Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.27
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.27 2001/01/25 00:10:03 mycroft Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include "opt_uvmhist.h"
     70 
     71 /*
     72  * uvm_pdaemon.c: the page daemon
     73  */
     74 
     75 #include <sys/param.h>
     76 #include <sys/proc.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/pool.h>
     80 #include <sys/buf.h>
     81 
     82 #include <uvm/uvm.h>
     83 
     84 extern struct uvm_pagerops uvm_vnodeops;
     85 
     86 /*
     87  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
     88  * in a pass thru the inactive list when swap is full.  the value should be
     89  * "small"... if it's too large we'll cycle the active pages thru the inactive
     90  * queue too quickly to for them to be referenced and avoid being freed.
     91  */
     92 
     93 #define UVMPD_NUMDIRTYREACTS 16
     94 
     95 
     96 /*
     97  * local prototypes
     98  */
     99 
    100 static void		uvmpd_scan __P((void));
    101 static boolean_t	uvmpd_scan_inactive __P((struct pglist *));
    102 static void		uvmpd_tune __P((void));
    103 
    104 
    105 /*
    106  * uvm_wait: wait (sleep) for the page daemon to free some pages
    107  *
    108  * => should be called with all locks released
    109  * => should _not_ be called by the page daemon (to avoid deadlock)
    110  */
    111 
    112 void
    113 uvm_wait(wmsg)
    114 	const char *wmsg;
    115 {
    116 	int timo = 0;
    117 	int s = splbio();
    118 
    119 	/*
    120 	 * check for page daemon going to sleep (waiting for itself)
    121 	 */
    122 
    123 	if (curproc == uvm.pagedaemon_proc) {
    124 		/*
    125 		 * now we have a problem: the pagedaemon wants to go to
    126 		 * sleep until it frees more memory.   but how can it
    127 		 * free more memory if it is asleep?  that is a deadlock.
    128 		 * we have two options:
    129 		 *  [1] panic now
    130 		 *  [2] put a timeout on the sleep, thus causing the
    131 		 *      pagedaemon to only pause (rather than sleep forever)
    132 		 *
    133 		 * note that option [2] will only help us if we get lucky
    134 		 * and some other process on the system breaks the deadlock
    135 		 * by exiting or freeing memory (thus allowing the pagedaemon
    136 		 * to continue).  for now we panic if DEBUG is defined,
    137 		 * otherwise we hope for the best with option [2] (better
    138 		 * yet, this should never happen in the first place!).
    139 		 */
    140 
    141 		printf("pagedaemon: deadlock detected!\n");
    142 		timo = hz >> 3;		/* set timeout */
    143 #if defined(DEBUG)
    144 		/* DEBUG: panic so we can debug it */
    145 		panic("pagedaemon deadlock");
    146 #endif
    147 	}
    148 
    149 	simple_lock(&uvm.pagedaemon_lock);
    150 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    151 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    152 	    timo);
    153 
    154 	splx(s);
    155 }
    156 
    157 
    158 /*
    159  * uvmpd_tune: tune paging parameters
    160  *
    161  * => called when ever memory is added (or removed?) to the system
    162  * => caller must call with page queues locked
    163  */
    164 
    165 static void
    166 uvmpd_tune()
    167 {
    168 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    169 
    170 	uvmexp.freemin = uvmexp.npages / 20;
    171 
    172 	/* between 16k and 256k */
    173 	/* XXX:  what are these values good for? */
    174 	uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    175 	uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    176 
    177 	/* Make sure there's always a user page free. */
    178 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    179 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    180 
    181 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    182 	if (uvmexp.freetarg <= uvmexp.freemin)
    183 		uvmexp.freetarg = uvmexp.freemin + 1;
    184 
    185 	/* uvmexp.inactarg: computed in main daemon loop */
    186 
    187 	uvmexp.wiredmax = uvmexp.npages / 3;
    188 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    189 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    190 }
    191 
    192 /*
    193  * uvm_pageout: the main loop for the pagedaemon
    194  */
    195 
    196 void
    197 uvm_pageout(void *arg)
    198 {
    199 	int npages = 0;
    200 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    201 
    202 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    203 
    204 	/*
    205 	 * ensure correct priority and set paging parameters...
    206 	 */
    207 
    208 	uvm.pagedaemon_proc = curproc;
    209 	(void) spl0();
    210 	uvm_lock_pageq();
    211 	npages = uvmexp.npages;
    212 	uvmpd_tune();
    213 	uvm_unlock_pageq();
    214 
    215 	/*
    216 	 * main loop
    217 	 */
    218 
    219 	for (;;) {
    220 		simple_lock(&uvm.pagedaemon_lock);
    221 
    222 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    223 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    224 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    225 		uvmexp.pdwoke++;
    226 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    227 
    228 		/* drain pool resources */
    229 		pool_drain(0);
    230 
    231 		/*
    232 		 * now lock page queues and recompute inactive count
    233 		 */
    234 
    235 		uvm_lock_pageq();
    236 		if (npages != uvmexp.npages) {	/* check for new pages? */
    237 			npages = uvmexp.npages;
    238 			uvmpd_tune();
    239 		}
    240 
    241 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    242 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    243 			uvmexp.inactarg = uvmexp.freetarg + 1;
    244 		}
    245 
    246 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    247 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    248 		    uvmexp.inactarg);
    249 
    250 		/*
    251 		 * scan if needed
    252 		 */
    253 
    254 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    255 		    uvmexp.inactive < uvmexp.inactarg ||
    256 		    uvmexp.vnodepages >
    257 		    (uvmexp.active + uvmexp.inactive + uvmexp.wired +
    258 		     uvmexp.free) * 13 / 16) {
    259 			uvmpd_scan();
    260 		}
    261 
    262 		/*
    263 		 * if there's any free memory to be had,
    264 		 * wake up any waiters.
    265 		 */
    266 
    267 		if (uvmexp.free > uvmexp.reserve_kernel ||
    268 		    uvmexp.paging == 0) {
    269 			wakeup(&uvmexp.free);
    270 		}
    271 
    272 		/*
    273 		 * scan done.  unlock page queues (the only lock we are holding)
    274 		 */
    275 
    276 		uvm_unlock_pageq();
    277 	}
    278 	/*NOTREACHED*/
    279 }
    280 
    281 
    282 /*
    283  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    284  */
    285 
    286 void
    287 uvm_aiodone_daemon(void *arg)
    288 {
    289 	int s, free;
    290 	struct buf *bp, *nbp;
    291 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    292 
    293 	for (;;) {
    294 
    295 		/*
    296 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    297 		 * we need splbio because we want to make sure the aio_done list
    298 		 * is totally empty before we go to sleep.
    299 		 */
    300 
    301 		s = splbio();
    302 		simple_lock(&uvm.aiodoned_lock);
    303 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    304 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    305 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    306 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    307 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    308 
    309 			/* relock aiodoned_lock, still at splbio */
    310 			simple_lock(&uvm.aiodoned_lock);
    311 		}
    312 
    313 		/*
    314 		 * check for done aio structures
    315 		 */
    316 
    317 		bp = TAILQ_FIRST(&uvm.aio_done);
    318 		if (bp) {
    319 			TAILQ_INIT(&uvm.aio_done);
    320 		}
    321 
    322 		simple_unlock(&uvm.aiodoned_lock);
    323 		splx(s);
    324 
    325 		/*
    326 		 * process each i/o that's done.
    327 		 */
    328 
    329 		free = uvmexp.free;
    330 		while (bp != NULL) {
    331 			if (bp->b_flags & B_PDAEMON) {
    332 				uvmexp.paging -= bp->b_bufsize >> PAGE_SHIFT;
    333 			}
    334 			nbp = TAILQ_NEXT(bp, b_freelist);
    335 			(*bp->b_iodone)(bp);
    336 			bp = nbp;
    337 		}
    338 		if (free <= uvmexp.reserve_kernel) {
    339 			s = uvm_lock_fpageq();
    340 			wakeup(&uvm.pagedaemon);
    341 			uvm_unlock_fpageq(s);
    342 		} else {
    343 			simple_lock(&uvm.pagedaemon_lock);
    344 			wakeup(&uvmexp.free);
    345 			simple_unlock(&uvm.pagedaemon_lock);
    346 		}
    347 	}
    348 }
    349 
    350 
    351 
    352 /*
    353  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    354  *
    355  * => called with page queues locked
    356  * => we work on meeting our free target by converting inactive pages
    357  *    into free pages.
    358  * => we handle the building of swap-backed clusters
    359  * => we return TRUE if we are exiting because we met our target
    360  */
    361 
    362 static boolean_t
    363 uvmpd_scan_inactive(pglst)
    364 	struct pglist *pglst;
    365 {
    366 	boolean_t retval = FALSE;	/* assume we haven't hit target */
    367 	int s, free, result;
    368 	struct vm_page *p, *nextpg;
    369 	struct uvm_object *uobj;
    370 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
    371 	int npages;
    372 	struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; 	/* XXX: see below */
    373 	int swnpages, swcpages;				/* XXX: see below */
    374 	int swslot;
    375 	struct vm_anon *anon;
    376 	boolean_t swap_backed, vnode_only;
    377 	vaddr_t start;
    378 	int dirtyreacts, vpgs;
    379 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    380 
    381 	/*
    382 	 * note: we currently keep swap-backed pages on a seperate inactive
    383 	 * list from object-backed pages.   however, merging the two lists
    384 	 * back together again hasn't been ruled out.   thus, we keep our
    385 	 * swap cluster in "swpps" rather than in pps (allows us to mix
    386 	 * clustering types in the event of a mixed inactive queue).
    387 	 */
    388 
    389 	/*
    390 	 * swslot is non-zero if we are building a swap cluster.  we want
    391 	 * to stay in the loop while we have a page to scan or we have
    392 	 * a swap-cluster to build.
    393 	 */
    394 
    395 	swslot = 0;
    396 	swnpages = swcpages = 0;
    397 	free = 0;
    398 	dirtyreacts = 0;
    399 	vnode_only = FALSE;
    400 
    401 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
    402 
    403 		/*
    404 		 * note that p can be NULL iff we have traversed the whole
    405 		 * list and need to do one final swap-backed clustered pageout.
    406 		 */
    407 
    408 		uobj = NULL;
    409 		anon = NULL;
    410 
    411 		if (p) {
    412 
    413 			/*
    414 			 * update our copy of "free" and see if we've met
    415 			 * our target
    416 			 */
    417 
    418 			s = uvm_lock_fpageq();
    419 			free = uvmexp.free;
    420 			uvm_unlock_fpageq(s);
    421 
    422 			/* XXXUBC */
    423 			vpgs = uvmexp.vnodepages -
    424 				(uvmexp.active + uvmexp.inactive +
    425 				 uvmexp.wired + uvmexp.free) * 13 / 16;
    426 
    427 			if (free + uvmexp.paging >= uvmexp.freetarg << 2 ||
    428 			    vpgs > 0 || dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    429 				if (vpgs <= 0) {
    430 					UVMHIST_LOG(pdhist,"  met free target: "
    431 						    "exit loop", 0, 0, 0, 0);
    432 					retval = TRUE;
    433 
    434 					if (swslot == 0)
    435 						/* exit now if no
    436                                                    swap-i/o pending */
    437 						break;
    438 
    439 					/* set p to null to signal final
    440                                            swap i/o */
    441 					p = NULL;
    442 				} else {
    443 					vnode_only = TRUE;
    444 				}
    445 			}
    446 		}
    447 
    448 		if (p) {	/* if (we have a new page to consider) */
    449 			/*
    450 			 * we are below target and have a new page to consider.
    451 			 */
    452 			uvmexp.pdscans++;
    453 			nextpg = TAILQ_NEXT(p, pageq);
    454 
    455 			/*
    456 			 * move referenced pages back to active queue and
    457 			 * skip to next page (unlikely to happen since
    458 			 * inactive pages shouldn't have any valid mappings
    459 			 * and we cleared reference before deactivating).
    460 			 */
    461 			if (pmap_is_referenced(p)) {
    462 				uvm_pageactivate(p);
    463 				uvmexp.pdreact++;
    464 				continue;
    465 			}
    466 
    467 			/*
    468 			 * first we attempt to lock the object that this page
    469 			 * belongs to.  if our attempt fails we skip on to
    470 			 * the next page (no harm done).  it is important to
    471 			 * "try" locking the object as we are locking in the
    472 			 * wrong order (pageq -> object) and we don't want to
    473 			 * deadlock.
    474 			 *
    475 			 * the only time we expect to see an ownerless page
    476 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    477 			 * anon has loaned a page from a uvm_object and the
    478 			 * uvm_object has dropped the ownership.  in that
    479 			 * case, the anon can "take over" the loaned page
    480 			 * and make it its own.
    481 			 */
    482 
    483 			/* is page part of an anon or ownerless ? */
    484 			if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
    485 				if (vnode_only) {
    486 					uvm_pageactivate(p);
    487 					continue;
    488 				}
    489 				anon = p->uanon;
    490 				KASSERT(anon != NULL);
    491 				if (!simple_lock_try(&anon->an_lock))
    492 					/* lock failed, skip this page */
    493 					continue;
    494 
    495 				/*
    496 				 * if the page is ownerless, claim it in the
    497 				 * name of "anon"!
    498 				 */
    499 
    500 				if ((p->pqflags & PQ_ANON) == 0) {
    501 					KASSERT(p->loan_count > 0);
    502 					p->loan_count--;
    503 					p->pqflags |= PQ_ANON;
    504 					/* anon now owns it */
    505 				}
    506 				if (p->flags & PG_BUSY) {
    507 					simple_unlock(&anon->an_lock);
    508 					uvmexp.pdbusy++;
    509 					/* someone else owns page, skip it */
    510 					continue;
    511 				}
    512 				uvmexp.pdanscan++;
    513 			} else {
    514 				uobj = p->uobject;
    515 				KASSERT(uobj != NULL);
    516 				if (vnode_only &&
    517 				    uobj->pgops != &uvm_vnodeops) {
    518 					uvm_pageactivate(p);
    519 					continue;
    520 				}
    521 				if (!simple_lock_try(&uobj->vmobjlock))
    522 					/* lock failed, skip this page */
    523 					continue;
    524 
    525 				if (p->flags & PG_BUSY) {
    526 					simple_unlock(&uobj->vmobjlock);
    527 					uvmexp.pdbusy++;
    528 					/* someone else owns page, skip it */
    529 					continue;
    530 				}
    531 				uvmexp.pdobscan++;
    532 			}
    533 
    534 			/*
    535 			 * we now have the object and the page queues locked.
    536 			 * the page is not busy.   if the page is clean we
    537 			 * can free it now and continue.
    538 			 */
    539 
    540 			if (p->flags & PG_CLEAN) {
    541 				if (p->pqflags & PQ_SWAPBACKED) {
    542 					/* this page now lives only in swap */
    543 					simple_lock(&uvm.swap_data_lock);
    544 					uvmexp.swpgonly++;
    545 					simple_unlock(&uvm.swap_data_lock);
    546 				}
    547 
    548 				uvm_pagefree(p);
    549 				uvmexp.pdfreed++;
    550 
    551 				if (anon) {
    552 
    553 					/*
    554 					 * an anonymous page can only be clean
    555 					 * if it has backing store assigned.
    556 					 */
    557 
    558 					KASSERT(anon->an_swslot != 0);
    559 
    560 					/* remove from object */
    561 					anon->u.an_page = NULL;
    562 					simple_unlock(&anon->an_lock);
    563 				} else {
    564 					/* pagefree has already removed the
    565 					 * page from the object */
    566 					simple_unlock(&uobj->vmobjlock);
    567 				}
    568 				continue;
    569 			}
    570 
    571 			/*
    572 			 * this page is dirty, skip it if we'll have met our
    573 			 * free target when all the current pageouts complete.
    574 			 */
    575 
    576 			if (free + uvmexp.paging > uvmexp.freetarg << 2 &&
    577 			    !vnode_only) {
    578 				if (anon) {
    579 					simple_unlock(&anon->an_lock);
    580 				} else {
    581 					simple_unlock(&uobj->vmobjlock);
    582 				}
    583 				continue;
    584 			}
    585 
    586 			/*
    587 			 * this page is dirty, but we can't page it out
    588 			 * since all pages in swap are only in swap.
    589 			 * reactivate it so that we eventually cycle
    590 			 * all pages thru the inactive queue.
    591 			 */
    592 
    593 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
    594 			if ((p->pqflags & PQ_SWAPBACKED) &&
    595 			    uvmexp.swpgonly == uvmexp.swpages) {
    596 				dirtyreacts++;
    597 				uvm_pageactivate(p);
    598 				if (anon) {
    599 					simple_unlock(&anon->an_lock);
    600 				} else {
    601 					simple_unlock(&uobj->vmobjlock);
    602 				}
    603 				continue;
    604 			}
    605 
    606 			/*
    607 			 * if the page is swap-backed and dirty and swap space
    608 			 * is full, free any swap allocated to the page
    609 			 * so that other pages can be paged out.
    610 			 */
    611 
    612 			KASSERT(uvmexp.swpginuse <= uvmexp.swpages);
    613 			if ((p->pqflags & PQ_SWAPBACKED) &&
    614 			    uvmexp.swpginuse == uvmexp.swpages) {
    615 
    616 				if ((p->pqflags & PQ_ANON) &&
    617 				    p->uanon->an_swslot) {
    618 					uvm_swap_free(p->uanon->an_swslot, 1);
    619 					p->uanon->an_swslot = 0;
    620 				}
    621 				if (p->pqflags & PQ_AOBJ) {
    622 					uao_dropswap(p->uobject,
    623 						     p->offset >> PAGE_SHIFT);
    624 				}
    625 			}
    626 
    627 			/*
    628 			 * the page we are looking at is dirty.   we must
    629 			 * clean it before it can be freed.  to do this we
    630 			 * first mark the page busy so that no one else will
    631 			 * touch the page.
    632 			 */
    633 
    634 			swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
    635 			p->flags |= PG_BUSY;		/* now we own it */
    636 			UVM_PAGE_OWN(p, "scan_inactive");
    637 			uvmexp.pgswapout++;
    638 
    639 			/*
    640 			 * for swap-backed pages we need to (re)allocate
    641 			 * swap space.
    642 			 */
    643 
    644 			if (swap_backed) {
    645 
    646 				/*
    647 				 * free old swap slot (if any)
    648 				 */
    649 
    650 				if (anon) {
    651 					if (anon->an_swslot) {
    652 						uvm_swap_free(anon->an_swslot,
    653 						    1);
    654 						anon->an_swslot = 0;
    655 					}
    656 				} else {
    657 					uao_dropswap(uobj,
    658 						     p->offset >> PAGE_SHIFT);
    659 				}
    660 
    661 				/*
    662 				 * start new cluster (if necessary)
    663 				 */
    664 
    665 				if (swslot == 0) {
    666 					swnpages = MAXBSIZE >> PAGE_SHIFT;
    667 					swslot = uvm_swap_alloc(&swnpages,
    668 					    TRUE);
    669 					if (swslot == 0) {
    670 						/* no swap?  give up! */
    671 						p->flags &= ~PG_BUSY;
    672 						UVM_PAGE_OWN(p, NULL);
    673 						if (anon)
    674 							simple_unlock(
    675 							    &anon->an_lock);
    676 						else
    677 							simple_unlock(
    678 							    &uobj->vmobjlock);
    679 						continue;
    680 					}
    681 					swcpages = 0;	/* cluster is empty */
    682 				}
    683 
    684 				/*
    685 				 * add block to cluster
    686 				 */
    687 
    688 				swpps[swcpages] = p;
    689 				if (anon)
    690 					anon->an_swslot = swslot + swcpages;
    691 				else
    692 					uao_set_swslot(uobj,
    693 					    p->offset >> PAGE_SHIFT,
    694 					    swslot + swcpages);
    695 				swcpages++;
    696 			}
    697 		} else {
    698 
    699 			/* if p == NULL we must be doing a last swap i/o */
    700 			swap_backed = TRUE;
    701 		}
    702 
    703 		/*
    704 		 * now consider doing the pageout.
    705 		 *
    706 		 * for swap-backed pages, we do the pageout if we have either
    707 		 * filled the cluster (in which case (swnpages == swcpages) or
    708 		 * run out of pages (p == NULL).
    709 		 *
    710 		 * for object pages, we always do the pageout.
    711 		 */
    712 
    713 		if (swap_backed) {
    714 			if (p) {	/* if we just added a page to cluster */
    715 				if (anon)
    716 					simple_unlock(&anon->an_lock);
    717 				else
    718 					simple_unlock(&uobj->vmobjlock);
    719 
    720 				/* cluster not full yet? */
    721 				if (swcpages < swnpages)
    722 					continue;
    723 			}
    724 
    725 			/* starting I/O now... set up for it */
    726 			npages = swcpages;
    727 			ppsp = swpps;
    728 			/* for swap-backed pages only */
    729 			start = (vaddr_t) swslot;
    730 
    731 			/* if this is final pageout we could have a few
    732 			 * extra swap blocks */
    733 			if (swcpages < swnpages) {
    734 				uvm_swap_free(swslot + swcpages,
    735 				    (swnpages - swcpages));
    736 			}
    737 		} else {
    738 			/* normal object pageout */
    739 			ppsp = pps;
    740 			npages = sizeof(pps) / sizeof(struct vm_page *);
    741 			/* not looked at because PGO_ALLPAGES is set */
    742 			start = 0;
    743 		}
    744 
    745 		/*
    746 		 * now do the pageout.
    747 		 *
    748 		 * for swap_backed pages we have already built the cluster.
    749 		 * for !swap_backed pages, uvm_pager_put will call the object's
    750 		 * "make put cluster" function to build a cluster on our behalf.
    751 		 *
    752 		 * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
    753 		 * it to free the cluster pages for us on a successful I/O (it
    754 		 * always does this for un-successful I/O requests).  this
    755 		 * allows us to do clustered pageout without having to deal
    756 		 * with cluster pages at this level.
    757 		 *
    758 		 * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
    759 		 *  IN: locked: uobj (if !swap_backed), page queues
    760 		 * OUT: locked: uobj (if !swap_backed && result !=VM_PAGER_PEND)
    761 		 *     !locked: pageqs, uobj (if swap_backed || VM_PAGER_PEND)
    762 		 *
    763 		 * [the bit about VM_PAGER_PEND saves us one lock-unlock pair]
    764 		 */
    765 
    766 		/* locked: uobj (if !swap_backed), page queues */
    767 		uvmexp.pdpageouts++;
    768 		result = uvm_pager_put(swap_backed ? NULL : uobj, p,
    769 		    &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
    770 		/* locked: uobj (if !swap_backed && result != PEND) */
    771 		/* unlocked: pageqs, object (if swap_backed ||result == PEND) */
    772 
    773 		/*
    774 		 * if we did i/o to swap, zero swslot to indicate that we are
    775 		 * no longer building a swap-backed cluster.
    776 		 */
    777 
    778 		if (swap_backed)
    779 			swslot = 0;		/* done with this cluster */
    780 
    781 		/*
    782 		 * first, we check for VM_PAGER_PEND which means that the
    783 		 * async I/O is in progress and the async I/O done routine
    784 		 * will clean up after us.   in this case we move on to the
    785 		 * next page.
    786 		 *
    787 		 * there is a very remote chance that the pending async i/o can
    788 		 * finish _before_ we get here.   if that happens, our page "p"
    789 		 * may no longer be on the inactive queue.   so we verify this
    790 		 * when determining the next page (starting over at the head if
    791 		 * we've lost our inactive page).
    792 		 */
    793 
    794 		if (result == VM_PAGER_PEND) {
    795 			uvmexp.paging += npages;
    796 			uvm_lock_pageq();
    797 			uvmexp.pdpending++;
    798 			if (p) {
    799 				if (p->pqflags & PQ_INACTIVE)
    800 					nextpg = TAILQ_NEXT(p, pageq);
    801 				else
    802 					nextpg = TAILQ_FIRST(pglst);
    803 			} else {
    804 				nextpg = NULL;
    805 			}
    806 			continue;
    807 		}
    808 
    809 		if (result == VM_PAGER_ERROR &&
    810 		    curproc == uvm.pagedaemon_proc) {
    811 			uvm_lock_pageq();
    812 			nextpg = TAILQ_NEXT(p, pageq);
    813 			uvm_pageactivate(p);
    814 			continue;
    815 		}
    816 
    817 		/*
    818 		 * clean up "p" if we have one
    819 		 */
    820 
    821 		if (p) {
    822 			/*
    823 			 * the I/O request to "p" is done and uvm_pager_put
    824 			 * has freed any cluster pages it may have allocated
    825 			 * during I/O.  all that is left for us to do is
    826 			 * clean up page "p" (which is still PG_BUSY).
    827 			 *
    828 			 * our result could be one of the following:
    829 			 *   VM_PAGER_OK: successful pageout
    830 			 *
    831 			 *   VM_PAGER_AGAIN: tmp resource shortage, we skip
    832 			 *     to next page
    833 			 *   VM_PAGER_{FAIL,ERROR,BAD}: an error.   we
    834 			 *     "reactivate" page to get it out of the way (it
    835 			 *     will eventually drift back into the inactive
    836 			 *     queue for a retry).
    837 			 *   VM_PAGER_UNLOCK: should never see this as it is
    838 			 *     only valid for "get" operations
    839 			 */
    840 
    841 			/* relock p's object: page queues not lock yet, so
    842 			 * no need for "try" */
    843 
    844 			/* !swap_backed case: already locked... */
    845 			if (swap_backed) {
    846 				if (anon)
    847 					simple_lock(&anon->an_lock);
    848 				else
    849 					simple_lock(&uobj->vmobjlock);
    850 			}
    851 
    852 			/* handle PG_WANTED now */
    853 			if (p->flags & PG_WANTED)
    854 				/* still holding object lock */
    855 				wakeup(p);
    856 
    857 			p->flags &= ~(PG_BUSY|PG_WANTED);
    858 			UVM_PAGE_OWN(p, NULL);
    859 
    860 			/* released during I/O? */
    861 			if (p->flags & PG_RELEASED) {
    862 				if (anon) {
    863 					/* remove page so we can get nextpg */
    864 					anon->u.an_page = NULL;
    865 
    866 					simple_unlock(&anon->an_lock);
    867 					uvm_anfree(anon);	/* kills anon */
    868 					pmap_page_protect(p, VM_PROT_NONE);
    869 					anon = NULL;
    870 					uvm_lock_pageq();
    871 					nextpg = TAILQ_NEXT(p, pageq);
    872 					/* free released page */
    873 					uvm_pagefree(p);
    874 
    875 				} else {
    876 
    877 					/*
    878 					 * pgo_releasepg nukes the page and
    879 					 * gets "nextpg" for us.  it returns
    880 					 * with the page queues locked (when
    881 					 * given nextpg ptr).
    882 					 */
    883 
    884 					if (!uobj->pgops->pgo_releasepg(p,
    885 					    &nextpg))
    886 						/* uobj died after release */
    887 						uobj = NULL;
    888 
    889 					/*
    890 					 * lock page queues here so that they're
    891 					 * always locked at the end of the loop.
    892 					 */
    893 
    894 					uvm_lock_pageq();
    895 				}
    896 			} else {	/* page was not released during I/O */
    897 				uvm_lock_pageq();
    898 				nextpg = TAILQ_NEXT(p, pageq);
    899 				if (result != VM_PAGER_OK) {
    900 					/* pageout was a failure... */
    901 					if (result != VM_PAGER_AGAIN)
    902 						uvm_pageactivate(p);
    903 					pmap_clear_reference(p);
    904 					/* XXXCDC: if (swap_backed) FREE p's
    905 					 * swap block? */
    906 				} else {
    907 					/* pageout was a success... */
    908 					pmap_clear_reference(p);
    909 					pmap_clear_modify(p);
    910 					p->flags |= PG_CLEAN;
    911 				}
    912 			}
    913 
    914 			/*
    915 			 * drop object lock (if there is an object left).   do
    916 			 * a safety check of nextpg to make sure it is on the
    917 			 * inactive queue (it should be since PG_BUSY pages on
    918 			 * the inactive queue can't be re-queued [note: not
    919 			 * true for active queue]).
    920 			 */
    921 
    922 			if (anon)
    923 				simple_unlock(&anon->an_lock);
    924 			else if (uobj)
    925 				simple_unlock(&uobj->vmobjlock);
    926 
    927 		} else {
    928 
    929 			/*
    930 			 * if p is null in this loop, make sure it stays null
    931 			 * in the next loop.
    932 			 */
    933 
    934 			nextpg = NULL;
    935 
    936 			/*
    937 			 * lock page queues here just so they're always locked
    938 			 * at the end of the loop.
    939 			 */
    940 
    941 			uvm_lock_pageq();
    942 		}
    943 
    944 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
    945 			nextpg = TAILQ_FIRST(pglst);	/* reload! */
    946 		}
    947 	}
    948 	return (retval);
    949 }
    950 
    951 /*
    952  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    953  *
    954  * => called with pageq's locked
    955  */
    956 
    957 void
    958 uvmpd_scan()
    959 {
    960 	int s, free, inactive_shortage, swap_shortage, pages_freed;
    961 	struct vm_page *p, *nextpg;
    962 	struct uvm_object *uobj;
    963 	boolean_t got_it;
    964 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    965 
    966 	uvmexp.pdrevs++;		/* counter */
    967 	uobj = NULL;
    968 
    969 	/*
    970 	 * get current "free" page count
    971 	 */
    972 	s = uvm_lock_fpageq();
    973 	free = uvmexp.free;
    974 	uvm_unlock_fpageq(s);
    975 
    976 #ifndef __SWAP_BROKEN
    977 	/*
    978 	 * swap out some processes if we are below our free target.
    979 	 * we need to unlock the page queues for this.
    980 	 */
    981 	if (free < uvmexp.freetarg) {
    982 		uvmexp.pdswout++;
    983 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout", free,
    984 		    uvmexp.freetarg, 0, 0);
    985 		uvm_unlock_pageq();
    986 		uvm_swapout_threads();
    987 		uvm_lock_pageq();
    988 
    989 	}
    990 #endif
    991 
    992 	/*
    993 	 * now we want to work on meeting our targets.   first we work on our
    994 	 * free target by converting inactive pages into free pages.  then
    995 	 * we work on meeting our inactive target by converting active pages
    996 	 * to inactive ones.
    997 	 */
    998 
    999 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
   1000 
   1001 	/*
   1002 	 * alternate starting queue between swap and object based on the
   1003 	 * low bit of uvmexp.pdrevs (which we bump by one each call).
   1004 	 */
   1005 
   1006 	got_it = FALSE;
   1007 	pages_freed = uvmexp.pdfreed;
   1008 	if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
   1009 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
   1010 	if (!got_it)
   1011 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
   1012 	if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
   1013 		(void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
   1014 	pages_freed = uvmexp.pdfreed - pages_freed;
   1015 
   1016 	/*
   1017 	 * we have done the scan to get free pages.   now we work on meeting
   1018 	 * our inactive target.
   1019 	 */
   1020 
   1021 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
   1022 
   1023 	/*
   1024 	 * detect if we're not going to be able to page anything out
   1025 	 * until we free some swap resources from active pages.
   1026 	 */
   1027 
   1028 	swap_shortage = 0;
   1029 	if (uvmexp.free < uvmexp.freetarg &&
   1030 	    uvmexp.swpginuse == uvmexp.swpages &&
   1031 	    uvmexp.swpgonly < uvmexp.swpages &&
   1032 	    pages_freed == 0) {
   1033 		swap_shortage = uvmexp.freetarg - uvmexp.free;
   1034 	}
   1035 
   1036 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
   1037 		    inactive_shortage, swap_shortage,0,0);
   1038 	for (p = TAILQ_FIRST(&uvm.page_active);
   1039 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
   1040 	     p = nextpg) {
   1041 		nextpg = TAILQ_NEXT(p, pageq);
   1042 		if (p->flags & PG_BUSY)
   1043 			continue;	/* quick check before trying to lock */
   1044 
   1045 		/*
   1046 		 * lock the page's owner.
   1047 		 */
   1048 		/* is page anon owned or ownerless? */
   1049 		if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
   1050 			KASSERT(p->uanon != NULL);
   1051 			if (!simple_lock_try(&p->uanon->an_lock))
   1052 				continue;
   1053 
   1054 			/* take over the page? */
   1055 			if ((p->pqflags & PQ_ANON) == 0) {
   1056 				KASSERT(p->loan_count > 0);
   1057 				p->loan_count--;
   1058 				p->pqflags |= PQ_ANON;
   1059 			}
   1060 		} else {
   1061 			if (!simple_lock_try(&p->uobject->vmobjlock))
   1062 				continue;
   1063 		}
   1064 
   1065 		/*
   1066 		 * skip this page if it's busy.
   1067 		 */
   1068 
   1069 		if ((p->flags & PG_BUSY) != 0) {
   1070 			if (p->pqflags & PQ_ANON)
   1071 				simple_unlock(&p->uanon->an_lock);
   1072 			else
   1073 				simple_unlock(&p->uobject->vmobjlock);
   1074 			continue;
   1075 		}
   1076 
   1077 		/*
   1078 		 * if there's a shortage of swap, free any swap allocated
   1079 		 * to this page so that other pages can be paged out.
   1080 		 */
   1081 
   1082 		if (swap_shortage > 0) {
   1083 			if ((p->pqflags & PQ_ANON) && p->uanon->an_swslot) {
   1084 				uvm_swap_free(p->uanon->an_swslot, 1);
   1085 				p->uanon->an_swslot = 0;
   1086 				p->flags &= ~PG_CLEAN;
   1087 				swap_shortage--;
   1088 			}
   1089 			if (p->pqflags & PQ_AOBJ) {
   1090 				int slot = uao_set_swslot(p->uobject,
   1091 					p->offset >> PAGE_SHIFT, 0);
   1092 				if (slot) {
   1093 					uvm_swap_free(slot, 1);
   1094 					p->flags &= ~PG_CLEAN;
   1095 					swap_shortage--;
   1096 				}
   1097 			}
   1098 		}
   1099 
   1100 		/*
   1101 		 * deactivate this page if there's a shortage of
   1102 		 * inactive pages.
   1103 		 */
   1104 
   1105 		if (inactive_shortage > 0) {
   1106 			pmap_page_protect(p, VM_PROT_NONE);
   1107 			/* no need to check wire_count as pg is "active" */
   1108 			uvm_pagedeactivate(p);
   1109 			uvmexp.pddeact++;
   1110 			inactive_shortage--;
   1111 		}
   1112 		if (p->pqflags & PQ_ANON)
   1113 			simple_unlock(&p->uanon->an_lock);
   1114 		else
   1115 			simple_unlock(&p->uobject->vmobjlock);
   1116 	}
   1117 }
   1118