Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.26
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.26 2000/12/13 17:03:32 chs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include "opt_uvmhist.h"
     70 
     71 /*
     72  * uvm_pdaemon.c: the page daemon
     73  */
     74 
     75 #include <sys/param.h>
     76 #include <sys/proc.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/pool.h>
     80 #include <sys/buf.h>
     81 
     82 #include <uvm/uvm.h>
     83 
     84 extern struct uvm_pagerops uvm_vnodeops;
     85 
     86 /*
     87  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
     88  * in a pass thru the inactive list when swap is full.  the value should be
     89  * "small"... if it's too large we'll cycle the active pages thru the inactive
     90  * queue too quickly to for them to be referenced and avoid being freed.
     91  */
     92 
     93 #define UVMPD_NUMDIRTYREACTS 16
     94 
     95 
     96 /*
     97  * local prototypes
     98  */
     99 
    100 static void		uvmpd_scan __P((void));
    101 static boolean_t	uvmpd_scan_inactive __P((struct pglist *));
    102 static void		uvmpd_tune __P((void));
    103 
    104 
    105 /*
    106  * uvm_wait: wait (sleep) for the page daemon to free some pages
    107  *
    108  * => should be called with all locks released
    109  * => should _not_ be called by the page daemon (to avoid deadlock)
    110  */
    111 
    112 void
    113 uvm_wait(wmsg)
    114 	const char *wmsg;
    115 {
    116 	int timo = 0;
    117 	int s = splbio();
    118 
    119 	/*
    120 	 * check for page daemon going to sleep (waiting for itself)
    121 	 */
    122 
    123 	if (curproc == uvm.pagedaemon_proc) {
    124 		/*
    125 		 * now we have a problem: the pagedaemon wants to go to
    126 		 * sleep until it frees more memory.   but how can it
    127 		 * free more memory if it is asleep?  that is a deadlock.
    128 		 * we have two options:
    129 		 *  [1] panic now
    130 		 *  [2] put a timeout on the sleep, thus causing the
    131 		 *      pagedaemon to only pause (rather than sleep forever)
    132 		 *
    133 		 * note that option [2] will only help us if we get lucky
    134 		 * and some other process on the system breaks the deadlock
    135 		 * by exiting or freeing memory (thus allowing the pagedaemon
    136 		 * to continue).  for now we panic if DEBUG is defined,
    137 		 * otherwise we hope for the best with option [2] (better
    138 		 * yet, this should never happen in the first place!).
    139 		 */
    140 
    141 		printf("pagedaemon: deadlock detected!\n");
    142 		timo = hz >> 3;		/* set timeout */
    143 #if defined(DEBUG)
    144 		/* DEBUG: panic so we can debug it */
    145 		panic("pagedaemon deadlock");
    146 #endif
    147 	}
    148 
    149 	simple_lock(&uvm.pagedaemon_lock);
    150 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    151 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    152 	    timo);
    153 
    154 	splx(s);
    155 }
    156 
    157 
    158 /*
    159  * uvmpd_tune: tune paging parameters
    160  *
    161  * => called when ever memory is added (or removed?) to the system
    162  * => caller must call with page queues locked
    163  */
    164 
    165 static void
    166 uvmpd_tune()
    167 {
    168 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    169 
    170 	uvmexp.freemin = uvmexp.npages / 20;
    171 
    172 	/* between 16k and 256k */
    173 	/* XXX:  what are these values good for? */
    174 	uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    175 	uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    176 
    177 	/* Make sure there's always a user page free. */
    178 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    179 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    180 
    181 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    182 	if (uvmexp.freetarg <= uvmexp.freemin)
    183 		uvmexp.freetarg = uvmexp.freemin + 1;
    184 
    185 	/* uvmexp.inactarg: computed in main daemon loop */
    186 
    187 	uvmexp.wiredmax = uvmexp.npages / 3;
    188 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    189 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    190 }
    191 
    192 /*
    193  * uvm_pageout: the main loop for the pagedaemon
    194  */
    195 
    196 void
    197 uvm_pageout(void *arg)
    198 {
    199 	int npages = 0;
    200 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    201 
    202 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    203 
    204 	/*
    205 	 * ensure correct priority and set paging parameters...
    206 	 */
    207 
    208 	uvm.pagedaemon_proc = curproc;
    209 	(void) spl0();
    210 	uvm_lock_pageq();
    211 	npages = uvmexp.npages;
    212 	uvmpd_tune();
    213 	uvm_unlock_pageq();
    214 
    215 	/*
    216 	 * main loop
    217 	 */
    218 
    219 	for (;;) {
    220 		simple_lock(&uvm.pagedaemon_lock);
    221 
    222 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    223 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    224 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    225 		uvmexp.pdwoke++;
    226 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    227 
    228 		/* drain pool resources */
    229 		pool_drain(0);
    230 
    231 		/*
    232 		 * now lock page queues and recompute inactive count
    233 		 */
    234 
    235 		uvm_lock_pageq();
    236 		if (npages != uvmexp.npages) {	/* check for new pages? */
    237 			npages = uvmexp.npages;
    238 			uvmpd_tune();
    239 		}
    240 
    241 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    242 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    243 			uvmexp.inactarg = uvmexp.freetarg + 1;
    244 		}
    245 
    246 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    247 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    248 		    uvmexp.inactarg);
    249 
    250 		/*
    251 		 * scan if needed
    252 		 */
    253 
    254 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    255 		    uvmexp.inactive < uvmexp.inactarg ||
    256 		    uvmexp.vnodepages >
    257 		    (uvmexp.active + uvmexp.inactive + uvmexp.wired +
    258 		     uvmexp.free) * 13 / 16) {
    259 			uvmpd_scan();
    260 		}
    261 
    262 		/*
    263 		 * if there's any free memory to be had,
    264 		 * wake up any waiters.
    265 		 */
    266 
    267 		if (uvmexp.free > uvmexp.reserve_kernel ||
    268 		    uvmexp.paging == 0) {
    269 			wakeup(&uvmexp.free);
    270 		}
    271 
    272 		/*
    273 		 * scan done.  unlock page queues (the only lock we are holding)
    274 		 */
    275 
    276 		uvm_unlock_pageq();
    277 	}
    278 	/*NOTREACHED*/
    279 }
    280 
    281 
    282 /*
    283  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    284  */
    285 
    286 void
    287 uvm_aiodone_daemon(void *arg)
    288 {
    289 	int s, free;
    290 	struct buf *bp, *nbp;
    291 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    292 
    293 	for (;;) {
    294 
    295 		/*
    296 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    297 		 * we need splbio because we want to make sure the aio_done list
    298 		 * is totally empty before we go to sleep.
    299 		 */
    300 
    301 		s = splbio();
    302 		simple_lock(&uvm.aiodoned_lock);
    303 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    304 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    305 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    306 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    307 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    308 
    309 			/* relock aiodoned_lock, still at splbio */
    310 			simple_lock(&uvm.aiodoned_lock);
    311 		}
    312 
    313 		/*
    314 		 * check for done aio structures
    315 		 */
    316 
    317 		bp = TAILQ_FIRST(&uvm.aio_done);
    318 		if (bp) {
    319 			TAILQ_INIT(&uvm.aio_done);
    320 		}
    321 
    322 		simple_unlock(&uvm.aiodoned_lock);
    323 		splx(s);
    324 
    325 		/*
    326 		 * process each i/o that's done.
    327 		 */
    328 
    329 		free = uvmexp.free;
    330 		while (bp != NULL) {
    331 			if (bp->b_flags & B_PDAEMON) {
    332 				uvmexp.paging -= bp->b_bufsize >> PAGE_SHIFT;
    333 			}
    334 			nbp = TAILQ_NEXT(bp, b_freelist);
    335 			(*bp->b_iodone)(bp);
    336 			bp = nbp;
    337 		}
    338 		if (free <= uvmexp.reserve_kernel) {
    339 			s = uvm_lock_fpageq();
    340 			wakeup(&uvm.pagedaemon);
    341 			uvm_unlock_fpageq(s);
    342 		} else {
    343 			simple_lock(&uvm.pagedaemon_lock);
    344 			wakeup(&uvmexp.free);
    345 			simple_unlock(&uvm.pagedaemon_lock);
    346 		}
    347 	}
    348 }
    349 
    350 
    351 
    352 /*
    353  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    354  *
    355  * => called with page queues locked
    356  * => we work on meeting our free target by converting inactive pages
    357  *    into free pages.
    358  * => we handle the building of swap-backed clusters
    359  * => we return TRUE if we are exiting because we met our target
    360  */
    361 
    362 static boolean_t
    363 uvmpd_scan_inactive(pglst)
    364 	struct pglist *pglst;
    365 {
    366 	boolean_t retval = FALSE;	/* assume we haven't hit target */
    367 	int s, free, result;
    368 	struct vm_page *p, *nextpg;
    369 	struct uvm_object *uobj;
    370 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
    371 	int npages;
    372 	struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; 	/* XXX: see below */
    373 	int swnpages, swcpages;				/* XXX: see below */
    374 	int swslot;
    375 	struct vm_anon *anon;
    376 	boolean_t swap_backed, vnode_only;
    377 	vaddr_t start;
    378 	int dirtyreacts, vpgs;
    379 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    380 
    381 	/*
    382 	 * note: we currently keep swap-backed pages on a seperate inactive
    383 	 * list from object-backed pages.   however, merging the two lists
    384 	 * back together again hasn't been ruled out.   thus, we keep our
    385 	 * swap cluster in "swpps" rather than in pps (allows us to mix
    386 	 * clustering types in the event of a mixed inactive queue).
    387 	 */
    388 
    389 	/*
    390 	 * swslot is non-zero if we are building a swap cluster.  we want
    391 	 * to stay in the loop while we have a page to scan or we have
    392 	 * a swap-cluster to build.
    393 	 */
    394 
    395 	swslot = 0;
    396 	swnpages = swcpages = 0;
    397 	free = 0;
    398 	dirtyreacts = 0;
    399 	vnode_only = FALSE;
    400 
    401 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
    402 
    403 		/*
    404 		 * note that p can be NULL iff we have traversed the whole
    405 		 * list and need to do one final swap-backed clustered pageout.
    406 		 */
    407 
    408 		uobj = NULL;
    409 		anon = NULL;
    410 
    411 		if (p) {
    412 
    413 			/*
    414 			 * update our copy of "free" and see if we've met
    415 			 * our target
    416 			 */
    417 
    418 			s = uvm_lock_fpageq();
    419 			free = uvmexp.free;
    420 			uvm_unlock_fpageq(s);
    421 
    422 			/* XXXUBC */
    423 			vpgs = uvmexp.vnodepages -
    424 				(uvmexp.active + uvmexp.inactive +
    425 				 uvmexp.wired + uvmexp.free) * 13 / 16;
    426 
    427 			if (free + uvmexp.paging >= uvmexp.freetarg << 2 ||
    428 			    vpgs > 0 || dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    429 				if (vpgs <= 0) {
    430 					UVMHIST_LOG(pdhist,"  met free target: "
    431 						    "exit loop", 0, 0, 0, 0);
    432 					retval = TRUE;
    433 
    434 					if (swslot == 0)
    435 						/* exit now if no
    436                                                    swap-i/o pending */
    437 						break;
    438 
    439 					/* set p to null to signal final
    440                                            swap i/o */
    441 					p = NULL;
    442 				} else {
    443 					vnode_only = TRUE;
    444 				}
    445 			}
    446 		}
    447 
    448 		if (p) {	/* if (we have a new page to consider) */
    449 
    450 			/*
    451 			 * we are below target and have a new page to consider.
    452 			 */
    453 
    454 			uvmexp.pdscans++;
    455 			nextpg = TAILQ_NEXT(p, pageq);
    456 
    457 			/*
    458 			 * first we attempt to lock the object that this page
    459 			 * belongs to.  if our attempt fails we skip on to
    460 			 * the next page (no harm done).  it is important to
    461 			 * "try" locking the object as we are locking in the
    462 			 * wrong order (pageq -> object) and we don't want to
    463 			 * deadlock.
    464 			 *
    465 			 * the only time we expect to see an ownerless page
    466 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    467 			 * anon has loaned a page from a uvm_object and the
    468 			 * uvm_object has dropped the ownership.  in that
    469 			 * case, the anon can "take over" the loaned page
    470 			 * and make it its own.
    471 			 */
    472 
    473 			/* is page part of an anon or ownerless ? */
    474 			if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
    475 				if (vnode_only) {
    476 					uvm_pageactivate(p);
    477 					continue;
    478 				}
    479 				anon = p->uanon;
    480 				KASSERT(anon != NULL);
    481 				if (!simple_lock_try(&anon->an_lock))
    482 					/* lock failed, skip this page */
    483 					continue;
    484 
    485 				/*
    486 				 * if the page is ownerless, claim it in the
    487 				 * name of "anon"!
    488 				 */
    489 
    490 				if ((p->pqflags & PQ_ANON) == 0) {
    491 					KASSERT(p->loan_count > 0);
    492 					p->loan_count--;
    493 					p->pqflags |= PQ_ANON;
    494 					/* anon now owns it */
    495 				}
    496 				if (p->flags & PG_BUSY) {
    497 					simple_unlock(&anon->an_lock);
    498 					uvmexp.pdbusy++;
    499 					/* someone else owns page, skip it */
    500 					continue;
    501 				}
    502 				uvmexp.pdanscan++;
    503 			} else {
    504 				uobj = p->uobject;
    505 				KASSERT(uobj != NULL);
    506 				if (vnode_only &&
    507 				    uobj->pgops != &uvm_vnodeops) {
    508 					uvm_pageactivate(p);
    509 					continue;
    510 				}
    511 				if (!simple_lock_try(&uobj->vmobjlock))
    512 					/* lock failed, skip this page */
    513 					continue;
    514 
    515 				if (p->flags & PG_BUSY) {
    516 					simple_unlock(&uobj->vmobjlock);
    517 					uvmexp.pdbusy++;
    518 					/* someone else owns page, skip it */
    519 					continue;
    520 				}
    521 				uvmexp.pdobscan++;
    522 			}
    523 
    524 			/*
    525 			 * we now have the object and the page queues locked.
    526 			 * the page is not busy.   if the page is clean we
    527 			 * can free it now and continue.
    528 			 */
    529 
    530 			if (p->flags & PG_CLEAN) {
    531 				if (p->pqflags & PQ_SWAPBACKED) {
    532 					/* this page now lives only in swap */
    533 					simple_lock(&uvm.swap_data_lock);
    534 					uvmexp.swpgonly++;
    535 					simple_unlock(&uvm.swap_data_lock);
    536 				}
    537 
    538 				uvm_pagefree(p);
    539 				uvmexp.pdfreed++;
    540 
    541 				if (anon) {
    542 
    543 					/*
    544 					 * an anonymous page can only be clean
    545 					 * if it has backing store assigned.
    546 					 */
    547 
    548 					KASSERT(anon->an_swslot != 0);
    549 
    550 					/* remove from object */
    551 					anon->u.an_page = NULL;
    552 					simple_unlock(&anon->an_lock);
    553 				} else {
    554 					/* pagefree has already removed the
    555 					 * page from the object */
    556 					simple_unlock(&uobj->vmobjlock);
    557 				}
    558 				continue;
    559 			}
    560 
    561 			/*
    562 			 * this page is dirty, skip it if we'll have met our
    563 			 * free target when all the current pageouts complete.
    564 			 */
    565 
    566 			if (free + uvmexp.paging > uvmexp.freetarg << 2 &&
    567 			    !vnode_only) {
    568 				if (anon) {
    569 					simple_unlock(&anon->an_lock);
    570 				} else {
    571 					simple_unlock(&uobj->vmobjlock);
    572 				}
    573 				continue;
    574 			}
    575 
    576 			/*
    577 			 * this page is dirty, but we can't page it out
    578 			 * since all pages in swap are only in swap.
    579 			 * reactivate it so that we eventually cycle
    580 			 * all pages thru the inactive queue.
    581 			 */
    582 
    583 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
    584 			if ((p->pqflags & PQ_SWAPBACKED) &&
    585 			    uvmexp.swpgonly == uvmexp.swpages) {
    586 				dirtyreacts++;
    587 				uvm_pageactivate(p);
    588 				if (anon) {
    589 					simple_unlock(&anon->an_lock);
    590 				} else {
    591 					simple_unlock(&uobj->vmobjlock);
    592 				}
    593 				continue;
    594 			}
    595 
    596 			/*
    597 			 * if the page is swap-backed and dirty and swap space
    598 			 * is full, free any swap allocated to the page
    599 			 * so that other pages can be paged out.
    600 			 */
    601 
    602 			KASSERT(uvmexp.swpginuse <= uvmexp.swpages);
    603 			if ((p->pqflags & PQ_SWAPBACKED) &&
    604 			    uvmexp.swpginuse == uvmexp.swpages) {
    605 
    606 				if ((p->pqflags & PQ_ANON) &&
    607 				    p->uanon->an_swslot) {
    608 					uvm_swap_free(p->uanon->an_swslot, 1);
    609 					p->uanon->an_swslot = 0;
    610 				}
    611 				if (p->pqflags & PQ_AOBJ) {
    612 					uao_dropswap(p->uobject,
    613 						     p->offset >> PAGE_SHIFT);
    614 				}
    615 			}
    616 
    617 			/*
    618 			 * the page we are looking at is dirty.   we must
    619 			 * clean it before it can be freed.  to do this we
    620 			 * first mark the page busy so that no one else will
    621 			 * touch the page.
    622 			 */
    623 
    624 			swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
    625 			p->flags |= PG_BUSY;		/* now we own it */
    626 			UVM_PAGE_OWN(p, "scan_inactive");
    627 			uvmexp.pgswapout++;
    628 
    629 			/*
    630 			 * for swap-backed pages we need to (re)allocate
    631 			 * swap space.
    632 			 */
    633 
    634 			if (swap_backed) {
    635 
    636 				/*
    637 				 * free old swap slot (if any)
    638 				 */
    639 
    640 				if (anon) {
    641 					if (anon->an_swslot) {
    642 						uvm_swap_free(anon->an_swslot,
    643 						    1);
    644 						anon->an_swslot = 0;
    645 					}
    646 				} else {
    647 					uao_dropswap(uobj,
    648 						     p->offset >> PAGE_SHIFT);
    649 				}
    650 
    651 				/*
    652 				 * start new cluster (if necessary)
    653 				 */
    654 
    655 				if (swslot == 0) {
    656 					swnpages = MAXBSIZE >> PAGE_SHIFT;
    657 					swslot = uvm_swap_alloc(&swnpages,
    658 					    TRUE);
    659 					if (swslot == 0) {
    660 						/* no swap?  give up! */
    661 						p->flags &= ~PG_BUSY;
    662 						UVM_PAGE_OWN(p, NULL);
    663 						if (anon)
    664 							simple_unlock(
    665 							    &anon->an_lock);
    666 						else
    667 							simple_unlock(
    668 							    &uobj->vmobjlock);
    669 						continue;
    670 					}
    671 					swcpages = 0;	/* cluster is empty */
    672 				}
    673 
    674 				/*
    675 				 * add block to cluster
    676 				 */
    677 
    678 				swpps[swcpages] = p;
    679 				if (anon)
    680 					anon->an_swslot = swslot + swcpages;
    681 				else
    682 					uao_set_swslot(uobj,
    683 					    p->offset >> PAGE_SHIFT,
    684 					    swslot + swcpages);
    685 				swcpages++;
    686 			}
    687 		} else {
    688 
    689 			/* if p == NULL we must be doing a last swap i/o */
    690 			swap_backed = TRUE;
    691 		}
    692 
    693 		/*
    694 		 * now consider doing the pageout.
    695 		 *
    696 		 * for swap-backed pages, we do the pageout if we have either
    697 		 * filled the cluster (in which case (swnpages == swcpages) or
    698 		 * run out of pages (p == NULL).
    699 		 *
    700 		 * for object pages, we always do the pageout.
    701 		 */
    702 
    703 		if (swap_backed) {
    704 			if (p) {	/* if we just added a page to cluster */
    705 				if (anon)
    706 					simple_unlock(&anon->an_lock);
    707 				else
    708 					simple_unlock(&uobj->vmobjlock);
    709 
    710 				/* cluster not full yet? */
    711 				if (swcpages < swnpages)
    712 					continue;
    713 			}
    714 
    715 			/* starting I/O now... set up for it */
    716 			npages = swcpages;
    717 			ppsp = swpps;
    718 			/* for swap-backed pages only */
    719 			start = (vaddr_t) swslot;
    720 
    721 			/* if this is final pageout we could have a few
    722 			 * extra swap blocks */
    723 			if (swcpages < swnpages) {
    724 				uvm_swap_free(swslot + swcpages,
    725 				    (swnpages - swcpages));
    726 			}
    727 		} else {
    728 			/* normal object pageout */
    729 			ppsp = pps;
    730 			npages = sizeof(pps) / sizeof(struct vm_page *);
    731 			/* not looked at because PGO_ALLPAGES is set */
    732 			start = 0;
    733 		}
    734 
    735 		/*
    736 		 * now do the pageout.
    737 		 *
    738 		 * for swap_backed pages we have already built the cluster.
    739 		 * for !swap_backed pages, uvm_pager_put will call the object's
    740 		 * "make put cluster" function to build a cluster on our behalf.
    741 		 *
    742 		 * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
    743 		 * it to free the cluster pages for us on a successful I/O (it
    744 		 * always does this for un-successful I/O requests).  this
    745 		 * allows us to do clustered pageout without having to deal
    746 		 * with cluster pages at this level.
    747 		 *
    748 		 * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
    749 		 *  IN: locked: uobj (if !swap_backed), page queues
    750 		 * OUT: locked: uobj (if !swap_backed && result !=VM_PAGER_PEND)
    751 		 *     !locked: pageqs, uobj (if swap_backed || VM_PAGER_PEND)
    752 		 *
    753 		 * [the bit about VM_PAGER_PEND saves us one lock-unlock pair]
    754 		 */
    755 
    756 		/* locked: uobj (if !swap_backed), page queues */
    757 		uvmexp.pdpageouts++;
    758 		result = uvm_pager_put(swap_backed ? NULL : uobj, p,
    759 		    &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
    760 		/* locked: uobj (if !swap_backed && result != PEND) */
    761 		/* unlocked: pageqs, object (if swap_backed ||result == PEND) */
    762 
    763 		/*
    764 		 * if we did i/o to swap, zero swslot to indicate that we are
    765 		 * no longer building a swap-backed cluster.
    766 		 */
    767 
    768 		if (swap_backed)
    769 			swslot = 0;		/* done with this cluster */
    770 
    771 		/*
    772 		 * first, we check for VM_PAGER_PEND which means that the
    773 		 * async I/O is in progress and the async I/O done routine
    774 		 * will clean up after us.   in this case we move on to the
    775 		 * next page.
    776 		 *
    777 		 * there is a very remote chance that the pending async i/o can
    778 		 * finish _before_ we get here.   if that happens, our page "p"
    779 		 * may no longer be on the inactive queue.   so we verify this
    780 		 * when determining the next page (starting over at the head if
    781 		 * we've lost our inactive page).
    782 		 */
    783 
    784 		if (result == VM_PAGER_PEND) {
    785 			uvmexp.paging += npages;
    786 			uvm_lock_pageq();
    787 			uvmexp.pdpending++;
    788 			if (p) {
    789 				if (p->pqflags & PQ_INACTIVE)
    790 					nextpg = TAILQ_NEXT(p, pageq);
    791 				else
    792 					nextpg = TAILQ_FIRST(pglst);
    793 			} else {
    794 				nextpg = NULL;
    795 			}
    796 			continue;
    797 		}
    798 
    799 		if (result == VM_PAGER_ERROR &&
    800 		    curproc == uvm.pagedaemon_proc) {
    801 			uvm_lock_pageq();
    802 			nextpg = TAILQ_NEXT(p, pageq);
    803 			uvm_pageactivate(p);
    804 			continue;
    805 		}
    806 
    807 		/*
    808 		 * clean up "p" if we have one
    809 		 */
    810 
    811 		if (p) {
    812 			/*
    813 			 * the I/O request to "p" is done and uvm_pager_put
    814 			 * has freed any cluster pages it may have allocated
    815 			 * during I/O.  all that is left for us to do is
    816 			 * clean up page "p" (which is still PG_BUSY).
    817 			 *
    818 			 * our result could be one of the following:
    819 			 *   VM_PAGER_OK: successful pageout
    820 			 *
    821 			 *   VM_PAGER_AGAIN: tmp resource shortage, we skip
    822 			 *     to next page
    823 			 *   VM_PAGER_{FAIL,ERROR,BAD}: an error.   we
    824 			 *     "reactivate" page to get it out of the way (it
    825 			 *     will eventually drift back into the inactive
    826 			 *     queue for a retry).
    827 			 *   VM_PAGER_UNLOCK: should never see this as it is
    828 			 *     only valid for "get" operations
    829 			 */
    830 
    831 			/* relock p's object: page queues not lock yet, so
    832 			 * no need for "try" */
    833 
    834 			/* !swap_backed case: already locked... */
    835 			if (swap_backed) {
    836 				if (anon)
    837 					simple_lock(&anon->an_lock);
    838 				else
    839 					simple_lock(&uobj->vmobjlock);
    840 			}
    841 
    842 			/* handle PG_WANTED now */
    843 			if (p->flags & PG_WANTED)
    844 				/* still holding object lock */
    845 				wakeup(p);
    846 
    847 			p->flags &= ~(PG_BUSY|PG_WANTED);
    848 			UVM_PAGE_OWN(p, NULL);
    849 
    850 			/* released during I/O? */
    851 			if (p->flags & PG_RELEASED) {
    852 				if (anon) {
    853 					/* remove page so we can get nextpg */
    854 					anon->u.an_page = NULL;
    855 
    856 					simple_unlock(&anon->an_lock);
    857 					uvm_anfree(anon);	/* kills anon */
    858 					pmap_page_protect(p, VM_PROT_NONE);
    859 					anon = NULL;
    860 					uvm_lock_pageq();
    861 					nextpg = TAILQ_NEXT(p, pageq);
    862 					/* free released page */
    863 					uvm_pagefree(p);
    864 
    865 				} else {
    866 
    867 					/*
    868 					 * pgo_releasepg nukes the page and
    869 					 * gets "nextpg" for us.  it returns
    870 					 * with the page queues locked (when
    871 					 * given nextpg ptr).
    872 					 */
    873 
    874 					if (!uobj->pgops->pgo_releasepg(p,
    875 					    &nextpg))
    876 						/* uobj died after release */
    877 						uobj = NULL;
    878 
    879 					/*
    880 					 * lock page queues here so that they're
    881 					 * always locked at the end of the loop.
    882 					 */
    883 
    884 					uvm_lock_pageq();
    885 				}
    886 			} else {	/* page was not released during I/O */
    887 				uvm_lock_pageq();
    888 				nextpg = TAILQ_NEXT(p, pageq);
    889 				if (result != VM_PAGER_OK) {
    890 					/* pageout was a failure... */
    891 					if (result != VM_PAGER_AGAIN)
    892 						uvm_pageactivate(p);
    893 					pmap_clear_reference(p);
    894 					/* XXXCDC: if (swap_backed) FREE p's
    895 					 * swap block? */
    896 				} else {
    897 					/* pageout was a success... */
    898 					pmap_clear_reference(p);
    899 					pmap_clear_modify(p);
    900 					p->flags |= PG_CLEAN;
    901 				}
    902 			}
    903 
    904 			/*
    905 			 * drop object lock (if there is an object left).   do
    906 			 * a safety check of nextpg to make sure it is on the
    907 			 * inactive queue (it should be since PG_BUSY pages on
    908 			 * the inactive queue can't be re-queued [note: not
    909 			 * true for active queue]).
    910 			 */
    911 
    912 			if (anon)
    913 				simple_unlock(&anon->an_lock);
    914 			else if (uobj)
    915 				simple_unlock(&uobj->vmobjlock);
    916 
    917 		} else {
    918 
    919 			/*
    920 			 * if p is null in this loop, make sure it stays null
    921 			 * in the next loop.
    922 			 */
    923 
    924 			nextpg = NULL;
    925 
    926 			/*
    927 			 * lock page queues here just so they're always locked
    928 			 * at the end of the loop.
    929 			 */
    930 
    931 			uvm_lock_pageq();
    932 		}
    933 
    934 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    935 			nextpg = TAILQ_FIRST(pglst);	/* reload! */
    936 		}
    937 	}
    938 	return (retval);
    939 }
    940 
    941 /*
    942  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    943  *
    944  * => called with pageq's locked
    945  */
    946 
    947 void
    948 uvmpd_scan()
    949 {
    950 	int s, free, inactive_shortage, swap_shortage, pages_freed;
    951 	struct vm_page *p, *nextpg;
    952 	struct uvm_object *uobj;
    953 	boolean_t got_it;
    954 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    955 
    956 	uvmexp.pdrevs++;		/* counter */
    957 	uobj = NULL;
    958 
    959 	/*
    960 	 * get current "free" page count
    961 	 */
    962 	s = uvm_lock_fpageq();
    963 	free = uvmexp.free;
    964 	uvm_unlock_fpageq(s);
    965 
    966 #ifndef __SWAP_BROKEN
    967 	/*
    968 	 * swap out some processes if we are below our free target.
    969 	 * we need to unlock the page queues for this.
    970 	 */
    971 	if (free < uvmexp.freetarg) {
    972 		uvmexp.pdswout++;
    973 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout", free,
    974 		    uvmexp.freetarg, 0, 0);
    975 		uvm_unlock_pageq();
    976 		uvm_swapout_threads();
    977 		uvm_lock_pageq();
    978 
    979 	}
    980 #endif
    981 
    982 	/*
    983 	 * now we want to work on meeting our targets.   first we work on our
    984 	 * free target by converting inactive pages into free pages.  then
    985 	 * we work on meeting our inactive target by converting active pages
    986 	 * to inactive ones.
    987 	 */
    988 
    989 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    990 
    991 	/*
    992 	 * alternate starting queue between swap and object based on the
    993 	 * low bit of uvmexp.pdrevs (which we bump by one each call).
    994 	 */
    995 
    996 	got_it = FALSE;
    997 	pages_freed = uvmexp.pdfreed;
    998 	if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
    999 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
   1000 	if (!got_it)
   1001 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
   1002 	if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
   1003 		(void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
   1004 	pages_freed = uvmexp.pdfreed - pages_freed;
   1005 
   1006 	/*
   1007 	 * we have done the scan to get free pages.   now we work on meeting
   1008 	 * our inactive target.
   1009 	 */
   1010 
   1011 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
   1012 
   1013 	/*
   1014 	 * detect if we're not going to be able to page anything out
   1015 	 * until we free some swap resources from active pages.
   1016 	 */
   1017 
   1018 	swap_shortage = 0;
   1019 	if (uvmexp.free < uvmexp.freetarg &&
   1020 	    uvmexp.swpginuse == uvmexp.swpages &&
   1021 	    uvmexp.swpgonly < uvmexp.swpages &&
   1022 	    pages_freed == 0) {
   1023 		swap_shortage = uvmexp.freetarg - uvmexp.free;
   1024 	}
   1025 
   1026 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
   1027 		    inactive_shortage, swap_shortage,0,0);
   1028 	for (p = TAILQ_FIRST(&uvm.page_active);
   1029 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
   1030 	     p = nextpg) {
   1031 		nextpg = TAILQ_NEXT(p, pageq);
   1032 		if (p->flags & PG_BUSY)
   1033 			continue;	/* quick check before trying to lock */
   1034 
   1035 		/*
   1036 		 * lock the page's owner.
   1037 		 */
   1038 		/* is page anon owned or ownerless? */
   1039 		if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
   1040 			KASSERT(p->uanon != NULL);
   1041 			if (!simple_lock_try(&p->uanon->an_lock))
   1042 				continue;
   1043 
   1044 			/* take over the page? */
   1045 			if ((p->pqflags & PQ_ANON) == 0) {
   1046 				KASSERT(p->loan_count > 0);
   1047 				p->loan_count--;
   1048 				p->pqflags |= PQ_ANON;
   1049 			}
   1050 		} else {
   1051 			if (!simple_lock_try(&p->uobject->vmobjlock))
   1052 				continue;
   1053 		}
   1054 
   1055 		/*
   1056 		 * skip this page if it's busy.
   1057 		 */
   1058 
   1059 		if ((p->flags & PG_BUSY) != 0) {
   1060 			if (p->pqflags & PQ_ANON)
   1061 				simple_unlock(&p->uanon->an_lock);
   1062 			else
   1063 				simple_unlock(&p->uobject->vmobjlock);
   1064 			continue;
   1065 		}
   1066 
   1067 		/*
   1068 		 * if there's a shortage of swap, free any swap allocated
   1069 		 * to this page so that other pages can be paged out.
   1070 		 */
   1071 
   1072 		if (swap_shortage > 0) {
   1073 			if ((p->pqflags & PQ_ANON) && p->uanon->an_swslot) {
   1074 				uvm_swap_free(p->uanon->an_swslot, 1);
   1075 				p->uanon->an_swslot = 0;
   1076 				p->flags &= ~PG_CLEAN;
   1077 				swap_shortage--;
   1078 			}
   1079 			if (p->pqflags & PQ_AOBJ) {
   1080 				int slot = uao_set_swslot(p->uobject,
   1081 					p->offset >> PAGE_SHIFT, 0);
   1082 				if (slot) {
   1083 					uvm_swap_free(slot, 1);
   1084 					p->flags &= ~PG_CLEAN;
   1085 					swap_shortage--;
   1086 				}
   1087 			}
   1088 		}
   1089 
   1090 		/*
   1091 		 * deactivate this page if there's a shortage of
   1092 		 * inactive pages.
   1093 		 */
   1094 
   1095 		if (inactive_shortage > 0) {
   1096 			pmap_page_protect(p, VM_PROT_NONE);
   1097 			/* no need to check wire_count as pg is "active" */
   1098 			uvm_pagedeactivate(p);
   1099 			uvmexp.pddeact++;
   1100 			inactive_shortage--;
   1101 		}
   1102 		if (p->pqflags & PQ_ANON)
   1103 			simple_unlock(&p->uanon->an_lock);
   1104 		else
   1105 			simple_unlock(&p->uobject->vmobjlock);
   1106 	}
   1107 }
   1108