Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.20
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.20 2000/06/26 14:21:18 mrg Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include "opt_uvmhist.h"
     70 
     71 /*
     72  * uvm_pdaemon.c: the page daemon
     73  */
     74 
     75 #include <sys/param.h>
     76 #include <sys/proc.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/pool.h>
     80 
     81 #include <vm/vm.h>
     82 
     83 #include <uvm/uvm.h>
     84 
     85 /*
     86  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
     87  * in a pass thru the inactive list when swap is full.  the value should be
     88  * "small"... if it's too large we'll cycle the active pages thru the inactive
     89  * queue too quickly to for them to be referenced and avoid being freed.
     90  */
     91 
     92 #define UVMPD_NUMDIRTYREACTS 16
     93 
     94 
     95 /*
     96  * local prototypes
     97  */
     98 
     99 static void		uvmpd_scan __P((void));
    100 static boolean_t	uvmpd_scan_inactive __P((struct pglist *));
    101 static void		uvmpd_tune __P((void));
    102 
    103 
    104 /*
    105  * uvm_wait: wait (sleep) for the page daemon to free some pages
    106  *
    107  * => should be called with all locks released
    108  * => should _not_ be called by the page daemon (to avoid deadlock)
    109  */
    110 
    111 void
    112 uvm_wait(wmsg)
    113 	const char *wmsg;
    114 {
    115 	int timo = 0;
    116 	int s = splbio();
    117 
    118 	/*
    119 	 * check for page daemon going to sleep (waiting for itself)
    120 	 */
    121 
    122 	if (curproc == uvm.pagedaemon_proc) {
    123 		/*
    124 		 * now we have a problem: the pagedaemon wants to go to
    125 		 * sleep until it frees more memory.   but how can it
    126 		 * free more memory if it is asleep?  that is a deadlock.
    127 		 * we have two options:
    128 		 *  [1] panic now
    129 		 *  [2] put a timeout on the sleep, thus causing the
    130 		 *      pagedaemon to only pause (rather than sleep forever)
    131 		 *
    132 		 * note that option [2] will only help us if we get lucky
    133 		 * and some other process on the system breaks the deadlock
    134 		 * by exiting or freeing memory (thus allowing the pagedaemon
    135 		 * to continue).  for now we panic if DEBUG is defined,
    136 		 * otherwise we hope for the best with option [2] (better
    137 		 * yet, this should never happen in the first place!).
    138 		 */
    139 
    140 		printf("pagedaemon: deadlock detected!\n");
    141 		timo = hz >> 3;		/* set timeout */
    142 #if defined(DEBUG)
    143 		/* DEBUG: panic so we can debug it */
    144 		panic("pagedaemon deadlock");
    145 #endif
    146 	}
    147 
    148 	simple_lock(&uvm.pagedaemon_lock);
    149 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    150 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    151 	    timo);
    152 
    153 	splx(s);
    154 }
    155 
    156 
    157 /*
    158  * uvmpd_tune: tune paging parameters
    159  *
    160  * => called when ever memory is added (or removed?) to the system
    161  * => caller must call with page queues locked
    162  */
    163 
    164 static void
    165 uvmpd_tune()
    166 {
    167 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    168 
    169 	uvmexp.freemin = uvmexp.npages / 20;
    170 
    171 	/* between 16k and 256k */
    172 	/* XXX:  what are these values good for? */
    173 	uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    174 	uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    175 
    176 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    177 	if (uvmexp.freetarg <= uvmexp.freemin)
    178 		uvmexp.freetarg = uvmexp.freemin + 1;
    179 
    180 	/* uvmexp.inactarg: computed in main daemon loop */
    181 
    182 	uvmexp.wiredmax = uvmexp.npages / 3;
    183 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    184 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    185 }
    186 
    187 /*
    188  * uvm_pageout: the main loop for the pagedaemon
    189  */
    190 
    191 void
    192 uvm_pageout()
    193 {
    194 	int npages = 0;
    195 	int s;
    196 	struct uvm_aiodesc *aio, *nextaio;
    197 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    198 
    199 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    200 
    201 	/*
    202 	 * ensure correct priority and set paging parameters...
    203 	 */
    204 
    205 	uvm.pagedaemon_proc = curproc;
    206 	(void) spl0();
    207 	uvm_lock_pageq();
    208 	npages = uvmexp.npages;
    209 	uvmpd_tune();
    210 	uvm_unlock_pageq();
    211 
    212 	/*
    213 	 * main loop
    214 	 */
    215 	while (TRUE) {
    216 
    217 		/*
    218 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    219 		 * we need splbio because we want to make sure the aio_done list
    220 		 * is totally empty before we go to sleep.
    221 		 */
    222 
    223 		s = splbio();
    224 		simple_lock(&uvm.pagedaemon_lock);
    225 
    226 		/*
    227 		 * if we've got done aio's, then bypass the sleep
    228 		 */
    229 
    230 		if (uvm.aio_done.tqh_first == NULL) {
    231 			UVMHIST_LOG(maphist,"  <<SLEEPING>>",0,0,0,0);
    232 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    233 			    &uvm.pagedaemon_lock, FALSE, "daemon_slp", 0);
    234 			uvmexp.pdwoke++;
    235 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    236 
    237 			/* relock pagedaemon_lock, still at splbio */
    238 			simple_lock(&uvm.pagedaemon_lock);
    239 		}
    240 
    241 		/*
    242 		 * check for done aio structures
    243 		 */
    244 
    245 		aio = uvm.aio_done.tqh_first;	/* save current list (if any)*/
    246 		if (aio) {
    247 			TAILQ_INIT(&uvm.aio_done);	/* zero global list */
    248 		}
    249 
    250 		simple_unlock(&uvm.pagedaemon_lock);	/* unlock */
    251 		splx(s);				/* drop splbio */
    252 
    253 		/*
    254 		 * first clear out any pending aios (to free space in case we
    255 		 * want to pageout more stuff).
    256 		 */
    257 
    258 		for (/*null*/; aio != NULL ; aio = nextaio) {
    259 
    260 			uvmexp.paging -= aio->npages;
    261 			nextaio = aio->aioq.tqe_next;
    262 			aio->aiodone(aio);
    263 
    264 		}
    265 
    266 		/* Next, drain pool resources */
    267 		pool_drain(0);
    268 
    269 		/*
    270 		 * now lock page queues and recompute inactive count
    271 		 */
    272 		uvm_lock_pageq();
    273 
    274 		if (npages != uvmexp.npages) {	/* check for new pages? */
    275 			npages = uvmexp.npages;
    276 			uvmpd_tune();
    277 		}
    278 
    279 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    280 		if (uvmexp.inactarg <= uvmexp.freetarg)
    281 			uvmexp.inactarg = uvmexp.freetarg + 1;
    282 
    283 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    284 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    285 		    uvmexp.inactarg);
    286 
    287 		/*
    288 		 * scan if needed
    289 		 * [XXX: note we are reading uvm.free without locking]
    290 		 */
    291 		if (uvmexp.free < uvmexp.freetarg ||
    292 		    uvmexp.inactive < uvmexp.inactarg)
    293 			uvmpd_scan();
    294 
    295 		/*
    296 		 * done scan.  unlock page queues (the only lock we are holding)
    297 		 */
    298 		uvm_unlock_pageq();
    299 
    300 		/*
    301 		 * done!    restart loop.
    302 		 */
    303 		if (uvmexp.free > uvmexp.reserve_kernel ||
    304 		    uvmexp.paging == 0)
    305 			wakeup(&uvmexp.free);
    306 	}
    307 	/*NOTREACHED*/
    308 }
    309 
    310 /*
    311  * uvmpd_scan_inactive: the first loop of uvmpd_scan broken out into
    312  * 	its own function for ease of reading.
    313  *
    314  * => called with page queues locked
    315  * => we work on meeting our free target by converting inactive pages
    316  *    into free pages.
    317  * => we handle the building of swap-backed clusters
    318  * => we return TRUE if we are exiting because we met our target
    319  */
    320 
    321 static boolean_t
    322 uvmpd_scan_inactive(pglst)
    323 	struct pglist *pglst;
    324 {
    325 	boolean_t retval = FALSE;	/* assume we haven't hit target */
    326 	int s, free, result;
    327 	struct vm_page *p, *nextpg;
    328 	struct uvm_object *uobj;
    329 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
    330 	int npages;
    331 	struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; 	/* XXX: see below */
    332 	int swnpages, swcpages;				/* XXX: see below */
    333 	int swslot;
    334 	struct vm_anon *anon;
    335 	boolean_t swap_backed;
    336 	vaddr_t start;
    337 	int dirtyreacts;
    338 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    339 
    340 	/*
    341 	 * note: we currently keep swap-backed pages on a seperate inactive
    342 	 * list from object-backed pages.   however, merging the two lists
    343 	 * back together again hasn't been ruled out.   thus, we keep our
    344 	 * swap cluster in "swpps" rather than in pps (allows us to mix
    345 	 * clustering types in the event of a mixed inactive queue).
    346 	 */
    347 
    348 	/*
    349 	 * swslot is non-zero if we are building a swap cluster.  we want
    350 	 * to stay in the loop while we have a page to scan or we have
    351 	 * a swap-cluster to build.
    352 	 */
    353 	swslot = 0;
    354 	swnpages = swcpages = 0;
    355 	free = 0;
    356 	dirtyreacts = 0;
    357 
    358 	for (p = pglst->tqh_first ; p != NULL || swslot != 0 ; p = nextpg) {
    359 
    360 		/*
    361 		 * note that p can be NULL iff we have traversed the whole
    362 		 * list and need to do one final swap-backed clustered pageout.
    363 		 */
    364 		if (p) {
    365 			/*
    366 			 * update our copy of "free" and see if we've met
    367 			 * our target
    368 			 */
    369 			s = uvm_lock_fpageq();
    370 			free = uvmexp.free;
    371 			uvm_unlock_fpageq(s);
    372 
    373 			if (free + uvmexp.paging >= uvmexp.freetarg << 2 ||
    374 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    375 				UVMHIST_LOG(pdhist,"  met free target: "
    376 				    "exit loop", 0, 0, 0, 0);
    377 				retval = TRUE;		/* hit the target! */
    378 
    379 				if (swslot == 0)
    380 					/* exit now if no swap-i/o pending */
    381 					break;
    382 
    383 				/* set p to null to signal final swap i/o */
    384 				p = NULL;
    385 			}
    386 		}
    387 
    388 		uobj = NULL;	/* be safe and shut gcc up */
    389 		anon = NULL;	/* be safe and shut gcc up */
    390 
    391 		if (p) {	/* if (we have a new page to consider) */
    392 			/*
    393 			 * we are below target and have a new page to consider.
    394 			 */
    395 			uvmexp.pdscans++;
    396 			nextpg = p->pageq.tqe_next;
    397 
    398 			/*
    399 			 * move referenced pages back to active queue and
    400 			 * skip to next page (unlikely to happen since
    401 			 * inactive pages shouldn't have any valid mappings
    402 			 * and we cleared reference before deactivating).
    403 			 */
    404 			if (pmap_is_referenced(p)) {
    405 				uvm_pageactivate(p);
    406 				uvmexp.pdreact++;
    407 				continue;
    408 			}
    409 
    410 			/*
    411 			 * first we attempt to lock the object that this page
    412 			 * belongs to.  if our attempt fails we skip on to
    413 			 * the next page (no harm done).  it is important to
    414 			 * "try" locking the object as we are locking in the
    415 			 * wrong order (pageq -> object) and we don't want to
    416 			 * get deadlocked.
    417 			 *
    418 			 * the only time we exepct to see an ownerless page
    419 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    420 			 * anon has loaned a page from a uvm_object and the
    421 			 * uvm_object has dropped the ownership.  in that
    422 			 * case, the anon can "take over" the loaned page
    423 			 * and make it its own.
    424 			 */
    425 
    426 			/* is page part of an anon or ownerless ? */
    427 			if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
    428 
    429 				anon = p->uanon;
    430 
    431 #ifdef DIAGNOSTIC
    432 				/* to be on inactive q, page must be part
    433 				 * of _something_ */
    434 				if (anon == NULL)
    435 					panic("pagedaemon: page with no anon "
    436 					    "or object detected - loop 1");
    437 #endif
    438 
    439 				if (!simple_lock_try(&anon->an_lock))
    440 					/* lock failed, skip this page */
    441 					continue;
    442 
    443 				/*
    444 				 * if the page is ownerless, claim it in the
    445 				 * name of "anon"!
    446 				 */
    447 				if ((p->pqflags & PQ_ANON) == 0) {
    448 #ifdef DIAGNOSTIC
    449 					if (p->loan_count < 1)
    450 						panic("pagedaemon: non-loaned "
    451 						    "ownerless page detected -"
    452 						    " loop 1");
    453 #endif
    454 					p->loan_count--;
    455 					p->pqflags |= PQ_ANON;      /* anon now owns it */
    456 				}
    457 
    458 				if (p->flags & PG_BUSY) {
    459 					simple_unlock(&anon->an_lock);
    460 					uvmexp.pdbusy++;
    461 					/* someone else owns page, skip it */
    462 					continue;
    463 				}
    464 
    465 				uvmexp.pdanscan++;
    466 
    467 			} else {
    468 
    469 				uobj = p->uobject;
    470 
    471 				if (!simple_lock_try(&uobj->vmobjlock))
    472 					/* lock failed, skip this page */
    473 					continue;
    474 
    475 				if (p->flags & PG_BUSY) {
    476 					simple_unlock(&uobj->vmobjlock);
    477 					uvmexp.pdbusy++;
    478 					/* someone else owns page, skip it */
    479 					continue;
    480 				}
    481 
    482 				uvmexp.pdobscan++;
    483 			}
    484 
    485 			/*
    486 			 * we now have the object and the page queues locked.
    487 			 * the page is not busy.   if the page is clean we
    488 			 * can free it now and continue.
    489 			 */
    490 
    491 			if (p->flags & PG_CLEAN) {
    492 				if (p->pqflags & PQ_SWAPBACKED) {
    493 					/* this page now lives only in swap */
    494 					simple_lock(&uvm.swap_data_lock);
    495 					uvmexp.swpgonly++;
    496 					simple_unlock(&uvm.swap_data_lock);
    497 				}
    498 
    499 				/* zap all mappings with pmap_page_protect... */
    500 				pmap_page_protect(p, VM_PROT_NONE);
    501 				uvm_pagefree(p);
    502 				uvmexp.pdfreed++;
    503 
    504 				if (anon) {
    505 #ifdef DIAGNOSTIC
    506 					/*
    507 					 * an anonymous page can only be clean
    508 					 * if it has valid backing store.
    509 					 */
    510 					if (anon->an_swslot == 0)
    511 						panic("pagedaemon: clean anon "
    512 						 "page without backing store?");
    513 #endif
    514 					/* remove from object */
    515 					anon->u.an_page = NULL;
    516 					simple_unlock(&anon->an_lock);
    517 				} else {
    518 					/* pagefree has already removed the
    519 					 * page from the object */
    520 					simple_unlock(&uobj->vmobjlock);
    521 				}
    522 				continue;
    523 			}
    524 
    525 			/*
    526 			 * this page is dirty, skip it if we'll have met our
    527 			 * free target when all the current pageouts complete.
    528 			 */
    529 			if (free + uvmexp.paging > uvmexp.freetarg << 2) {
    530 				if (anon) {
    531 					simple_unlock(&anon->an_lock);
    532 				} else {
    533 					simple_unlock(&uobj->vmobjlock);
    534 				}
    535 				continue;
    536 			}
    537 
    538 			/*
    539 			 * this page is dirty, but we can't page it out
    540 			 * since all pages in swap are only in swap.
    541 			 * reactivate it so that we eventually cycle
    542 			 * all pages thru the inactive queue.
    543 			 */
    544 #ifdef DIAGNOSTIC
    545 			if (uvmexp.swpgonly > uvmexp.swpages) {
    546 				panic("uvmexp.swpgonly botch");
    547 			}
    548 #endif
    549 			if ((p->pqflags & PQ_SWAPBACKED) &&
    550 			    uvmexp.swpgonly == uvmexp.swpages) {
    551 				dirtyreacts++;
    552 				uvm_pageactivate(p);
    553 				if (anon) {
    554 					simple_unlock(&anon->an_lock);
    555 				} else {
    556 					simple_unlock(&uobj->vmobjlock);
    557 				}
    558 				continue;
    559 			}
    560 
    561 			/*
    562 			 * if the page is swap-backed and dirty and swap space
    563 			 * is full, free any swap allocated to the page
    564 			 * so that other pages can be paged out.
    565 			 */
    566 #ifdef DIAGNOSTIC
    567 			if (uvmexp.swpginuse > uvmexp.swpages) {
    568 				panic("uvmexp.swpginuse botch");
    569 			}
    570 #endif
    571 			if ((p->pqflags & PQ_SWAPBACKED) &&
    572 			    uvmexp.swpginuse == uvmexp.swpages) {
    573 
    574 				if ((p->pqflags & PQ_ANON) &&
    575 				    p->uanon->an_swslot) {
    576 					uvm_swap_free(p->uanon->an_swslot, 1);
    577 					p->uanon->an_swslot = 0;
    578 				}
    579 				if (p->pqflags & PQ_AOBJ) {
    580 					uao_dropswap(p->uobject,
    581 						     p->offset >> PAGE_SHIFT);
    582 				}
    583 			}
    584 
    585 			/*
    586 			 * the page we are looking at is dirty.   we must
    587 			 * clean it before it can be freed.  to do this we
    588 			 * first mark the page busy so that no one else will
    589 			 * touch the page.   we write protect all the mappings
    590 			 * of the page so that no one touches it while it is
    591 			 * in I/O.
    592 			 */
    593 
    594 			swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
    595 			p->flags |= PG_BUSY;		/* now we own it */
    596 			UVM_PAGE_OWN(p, "scan_inactive");
    597 			pmap_page_protect(p, VM_PROT_READ);
    598 			uvmexp.pgswapout++;
    599 
    600 			/*
    601 			 * for swap-backed pages we need to (re)allocate
    602 			 * swap space.
    603 			 */
    604 			if (swap_backed) {
    605 
    606 				/*
    607 				 * free old swap slot (if any)
    608 				 */
    609 				if (anon) {
    610 					if (anon->an_swslot) {
    611 						uvm_swap_free(anon->an_swslot,
    612 						    1);
    613 						anon->an_swslot = 0;
    614 					}
    615 				} else {
    616 					uao_dropswap(uobj,
    617 						     p->offset >> PAGE_SHIFT);
    618 				}
    619 
    620 				/*
    621 				 * start new cluster (if necessary)
    622 				 */
    623 				if (swslot == 0) {
    624 					/* want this much */
    625 					swnpages = MAXBSIZE >> PAGE_SHIFT;
    626 
    627 					swslot = uvm_swap_alloc(&swnpages,
    628 					    TRUE);
    629 
    630 					if (swslot == 0) {
    631 						/* no swap?  give up! */
    632 						p->flags &= ~PG_BUSY;
    633 						UVM_PAGE_OWN(p, NULL);
    634 						if (anon)
    635 							simple_unlock(
    636 							    &anon->an_lock);
    637 						else
    638 							simple_unlock(
    639 							    &uobj->vmobjlock);
    640 						continue;
    641 					}
    642 					swcpages = 0;	/* cluster is empty */
    643 				}
    644 
    645 				/*
    646 				 * add block to cluster
    647 				 */
    648 				swpps[swcpages] = p;
    649 				if (anon)
    650 					anon->an_swslot = swslot + swcpages;
    651 				else
    652 					uao_set_swslot(uobj,
    653 					    p->offset >> PAGE_SHIFT,
    654 					    swslot + swcpages);
    655 				swcpages++;
    656 
    657 				/* done (swap-backed) */
    658 			}
    659 
    660 			/* end: if (p) ["if we have new page to consider"] */
    661 		} else {
    662 
    663 			/* if p == NULL we must be doing a last swap i/o */
    664 			swap_backed = TRUE;
    665 		}
    666 
    667 		/*
    668 		 * now consider doing the pageout.
    669 		 *
    670 		 * for swap-backed pages, we do the pageout if we have either
    671 		 * filled the cluster (in which case (swnpages == swcpages) or
    672 		 * run out of pages (p == NULL).
    673 		 *
    674 		 * for object pages, we always do the pageout.
    675 		 */
    676 		if (swap_backed) {
    677 
    678 			if (p) {	/* if we just added a page to cluster */
    679 				if (anon)
    680 					simple_unlock(&anon->an_lock);
    681 				else
    682 					simple_unlock(&uobj->vmobjlock);
    683 
    684 				/* cluster not full yet? */
    685 				if (swcpages < swnpages)
    686 					continue;
    687 			}
    688 
    689 			/* starting I/O now... set up for it */
    690 			npages = swcpages;
    691 			ppsp = swpps;
    692 			/* for swap-backed pages only */
    693 			start = (vaddr_t) swslot;
    694 
    695 			/* if this is final pageout we could have a few
    696 			 * extra swap blocks */
    697 			if (swcpages < swnpages) {
    698 				uvm_swap_free(swslot + swcpages,
    699 				    (swnpages - swcpages));
    700 			}
    701 
    702 		} else {
    703 
    704 			/* normal object pageout */
    705 			ppsp = pps;
    706 			npages = sizeof(pps) / sizeof(struct vm_page *);
    707 			/* not looked at because PGO_ALLPAGES is set */
    708 			start = 0;
    709 
    710 		}
    711 
    712 		/*
    713 		 * now do the pageout.
    714 		 *
    715 		 * for swap_backed pages we have already built the cluster.
    716 		 * for !swap_backed pages, uvm_pager_put will call the object's
    717 		 * "make put cluster" function to build a cluster on our behalf.
    718 		 *
    719 		 * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
    720 		 * it to free the cluster pages for us on a successful I/O (it
    721 		 * always does this for un-successful I/O requests).  this
    722 		 * allows us to do clustered pageout without having to deal
    723 		 * with cluster pages at this level.
    724 		 *
    725 		 * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
    726 		 *  IN: locked: uobj (if !swap_backed), page queues
    727 		 * OUT: locked: uobj (if !swap_backed && result !=VM_PAGER_PEND)
    728 		 *     !locked: pageqs, uobj (if swap_backed || VM_PAGER_PEND)
    729 		 *
    730 		 * [the bit about VM_PAGER_PEND saves us one lock-unlock pair]
    731 		 */
    732 
    733 		/* locked: uobj (if !swap_backed), page queues */
    734 		uvmexp.pdpageouts++;
    735 		result = uvm_pager_put((swap_backed) ? NULL : uobj, p,
    736 		    &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
    737 		/* locked: uobj (if !swap_backed && result != PEND) */
    738 		/* unlocked: pageqs, object (if swap_backed ||result == PEND) */
    739 
    740 		/*
    741 		 * if we did i/o to swap, zero swslot to indicate that we are
    742 		 * no longer building a swap-backed cluster.
    743 		 */
    744 
    745 		if (swap_backed)
    746 			swslot = 0;		/* done with this cluster */
    747 
    748 		/*
    749 		 * first, we check for VM_PAGER_PEND which means that the
    750 		 * async I/O is in progress and the async I/O done routine
    751 		 * will clean up after us.   in this case we move on to the
    752 		 * next page.
    753 		 *
    754 		 * there is a very remote chance that the pending async i/o can
    755 		 * finish _before_ we get here.   if that happens, our page "p"
    756 		 * may no longer be on the inactive queue.   so we verify this
    757 		 * when determining the next page (starting over at the head if
    758 		 * we've lost our inactive page).
    759 		 */
    760 
    761 		if (result == VM_PAGER_PEND) {
    762 			uvmexp.paging += npages;
    763 			uvm_lock_pageq();		/* relock page queues */
    764 			uvmexp.pdpending++;
    765 			if (p) {
    766 				if (p->pqflags & PQ_INACTIVE)
    767 					/* reload! */
    768 					nextpg = p->pageq.tqe_next;
    769 				else
    770 					/* reload! */
    771 					nextpg = pglst->tqh_first;
    772 				} else {
    773 					nextpg = NULL;		/* done list */
    774 			}
    775 			continue;
    776 		}
    777 
    778 		/*
    779 		 * clean up "p" if we have one
    780 		 */
    781 
    782 		if (p) {
    783 			/*
    784 			 * the I/O request to "p" is done and uvm_pager_put
    785 			 * has freed any cluster pages it may have allocated
    786 			 * during I/O.  all that is left for us to do is
    787 			 * clean up page "p" (which is still PG_BUSY).
    788 			 *
    789 			 * our result could be one of the following:
    790 			 *   VM_PAGER_OK: successful pageout
    791 			 *
    792 			 *   VM_PAGER_AGAIN: tmp resource shortage, we skip
    793 			 *     to next page
    794 			 *   VM_PAGER_{FAIL,ERROR,BAD}: an error.   we
    795 			 *     "reactivate" page to get it out of the way (it
    796 			 *     will eventually drift back into the inactive
    797 			 *     queue for a retry).
    798 			 *   VM_PAGER_UNLOCK: should never see this as it is
    799 			 *     only valid for "get" operations
    800 			 */
    801 
    802 			/* relock p's object: page queues not lock yet, so
    803 			 * no need for "try" */
    804 
    805 			/* !swap_backed case: already locked... */
    806 			if (swap_backed) {
    807 				if (anon)
    808 					simple_lock(&anon->an_lock);
    809 				else
    810 					simple_lock(&uobj->vmobjlock);
    811 			}
    812 
    813 #ifdef DIAGNOSTIC
    814 			if (result == VM_PAGER_UNLOCK)
    815 				panic("pagedaemon: pageout returned "
    816 				    "invalid 'unlock' code");
    817 #endif
    818 
    819 			/* handle PG_WANTED now */
    820 			if (p->flags & PG_WANTED)
    821 				/* still holding object lock */
    822 				wakeup(p);
    823 
    824 			p->flags &= ~(PG_BUSY|PG_WANTED);
    825 			UVM_PAGE_OWN(p, NULL);
    826 
    827 			/* released during I/O? */
    828 			if (p->flags & PG_RELEASED) {
    829 				if (anon) {
    830 					/* remove page so we can get nextpg */
    831 					anon->u.an_page = NULL;
    832 
    833 					simple_unlock(&anon->an_lock);
    834 					uvm_anfree(anon);	/* kills anon */
    835 					pmap_page_protect(p, VM_PROT_NONE);
    836 					anon = NULL;
    837 					uvm_lock_pageq();
    838 					nextpg = p->pageq.tqe_next;
    839 					/* free released page */
    840 					uvm_pagefree(p);
    841 
    842 				} else {
    843 
    844 #ifdef DIAGNOSTIC
    845 					if (uobj->pgops->pgo_releasepg == NULL)
    846 						panic("pagedaemon: no "
    847 						   "pgo_releasepg function");
    848 #endif
    849 
    850 					/*
    851 					 * pgo_releasepg nukes the page and
    852 					 * gets "nextpg" for us.  it returns
    853 					 * with the page queues locked (when
    854 					 * given nextpg ptr).
    855 					 */
    856 					if (!uobj->pgops->pgo_releasepg(p,
    857 					    &nextpg))
    858 						/* uobj died after release */
    859 						uobj = NULL;
    860 
    861 					/*
    862 					 * lock page queues here so that they're
    863 					 * always locked at the end of the loop.
    864 					 */
    865 					uvm_lock_pageq();
    866 				}
    867 
    868 			} else {	/* page was not released during I/O */
    869 
    870 				uvm_lock_pageq();
    871 				nextpg = p->pageq.tqe_next;
    872 
    873 				if (result != VM_PAGER_OK) {
    874 
    875 					/* pageout was a failure... */
    876 					if (result != VM_PAGER_AGAIN)
    877 						uvm_pageactivate(p);
    878 					pmap_clear_reference(p);
    879 					/* XXXCDC: if (swap_backed) FREE p's
    880 					 * swap block? */
    881 
    882 				} else {
    883 
    884 					/* pageout was a success... */
    885 					pmap_clear_reference(p);
    886 					pmap_clear_modify(p);
    887 					p->flags |= PG_CLEAN;
    888 					/* XXX: could free page here, but old
    889 					 * pagedaemon does not */
    890 
    891 				}
    892 			}
    893 
    894 			/*
    895 			 * drop object lock (if there is an object left).   do
    896 			 * a safety check of nextpg to make sure it is on the
    897 			 * inactive queue (it should be since PG_BUSY pages on
    898 			 * the inactive queue can't be re-queued [note: not
    899 			 * true for active queue]).
    900 			 */
    901 
    902 			if (anon)
    903 				simple_unlock(&anon->an_lock);
    904 			else if (uobj)
    905 				simple_unlock(&uobj->vmobjlock);
    906 
    907 		} /* if (p) */ else {
    908 
    909 			/* if p is null in this loop, make sure it stays null
    910 			 * in next loop */
    911 			nextpg = NULL;
    912 
    913 			/*
    914 			 * lock page queues here just so they're always locked
    915 			 * at the end of the loop.
    916 			 */
    917 			uvm_lock_pageq();
    918 		}
    919 
    920 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    921 			printf("pagedaemon: invalid nextpg!   reverting to "
    922 			    "queue head\n");
    923 			nextpg = pglst->tqh_first;	/* reload! */
    924 		}
    925 
    926 	}	/* end of "inactive" 'for' loop */
    927 	return (retval);
    928 }
    929 
    930 /*
    931  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    932  *
    933  * => called with pageq's locked
    934  */
    935 
    936 void
    937 uvmpd_scan()
    938 {
    939 	int s, free, inactive_shortage, swap_shortage, pages_freed;
    940 	struct vm_page *p, *nextpg;
    941 	struct uvm_object *uobj;
    942 	boolean_t got_it;
    943 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    944 
    945 	uvmexp.pdrevs++;		/* counter */
    946 
    947 #ifdef __GNUC__
    948 	uobj = NULL;	/* XXX gcc */
    949 #endif
    950 	/*
    951 	 * get current "free" page count
    952 	 */
    953 	s = uvm_lock_fpageq();
    954 	free = uvmexp.free;
    955 	uvm_unlock_fpageq(s);
    956 
    957 #ifndef __SWAP_BROKEN
    958 	/*
    959 	 * swap out some processes if we are below our free target.
    960 	 * we need to unlock the page queues for this.
    961 	 */
    962 	if (free < uvmexp.freetarg) {
    963 
    964 		uvmexp.pdswout++;
    965 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout", free,
    966 		    uvmexp.freetarg, 0, 0);
    967 		uvm_unlock_pageq();
    968 		uvm_swapout_threads();
    969 		pmap_update();		/* update so we can scan inactive q */
    970 		uvm_lock_pageq();
    971 
    972 	}
    973 #endif
    974 
    975 	/*
    976 	 * now we want to work on meeting our targets.   first we work on our
    977 	 * free target by converting inactive pages into free pages.  then
    978 	 * we work on meeting our inactive target by converting active pages
    979 	 * to inactive ones.
    980 	 */
    981 
    982 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    983 
    984 	/*
    985 	 * do loop #1!   alternate starting queue between swap and object based
    986 	 * on the low bit of uvmexp.pdrevs (which we bump by one each call).
    987 	 */
    988 
    989 	got_it = FALSE;
    990 	pages_freed = uvmexp.pdfreed;
    991 	if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
    992 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
    993 	if (!got_it)
    994 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
    995 	if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
    996 		(void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
    997 	pages_freed = uvmexp.pdfreed - pages_freed;
    998 
    999 	/*
   1000 	 * we have done the scan to get free pages.   now we work on meeting
   1001 	 * our inactive target.
   1002 	 */
   1003 
   1004 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
   1005 
   1006 	/*
   1007 	 * detect if we're not going to be able to page anything out
   1008 	 * until we free some swap resources from active pages.
   1009 	 */
   1010 	swap_shortage = 0;
   1011 	if (uvmexp.free < uvmexp.freetarg &&
   1012 	    uvmexp.swpginuse == uvmexp.swpages &&
   1013 	    uvmexp.swpgonly < uvmexp.swpages &&
   1014 	    pages_freed == 0) {
   1015 		swap_shortage = uvmexp.freetarg - uvmexp.free;
   1016 	}
   1017 
   1018 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
   1019 		    inactive_shortage, swap_shortage,0,0);
   1020 	for (p = TAILQ_FIRST(&uvm.page_active);
   1021 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
   1022 	     p = nextpg) {
   1023 		nextpg = p->pageq.tqe_next;
   1024 		if (p->flags & PG_BUSY)
   1025 			continue;	/* quick check before trying to lock */
   1026 
   1027 		/*
   1028 		 * lock the page's owner.
   1029 		 */
   1030 		/* is page anon owned or ownerless? */
   1031 		if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
   1032 
   1033 #ifdef DIAGNOSTIC
   1034 			if (p->uanon == NULL)
   1035 				panic("pagedaemon: page with no anon or "
   1036 				    "object detected - loop 2");
   1037 #endif
   1038 			if (!simple_lock_try(&p->uanon->an_lock))
   1039 				continue;
   1040 
   1041 			/* take over the page? */
   1042 			if ((p->pqflags & PQ_ANON) == 0) {
   1043 #ifdef DIAGNOSTIC
   1044 				if (p->loan_count < 1)
   1045 					panic("pagedaemon: non-loaned "
   1046 					    "ownerless page detected - loop 2");
   1047 #endif
   1048 				p->loan_count--;
   1049 				p->pqflags |= PQ_ANON;
   1050 			}
   1051 		} else {
   1052 			if (!simple_lock_try(&p->uobject->vmobjlock))
   1053 				continue;
   1054 		}
   1055 		/*
   1056 		 * skip this page if it's busy.
   1057 		 */
   1058 		if ((p->flags & PG_BUSY) != 0) {
   1059 			if (p->pqflags & PQ_ANON)
   1060 				simple_unlock(&p->uanon->an_lock);
   1061 			else
   1062 				simple_unlock(&p->uobject->vmobjlock);
   1063 			continue;
   1064 		}
   1065 
   1066 		/*
   1067 		 * if there's a shortage of swap, free any swap allocated
   1068 		 * to this page so that other pages can be paged out.
   1069 		 */
   1070 		if (swap_shortage > 0) {
   1071 			if ((p->pqflags & PQ_ANON) && p->uanon->an_swslot) {
   1072 				uvm_swap_free(p->uanon->an_swslot, 1);
   1073 				p->uanon->an_swslot = 0;
   1074 				p->flags &= ~PG_CLEAN;
   1075 				swap_shortage--;
   1076 			}
   1077 			if (p->pqflags & PQ_AOBJ) {
   1078 				int slot = uao_set_swslot(p->uobject,
   1079 					p->offset >> PAGE_SHIFT, 0);
   1080 				if (slot) {
   1081 					uvm_swap_free(slot, 1);
   1082 					p->flags &= ~PG_CLEAN;
   1083 					swap_shortage--;
   1084 				}
   1085 			}
   1086 		}
   1087 
   1088 		/*
   1089 		 * deactivate this page if there's a shortage of
   1090 		 * inactive pages.
   1091 		 */
   1092 		if (inactive_shortage > 0) {
   1093 			pmap_page_protect(p, VM_PROT_NONE);
   1094 			/* no need to check wire_count as pg is "active" */
   1095 			uvm_pagedeactivate(p);
   1096 			uvmexp.pddeact++;
   1097 			inactive_shortage--;
   1098 		}
   1099 
   1100 		if (p->pqflags & PQ_ANON)
   1101 			simple_unlock(&p->uanon->an_lock);
   1102 		else
   1103 			simple_unlock(&p->uobject->vmobjlock);
   1104 	}
   1105 }
   1106