvmexp.free < uvmexp.freetarg &&
   1014 	    uvmexp.swpginuse == uvmexp.swpages &&
   1015 	    uvmexp.swpgonly < uvmexp.swpages &&
   1016 	    pages_freed == 0) {
   1017 		swap_shortage = uvmexp.freetarg - uvmexp.free;
   1018 	}
   1019 
   1020 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
   1021 		    inactive_shortage, swap_shortage,0,0);
   1022 	for (p = TAILQ_FIRST(&uvm.page_active);
   1023 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
   1024 	     p = nextpg) {
   1025 		nextpg = p->pageq.tqe_next;
   1026 		if (p->flags & PG_BUSY)
   1027 			continue;	/* quick check before trying to lock */
   1028 
   1029 		/*
   1030 		 * lock the page's owner.
   1031 		 */
   1032 		/* is page anon owned or ownerless? */
   1033 		if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
   1034 
   1035 #ifdef DIAGNOSTIC
   1036 			if (p->uanon == NULL)
   1037 				panic("pagedaemon: page with no anon or "
   1038 				    "object detected - loop 2");
   1039 #endif
   1040 			if (!simple_lock_try(&p->uanon->an_lock))
   1041 				continue;
   1042 
   1043 			/* take over the page? */
   1044 			if ((p->pqflags & PQ_ANON) == 0) {
   1045 #ifdef DIAGNOSTIC
   1046 				if (p->loan_count < 1)
   1047 					panic("pagedaemon: non-loaned "
   1048 					    "ownerless page detected - loop 2");
   1049 #endif
   1050 				p->loan_count--;
   1051 				p->pqflags |= PQ_ANON;
   1052 			}
   1053 		} else {
   1054 			if (!simple_lock_try(&p->uobject->vmobjlock))
   1055 				continue;
   1056 		}
   1057 		/*
   1058 		 * skip this page if it's busy.
   1059 		 */
   1060 		if ((p->flags & PG_BUSY) != 0) {
   1061 			if (p->pqflags & PQ_ANON)
   1062 				simple_unlock(&p->uanon->an_lock);
   1063 			else
   1064 				simple_unlock(&p->uobject->vmobjlock);
   1065 			continue;
   1066 		}
   1067 
   1068 		/*
   1069 		 * if there's a shortage of swap, free any swap allocated
   1070 		 * to this page so that other pages can be paged out.
   1071 		 */
   1072 		if (swap_shortage > 0) {
   1073 			if ((p->pqflags & PQ_ANON) && p->uanon->an_swslot) {
   1074 				uvm_swap_free(p->uanon->an_swslot, 1);
   1075 				p->uanon->an_swslot = 0;
   1076 				p->flags &= ~PG_CLEAN;
   1077 				swap_shortage--;
   1078 			}
   1079 			if (p->pqflags & PQ_AOBJ) {
   1080 				int slot = uao_set_swslot(p->uobject,
   1081 					p->offset >> PAGE_SHIFT, 0);
   1082 				if (slot) {
   1083 					uvm_swap_free(slot, 1);
   1084 					p->flags &= ~PG_CLEAN;
   1085 					swap_shortage--;
   1086 				}
   1087 			}
   1088 		}
   1089 
   1090 		/*
   1091 		 * deactivate this page if there's a shortage of
   1092 		 * inactive pages.
   1093 		 */
   1094 		if (inactive_shortage > 0) {
   1095 			pmap_page_protect(p, VM_PROT_NONE);
   1096 			/* no need to check wire_count as pg is "active" */
   1097 			uvm_pagedeactivate(p);
   1098 			uvmexp.pddeact++;
   1099 			inactive_shortage--;
   1100 		}
   1101 
   1102 		if (p->pqflags & PQ_ANON)
   1103 			simple_unlock(&p->uanon->an_lock);
   1104 		else
   1105 			simple_unlock(&p->uobject->vmobjlock);
   1106 	}
   1107 }
   1108