uvm_pdaemon.c revision 1.22 1 /* $NetBSD: uvm_pdaemon.c,v 1.22 2000/08/12 22:41:55 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include "opt_uvmhist.h"
70
71 /*
72 * uvm_pdaemon.c: the page daemon
73 */
74
75 #include <sys/param.h>
76 #include <sys/proc.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/pool.h>
80
81 #include <uvm/uvm.h>
82
83 /*
84 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
85 * in a pass thru the inactive list when swap is full. the value should be
86 * "small"... if it's too large we'll cycle the active pages thru the inactive
87 * queue too quickly to for them to be referenced and avoid being freed.
88 */
89
90 #define UVMPD_NUMDIRTYREACTS 16
91
92
93 /*
94 * local prototypes
95 */
96
97 static void uvmpd_scan __P((void));
98 static boolean_t uvmpd_scan_inactive __P((struct pglist *));
99 static void uvmpd_tune __P((void));
100
101
102 /*
103 * uvm_wait: wait (sleep) for the page daemon to free some pages
104 *
105 * => should be called with all locks released
106 * => should _not_ be called by the page daemon (to avoid deadlock)
107 */
108
109 void
110 uvm_wait(wmsg)
111 const char *wmsg;
112 {
113 int timo = 0;
114 int s = splbio();
115
116 /*
117 * check for page daemon going to sleep (waiting for itself)
118 */
119
120 if (curproc == uvm.pagedaemon_proc) {
121 /*
122 * now we have a problem: the pagedaemon wants to go to
123 * sleep until it frees more memory. but how can it
124 * free more memory if it is asleep? that is a deadlock.
125 * we have two options:
126 * [1] panic now
127 * [2] put a timeout on the sleep, thus causing the
128 * pagedaemon to only pause (rather than sleep forever)
129 *
130 * note that option [2] will only help us if we get lucky
131 * and some other process on the system breaks the deadlock
132 * by exiting or freeing memory (thus allowing the pagedaemon
133 * to continue). for now we panic if DEBUG is defined,
134 * otherwise we hope for the best with option [2] (better
135 * yet, this should never happen in the first place!).
136 */
137
138 printf("pagedaemon: deadlock detected!\n");
139 timo = hz >> 3; /* set timeout */
140 #if defined(DEBUG)
141 /* DEBUG: panic so we can debug it */
142 panic("pagedaemon deadlock");
143 #endif
144 }
145
146 simple_lock(&uvm.pagedaemon_lock);
147 wakeup(&uvm.pagedaemon); /* wake the daemon! */
148 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
149 timo);
150
151 splx(s);
152 }
153
154
155 /*
156 * uvmpd_tune: tune paging parameters
157 *
158 * => called when ever memory is added (or removed?) to the system
159 * => caller must call with page queues locked
160 */
161
162 static void
163 uvmpd_tune()
164 {
165 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
166
167 uvmexp.freemin = uvmexp.npages / 20;
168
169 /* between 16k and 256k */
170 /* XXX: what are these values good for? */
171 uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
172 uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
173
174 uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
175 if (uvmexp.freetarg <= uvmexp.freemin)
176 uvmexp.freetarg = uvmexp.freemin + 1;
177
178 /* uvmexp.inactarg: computed in main daemon loop */
179
180 uvmexp.wiredmax = uvmexp.npages / 3;
181 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
182 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
183 }
184
185 /*
186 * uvm_pageout: the main loop for the pagedaemon
187 */
188
189 void
190 uvm_pageout(void *arg)
191 {
192 int npages = 0;
193 int s;
194 struct uvm_aiodesc *aio, *nextaio;
195 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
196
197 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
198
199 /*
200 * ensure correct priority and set paging parameters...
201 */
202
203 uvm.pagedaemon_proc = curproc;
204 (void) spl0();
205 uvm_lock_pageq();
206 npages = uvmexp.npages;
207 uvmpd_tune();
208 uvm_unlock_pageq();
209
210 /*
211 * main loop
212 */
213 while (TRUE) {
214
215 /*
216 * carefully attempt to go to sleep (without losing "wakeups"!).
217 * we need splbio because we want to make sure the aio_done list
218 * is totally empty before we go to sleep.
219 */
220
221 s = splbio();
222 simple_lock(&uvm.pagedaemon_lock);
223
224 /*
225 * if we've got done aio's, then bypass the sleep
226 */
227
228 if (uvm.aio_done.tqh_first == NULL) {
229 UVMHIST_LOG(maphist," <<SLEEPING>>",0,0,0,0);
230 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
231 &uvm.pagedaemon_lock, FALSE, "daemon_slp", 0);
232 uvmexp.pdwoke++;
233 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
234
235 /* relock pagedaemon_lock, still at splbio */
236 simple_lock(&uvm.pagedaemon_lock);
237 }
238
239 /*
240 * check for done aio structures
241 */
242
243 aio = uvm.aio_done.tqh_first; /* save current list (if any)*/
244 if (aio) {
245 TAILQ_INIT(&uvm.aio_done); /* zero global list */
246 }
247
248 simple_unlock(&uvm.pagedaemon_lock); /* unlock */
249 splx(s); /* drop splbio */
250
251 /*
252 * first clear out any pending aios (to free space in case we
253 * want to pageout more stuff).
254 */
255
256 for (/*null*/; aio != NULL ; aio = nextaio) {
257
258 uvmexp.paging -= aio->npages;
259 nextaio = aio->aioq.tqe_next;
260 aio->aiodone(aio);
261
262 }
263
264 /* Next, drain pool resources */
265 pool_drain(0);
266
267 /*
268 * now lock page queues and recompute inactive count
269 */
270 uvm_lock_pageq();
271
272 if (npages != uvmexp.npages) { /* check for new pages? */
273 npages = uvmexp.npages;
274 uvmpd_tune();
275 }
276
277 uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
278 if (uvmexp.inactarg <= uvmexp.freetarg)
279 uvmexp.inactarg = uvmexp.freetarg + 1;
280
281 UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
282 uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
283 uvmexp.inactarg);
284
285 /*
286 * scan if needed
287 * [XXX: note we are reading uvm.free without locking]
288 */
289 if (uvmexp.free < uvmexp.freetarg ||
290 uvmexp.inactive < uvmexp.inactarg)
291 uvmpd_scan();
292
293 /*
294 * done scan. unlock page queues (the only lock we are holding)
295 */
296 uvm_unlock_pageq();
297
298 /*
299 * done! restart loop.
300 */
301 if (uvmexp.free > uvmexp.reserve_kernel ||
302 uvmexp.paging == 0)
303 wakeup(&uvmexp.free);
304 }
305 /*NOTREACHED*/
306 }
307
308 /*
309 * uvmpd_scan_inactive: the first loop of uvmpd_scan broken out into
310 * its own function for ease of reading.
311 *
312 * => called with page queues locked
313 * => we work on meeting our free target by converting inactive pages
314 * into free pages.
315 * => we handle the building of swap-backed clusters
316 * => we return TRUE if we are exiting because we met our target
317 */
318
319 static boolean_t
320 uvmpd_scan_inactive(pglst)
321 struct pglist *pglst;
322 {
323 boolean_t retval = FALSE; /* assume we haven't hit target */
324 int s, free, result;
325 struct vm_page *p, *nextpg;
326 struct uvm_object *uobj;
327 struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
328 int npages;
329 struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; /* XXX: see below */
330 int swnpages, swcpages; /* XXX: see below */
331 int swslot;
332 struct vm_anon *anon;
333 boolean_t swap_backed;
334 vaddr_t start;
335 int dirtyreacts;
336 UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
337
338 /*
339 * note: we currently keep swap-backed pages on a seperate inactive
340 * list from object-backed pages. however, merging the two lists
341 * back together again hasn't been ruled out. thus, we keep our
342 * swap cluster in "swpps" rather than in pps (allows us to mix
343 * clustering types in the event of a mixed inactive queue).
344 */
345
346 /*
347 * swslot is non-zero if we are building a swap cluster. we want
348 * to stay in the loop while we have a page to scan or we have
349 * a swap-cluster to build.
350 */
351 swslot = 0;
352 swnpages = swcpages = 0;
353 free = 0;
354 dirtyreacts = 0;
355
356 for (p = pglst->tqh_first ; p != NULL || swslot != 0 ; p = nextpg) {
357
358 /*
359 * note that p can be NULL iff we have traversed the whole
360 * list and need to do one final swap-backed clustered pageout.
361 */
362 if (p) {
363 /*
364 * update our copy of "free" and see if we've met
365 * our target
366 */
367 s = uvm_lock_fpageq();
368 free = uvmexp.free;
369 uvm_unlock_fpageq(s);
370
371 if (free + uvmexp.paging >= uvmexp.freetarg << 2 ||
372 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
373 UVMHIST_LOG(pdhist," met free target: "
374 "exit loop", 0, 0, 0, 0);
375 retval = TRUE; /* hit the target! */
376
377 if (swslot == 0)
378 /* exit now if no swap-i/o pending */
379 break;
380
381 /* set p to null to signal final swap i/o */
382 p = NULL;
383 }
384 }
385
386 uobj = NULL; /* be safe and shut gcc up */
387 anon = NULL; /* be safe and shut gcc up */
388
389 if (p) { /* if (we have a new page to consider) */
390 /*
391 * we are below target and have a new page to consider.
392 */
393 uvmexp.pdscans++;
394 nextpg = p->pageq.tqe_next;
395
396 /*
397 * move referenced pages back to active queue and
398 * skip to next page (unlikely to happen since
399 * inactive pages shouldn't have any valid mappings
400 * and we cleared reference before deactivating).
401 */
402 if (pmap_is_referenced(p)) {
403 uvm_pageactivate(p);
404 uvmexp.pdreact++;
405 continue;
406 }
407
408 /*
409 * first we attempt to lock the object that this page
410 * belongs to. if our attempt fails we skip on to
411 * the next page (no harm done). it is important to
412 * "try" locking the object as we are locking in the
413 * wrong order (pageq -> object) and we don't want to
414 * get deadlocked.
415 *
416 * the only time we exepct to see an ownerless page
417 * (i.e. a page with no uobject and !PQ_ANON) is if an
418 * anon has loaned a page from a uvm_object and the
419 * uvm_object has dropped the ownership. in that
420 * case, the anon can "take over" the loaned page
421 * and make it its own.
422 */
423
424 /* is page part of an anon or ownerless ? */
425 if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
426
427 anon = p->uanon;
428
429 #ifdef DIAGNOSTIC
430 /* to be on inactive q, page must be part
431 * of _something_ */
432 if (anon == NULL)
433 panic("pagedaemon: page with no anon "
434 "or object detected - loop 1");
435 #endif
436
437 if (!simple_lock_try(&anon->an_lock))
438 /* lock failed, skip this page */
439 continue;
440
441 /*
442 * if the page is ownerless, claim it in the
443 * name of "anon"!
444 */
445 if ((p->pqflags & PQ_ANON) == 0) {
446 #ifdef DIAGNOSTIC
447 if (p->loan_count < 1)
448 panic("pagedaemon: non-loaned "
449 "ownerless page detected -"
450 " loop 1");
451 #endif
452 p->loan_count--;
453 p->pqflags |= PQ_ANON; /* anon now owns it */
454 }
455
456 if (p->flags & PG_BUSY) {
457 simple_unlock(&anon->an_lock);
458 uvmexp.pdbusy++;
459 /* someone else owns page, skip it */
460 continue;
461 }
462
463 uvmexp.pdanscan++;
464
465 } else {
466
467 uobj = p->uobject;
468
469 if (!simple_lock_try(&uobj->vmobjlock))
470 /* lock failed, skip this page */
471 continue;
472
473 if (p->flags & PG_BUSY) {
474 simple_unlock(&uobj->vmobjlock);
475 uvmexp.pdbusy++;
476 /* someone else owns page, skip it */
477 continue;
478 }
479
480 uvmexp.pdobscan++;
481 }
482
483 /*
484 * we now have the object and the page queues locked.
485 * the page is not busy. if the page is clean we
486 * can free it now and continue.
487 */
488
489 if (p->flags & PG_CLEAN) {
490 if (p->pqflags & PQ_SWAPBACKED) {
491 /* this page now lives only in swap */
492 simple_lock(&uvm.swap_data_lock);
493 uvmexp.swpgonly++;
494 simple_unlock(&uvm.swap_data_lock);
495 }
496
497 /* zap all mappings with pmap_page_protect... */
498 pmap_page_protect(p, VM_PROT_NONE);
499 uvm_pagefree(p);
500 uvmexp.pdfreed++;
501
502 if (anon) {
503 #ifdef DIAGNOSTIC
504 /*
505 * an anonymous page can only be clean
506 * if it has valid backing store.
507 */
508 if (anon->an_swslot == 0)
509 panic("pagedaemon: clean anon "
510 "page without backing store?");
511 #endif
512 /* remove from object */
513 anon->u.an_page = NULL;
514 simple_unlock(&anon->an_lock);
515 } else {
516 /* pagefree has already removed the
517 * page from the object */
518 simple_unlock(&uobj->vmobjlock);
519 }
520 continue;
521 }
522
523 /*
524 * this page is dirty, skip it if we'll have met our
525 * free target when all the current pageouts complete.
526 */
527 if (free + uvmexp.paging > uvmexp.freetarg << 2) {
528 if (anon) {
529 simple_unlock(&anon->an_lock);
530 } else {
531 simple_unlock(&uobj->vmobjlock);
532 }
533 continue;
534 }
535
536 /*
537 * this page is dirty, but we can't page it out
538 * since all pages in swap are only in swap.
539 * reactivate it so that we eventually cycle
540 * all pages thru the inactive queue.
541 */
542 #ifdef DIAGNOSTIC
543 if (uvmexp.swpgonly > uvmexp.swpages) {
544 panic("uvmexp.swpgonly botch");
545 }
546 #endif
547 if ((p->pqflags & PQ_SWAPBACKED) &&
548 uvmexp.swpgonly == uvmexp.swpages) {
549 dirtyreacts++;
550 uvm_pageactivate(p);
551 if (anon) {
552 simple_unlock(&anon->an_lock);
553 } else {
554 simple_unlock(&uobj->vmobjlock);
555 }
556 continue;
557 }
558
559 /*
560 * if the page is swap-backed and dirty and swap space
561 * is full, free any swap allocated to the page
562 * so that other pages can be paged out.
563 */
564 #ifdef DIAGNOSTIC
565 if (uvmexp.swpginuse > uvmexp.swpages) {
566 panic("uvmexp.swpginuse botch");
567 }
568 #endif
569 if ((p->pqflags & PQ_SWAPBACKED) &&
570 uvmexp.swpginuse == uvmexp.swpages) {
571
572 if ((p->pqflags & PQ_ANON) &&
573 p->uanon->an_swslot) {
574 uvm_swap_free(p->uanon->an_swslot, 1);
575 p->uanon->an_swslot = 0;
576 }
577 if (p->pqflags & PQ_AOBJ) {
578 uao_dropswap(p->uobject,
579 p->offset >> PAGE_SHIFT);
580 }
581 }
582
583 /*
584 * the page we are looking at is dirty. we must
585 * clean it before it can be freed. to do this we
586 * first mark the page busy so that no one else will
587 * touch the page. we write protect all the mappings
588 * of the page so that no one touches it while it is
589 * in I/O.
590 */
591
592 swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
593 p->flags |= PG_BUSY; /* now we own it */
594 UVM_PAGE_OWN(p, "scan_inactive");
595 pmap_page_protect(p, VM_PROT_READ);
596 uvmexp.pgswapout++;
597
598 /*
599 * for swap-backed pages we need to (re)allocate
600 * swap space.
601 */
602 if (swap_backed) {
603
604 /*
605 * free old swap slot (if any)
606 */
607 if (anon) {
608 if (anon->an_swslot) {
609 uvm_swap_free(anon->an_swslot,
610 1);
611 anon->an_swslot = 0;
612 }
613 } else {
614 uao_dropswap(uobj,
615 p->offset >> PAGE_SHIFT);
616 }
617
618 /*
619 * start new cluster (if necessary)
620 */
621 if (swslot == 0) {
622 /* want this much */
623 swnpages = MAXBSIZE >> PAGE_SHIFT;
624
625 swslot = uvm_swap_alloc(&swnpages,
626 TRUE);
627
628 if (swslot == 0) {
629 /* no swap? give up! */
630 p->flags &= ~PG_BUSY;
631 UVM_PAGE_OWN(p, NULL);
632 if (anon)
633 simple_unlock(
634 &anon->an_lock);
635 else
636 simple_unlock(
637 &uobj->vmobjlock);
638 continue;
639 }
640 swcpages = 0; /* cluster is empty */
641 }
642
643 /*
644 * add block to cluster
645 */
646 swpps[swcpages] = p;
647 if (anon)
648 anon->an_swslot = swslot + swcpages;
649 else
650 uao_set_swslot(uobj,
651 p->offset >> PAGE_SHIFT,
652 swslot + swcpages);
653 swcpages++;
654
655 /* done (swap-backed) */
656 }
657
658 /* end: if (p) ["if we have new page to consider"] */
659 } else {
660
661 /* if p == NULL we must be doing a last swap i/o */
662 swap_backed = TRUE;
663 }
664
665 /*
666 * now consider doing the pageout.
667 *
668 * for swap-backed pages, we do the pageout if we have either
669 * filled the cluster (in which case (swnpages == swcpages) or
670 * run out of pages (p == NULL).
671 *
672 * for object pages, we always do the pageout.
673 */
674 if (swap_backed) {
675
676 if (p) { /* if we just added a page to cluster */
677 if (anon)
678 simple_unlock(&anon->an_lock);
679 else
680 simple_unlock(&uobj->vmobjlock);
681
682 /* cluster not full yet? */
683 if (swcpages < swnpages)
684 continue;
685 }
686
687 /* starting I/O now... set up for it */
688 npages = swcpages;
689 ppsp = swpps;
690 /* for swap-backed pages only */
691 start = (vaddr_t) swslot;
692
693 /* if this is final pageout we could have a few
694 * extra swap blocks */
695 if (swcpages < swnpages) {
696 uvm_swap_free(swslot + swcpages,
697 (swnpages - swcpages));
698 }
699
700 } else {
701
702 /* normal object pageout */
703 ppsp = pps;
704 npages = sizeof(pps) / sizeof(struct vm_page *);
705 /* not looked at because PGO_ALLPAGES is set */
706 start = 0;
707
708 }
709
710 /*
711 * now do the pageout.
712 *
713 * for swap_backed pages we have already built the cluster.
714 * for !swap_backed pages, uvm_pager_put will call the object's
715 * "make put cluster" function to build a cluster on our behalf.
716 *
717 * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
718 * it to free the cluster pages for us on a successful I/O (it
719 * always does this for un-successful I/O requests). this
720 * allows us to do clustered pageout without having to deal
721 * with cluster pages at this level.
722 *
723 * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
724 * IN: locked: uobj (if !swap_backed), page queues
725 * OUT: locked: uobj (if !swap_backed && result !=VM_PAGER_PEND)
726 * !locked: pageqs, uobj (if swap_backed || VM_PAGER_PEND)
727 *
728 * [the bit about VM_PAGER_PEND saves us one lock-unlock pair]
729 */
730
731 /* locked: uobj (if !swap_backed), page queues */
732 uvmexp.pdpageouts++;
733 result = uvm_pager_put((swap_backed) ? NULL : uobj, p,
734 &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
735 /* locked: uobj (if !swap_backed && result != PEND) */
736 /* unlocked: pageqs, object (if swap_backed ||result == PEND) */
737
738 /*
739 * if we did i/o to swap, zero swslot to indicate that we are
740 * no longer building a swap-backed cluster.
741 */
742
743 if (swap_backed)
744 swslot = 0; /* done with this cluster */
745
746 /*
747 * first, we check for VM_PAGER_PEND which means that the
748 * async I/O is in progress and the async I/O done routine
749 * will clean up after us. in this case we move on to the
750 * next page.
751 *
752 * there is a very remote chance that the pending async i/o can
753 * finish _before_ we get here. if that happens, our page "p"
754 * may no longer be on the inactive queue. so we verify this
755 * when determining the next page (starting over at the head if
756 * we've lost our inactive page).
757 */
758
759 if (result == VM_PAGER_PEND) {
760 uvmexp.paging += npages;
761 uvm_lock_pageq(); /* relock page queues */
762 uvmexp.pdpending++;
763 if (p) {
764 if (p->pqflags & PQ_INACTIVE)
765 /* reload! */
766 nextpg = p->pageq.tqe_next;
767 else
768 /* reload! */
769 nextpg = pglst->tqh_first;
770 } else {
771 nextpg = NULL; /* done list */
772 }
773 continue;
774 }
775
776 /*
777 * clean up "p" if we have one
778 */
779
780 if (p) {
781 /*
782 * the I/O request to "p" is done and uvm_pager_put
783 * has freed any cluster pages it may have allocated
784 * during I/O. all that is left for us to do is
785 * clean up page "p" (which is still PG_BUSY).
786 *
787 * our result could be one of the following:
788 * VM_PAGER_OK: successful pageout
789 *
790 * VM_PAGER_AGAIN: tmp resource shortage, we skip
791 * to next page
792 * VM_PAGER_{FAIL,ERROR,BAD}: an error. we
793 * "reactivate" page to get it out of the way (it
794 * will eventually drift back into the inactive
795 * queue for a retry).
796 * VM_PAGER_UNLOCK: should never see this as it is
797 * only valid for "get" operations
798 */
799
800 /* relock p's object: page queues not lock yet, so
801 * no need for "try" */
802
803 /* !swap_backed case: already locked... */
804 if (swap_backed) {
805 if (anon)
806 simple_lock(&anon->an_lock);
807 else
808 simple_lock(&uobj->vmobjlock);
809 }
810
811 #ifdef DIAGNOSTIC
812 if (result == VM_PAGER_UNLOCK)
813 panic("pagedaemon: pageout returned "
814 "invalid 'unlock' code");
815 #endif
816
817 /* handle PG_WANTED now */
818 if (p->flags & PG_WANTED)
819 /* still holding object lock */
820 wakeup(p);
821
822 p->flags &= ~(PG_BUSY|PG_WANTED);
823 UVM_PAGE_OWN(p, NULL);
824
825 /* released during I/O? */
826 if (p->flags & PG_RELEASED) {
827 if (anon) {
828 /* remove page so we can get nextpg */
829 anon->u.an_page = NULL;
830
831 simple_unlock(&anon->an_lock);
832 uvm_anfree(anon); /* kills anon */
833 pmap_page_protect(p, VM_PROT_NONE);
834 anon = NULL;
835 uvm_lock_pageq();
836 nextpg = p->pageq.tqe_next;
837 /* free released page */
838 uvm_pagefree(p);
839
840 } else {
841
842 #ifdef DIAGNOSTIC
843 if (uobj->pgops->pgo_releasepg == NULL)
844 panic("pagedaemon: no "
845 "pgo_releasepg function");
846 #endif
847
848 /*
849 * pgo_releasepg nukes the page and
850 * gets "nextpg" for us. it returns
851 * with the page queues locked (when
852 * given nextpg ptr).
853 */
854 if (!uobj->pgops->pgo_releasepg(p,
855 &nextpg))
856 /* uobj died after release */
857 uobj = NULL;
858
859 /*
860 * lock page queues here so that they're
861 * always locked at the end of the loop.
862 */
863 uvm_lock_pageq();
864 }
865
866 } else { /* page was not released during I/O */
867
868 uvm_lock_pageq();
869 nextpg = p->pageq.tqe_next;
870
871 if (result != VM_PAGER_OK) {
872
873 /* pageout was a failure... */
874 if (result != VM_PAGER_AGAIN)
875 uvm_pageactivate(p);
876 pmap_clear_reference(p);
877 /* XXXCDC: if (swap_backed) FREE p's
878 * swap block? */
879
880 } else {
881
882 /* pageout was a success... */
883 pmap_clear_reference(p);
884 pmap_clear_modify(p);
885 p->flags |= PG_CLEAN;
886 /* XXX: could free page here, but old
887 * pagedaemon does not */
888
889 }
890 }
891
892 /*
893 * drop object lock (if there is an object left). do
894 * a safety check of nextpg to make sure it is on the
895 * inactive queue (it should be since PG_BUSY pages on
896 * the inactive queue can't be re-queued [note: not
897 * true for active queue]).
898 */
899
900 if (anon)
901 simple_unlock(&anon->an_lock);
902 else if (uobj)
903 simple_unlock(&uobj->vmobjlock);
904
905 } /* if (p) */ else {
906
907 /* if p is null in this loop, make sure it stays null
908 * in next loop */
909 nextpg = NULL;
910
911 /*
912 * lock page queues here just so they're always locked
913 * at the end of the loop.
914 */
915 uvm_lock_pageq();
916 }
917
918 if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
919 printf("pagedaemon: invalid nextpg! reverting to "
920 "queue head\n");
921 nextpg = pglst->tqh_first; /* reload! */
922 }
923
924 } /* end of "inactive" 'for' loop */
925 return (retval);
926 }
927
928 /*
929 * uvmpd_scan: scan the page queues and attempt to meet our targets.
930 *
931 * => called with pageq's locked
932 */
933
934 void
935 uvmpd_scan()
936 {
937 int s, free, inactive_shortage, swap_shortage, pages_freed;
938 struct vm_page *p, *nextpg;
939 struct uvm_object *uobj;
940 boolean_t got_it;
941 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
942
943 uvmexp.pdrevs++; /* counter */
944
945 #ifdef __GNUC__
946 uobj = NULL; /* XXX gcc */
947 #endif
948 /*
949 * get current "free" page count
950 */
951 s = uvm_lock_fpageq();
952 free = uvmexp.free;
953 uvm_unlock_fpageq(s);
954
955 #ifndef __SWAP_BROKEN
956 /*
957 * swap out some processes if we are below our free target.
958 * we need to unlock the page queues for this.
959 */
960 if (free < uvmexp.freetarg) {
961
962 uvmexp.pdswout++;
963 UVMHIST_LOG(pdhist," free %d < target %d: swapout", free,
964 uvmexp.freetarg, 0, 0);
965 uvm_unlock_pageq();
966 uvm_swapout_threads();
967 pmap_update(); /* update so we can scan inactive q */
968 uvm_lock_pageq();
969
970 }
971 #endif
972
973 /*
974 * now we want to work on meeting our targets. first we work on our
975 * free target by converting inactive pages into free pages. then
976 * we work on meeting our inactive target by converting active pages
977 * to inactive ones.
978 */
979
980 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
981
982 /*
983 * do loop #1! alternate starting queue between swap and object based
984 * on the low bit of uvmexp.pdrevs (which we bump by one each call).
985 */
986
987 got_it = FALSE;
988 pages_freed = uvmexp.pdfreed;
989 if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
990 got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
991 if (!got_it)
992 got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
993 if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
994 (void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
995 pages_freed = uvmexp.pdfreed - pages_freed;
996
997 /*
998 * we have done the scan to get free pages. now we work on meeting
999 * our inactive target.
1000 */
1001
1002 inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
1003
1004 /*
1005 * detect if we're not going to be able to page anything out
1006 * until we free some swap resources from active pages.
1007 */
1008 swap_shortage = 0;
1009 if (uvmexp.free < uvmexp.freetarg &&
1010 uvmexp.swpginuse == uvmexp.swpages &&
1011 uvmexp.swpgonly < uvmexp.swpages &&
1012 pages_freed == 0) {
1013 swap_shortage = uvmexp.freetarg - uvmexp.free;
1014 }
1015
1016 UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
1017 inactive_shortage, swap_shortage,0,0);
1018 for (p = TAILQ_FIRST(&uvm.page_active);
1019 p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
1020 p = nextpg) {
1021 nextpg = p->pageq.tqe_next;
1022 if (p->flags & PG_BUSY)
1023 continue; /* quick check before trying to lock */
1024
1025 /*
1026 * lock the page's owner.
1027 */
1028 /* is page anon owned or ownerless? */
1029 if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
1030
1031 #ifdef DIAGNOSTIC
1032 if (p->uanon == NULL)
1033 panic("pagedaemon: page with no anon or "
1034 "object detected - loop 2");
1035 #endif
1036 if (!simple_lock_try(&p->uanon->an_lock))
1037 continue;
1038
1039 /* take over the page? */
1040 if ((p->pqflags & PQ_ANON) == 0) {
1041 #ifdef DIAGNOSTIC
1042 if (p->loan_count < 1)
1043 panic("pagedaemon: non-loaned "
1044 "ownerless page detected - loop 2");
1045 #endif
1046 p->loan_count--;
1047 p->pqflags |= PQ_ANON;
1048 }
1049 } else {
1050 if (!simple_lock_try(&p->uobject->vmobjlock))
1051 continue;
1052 }
1053 /*
1054 * skip this page if it's busy.
1055 */
1056 if ((p->flags & PG_BUSY) != 0) {
1057 if (p->pqflags & PQ_ANON)
1058 simple_unlock(&p->uanon->an_lock);
1059 else
1060 simple_unlock(&p->uobject->vmobjlock);
1061 continue;
1062 }
1063
1064 /*
1065 * if there's a shortage of swap, free any swap allocated
1066 * to this page so that other pages can be paged out.
1067 */
1068 if (swap_shortage > 0) {
1069 if ((p->pqflags & PQ_ANON) && p->uanon->an_swslot) {
1070 uvm_swap_free(p->uanon->an_swslot, 1);
1071 p->uanon->an_swslot = 0;
1072 p->flags &= ~PG_CLEAN;
1073 swap_shortage--;
1074 }
1075 if (p->pqflags & PQ_AOBJ) {
1076 int slot = uao_set_swslot(p->uobject,
1077 p->offset >> PAGE_SHIFT, 0);
1078 if (slot) {
1079 uvm_swap_free(slot, 1);
1080 p->flags &= ~PG_CLEAN;
1081 swap_shortage--;
1082 }
1083 }
1084 }
1085
1086 /*
1087 * deactivate this page if there's a shortage of
1088 * inactive pages.
1089 */
1090 if (inactive_shortage > 0) {
1091 pmap_page_protect(p, VM_PROT_NONE);
1092 /* no need to check wire_count as pg is "active" */
1093 uvm_pagedeactivate(p);
1094 uvmexp.pddeact++;
1095 inactive_shortage--;
1096 }
1097
1098 if (p->pqflags & PQ_ANON)
1099 simple_unlock(&p->uanon->an_lock);
1100 else
1101 simple_unlock(&p->uobject->vmobjlock);
1102 }
1103 }
1104