uvm_pdaemon.c revision 1.29 1 /* $NetBSD: uvm_pdaemon.c,v 1.29 2001/01/28 23:30:46 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include "opt_uvmhist.h"
70
71 /*
72 * uvm_pdaemon.c: the page daemon
73 */
74
75 #include <sys/param.h>
76 #include <sys/proc.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/pool.h>
80 #include <sys/buf.h>
81
82 #include <uvm/uvm.h>
83
84 /*
85 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
86 * in a pass thru the inactive list when swap is full. the value should be
87 * "small"... if it's too large we'll cycle the active pages thru the inactive
88 * queue too quickly to for them to be referenced and avoid being freed.
89 */
90
91 #define UVMPD_NUMDIRTYREACTS 16
92
93
94 /*
95 * local prototypes
96 */
97
98 static void uvmpd_scan __P((void));
99 static boolean_t uvmpd_scan_inactive __P((struct pglist *));
100 static void uvmpd_tune __P((void));
101
102
103 /*
104 * uvm_wait: wait (sleep) for the page daemon to free some pages
105 *
106 * => should be called with all locks released
107 * => should _not_ be called by the page daemon (to avoid deadlock)
108 */
109
110 void
111 uvm_wait(wmsg)
112 const char *wmsg;
113 {
114 int timo = 0;
115 int s = splbio();
116
117 /*
118 * check for page daemon going to sleep (waiting for itself)
119 */
120
121 if (curproc == uvm.pagedaemon_proc) {
122 /*
123 * now we have a problem: the pagedaemon wants to go to
124 * sleep until it frees more memory. but how can it
125 * free more memory if it is asleep? that is a deadlock.
126 * we have two options:
127 * [1] panic now
128 * [2] put a timeout on the sleep, thus causing the
129 * pagedaemon to only pause (rather than sleep forever)
130 *
131 * note that option [2] will only help us if we get lucky
132 * and some other process on the system breaks the deadlock
133 * by exiting or freeing memory (thus allowing the pagedaemon
134 * to continue). for now we panic if DEBUG is defined,
135 * otherwise we hope for the best with option [2] (better
136 * yet, this should never happen in the first place!).
137 */
138
139 printf("pagedaemon: deadlock detected!\n");
140 timo = hz >> 3; /* set timeout */
141 #if defined(DEBUG)
142 /* DEBUG: panic so we can debug it */
143 panic("pagedaemon deadlock");
144 #endif
145 }
146
147 simple_lock(&uvm.pagedaemon_lock);
148 wakeup(&uvm.pagedaemon); /* wake the daemon! */
149 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
150 timo);
151
152 splx(s);
153 }
154
155
156 /*
157 * uvmpd_tune: tune paging parameters
158 *
159 * => called when ever memory is added (or removed?) to the system
160 * => caller must call with page queues locked
161 */
162
163 static void
164 uvmpd_tune()
165 {
166 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
167
168 uvmexp.freemin = uvmexp.npages / 20;
169
170 /* between 16k and 256k */
171 /* XXX: what are these values good for? */
172 uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
173 uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
174
175 /* Make sure there's always a user page free. */
176 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
177 uvmexp.freemin = uvmexp.reserve_kernel + 1;
178
179 uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
180 if (uvmexp.freetarg <= uvmexp.freemin)
181 uvmexp.freetarg = uvmexp.freemin + 1;
182
183 /* uvmexp.inactarg: computed in main daemon loop */
184
185 uvmexp.wiredmax = uvmexp.npages / 3;
186 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
187 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
188 }
189
190 /*
191 * uvm_pageout: the main loop for the pagedaemon
192 */
193
194 void
195 uvm_pageout(void *arg)
196 {
197 int npages = 0;
198 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
199
200 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
201
202 /*
203 * ensure correct priority and set paging parameters...
204 */
205
206 uvm.pagedaemon_proc = curproc;
207 (void) spl0();
208 uvm_lock_pageq();
209 npages = uvmexp.npages;
210 uvmpd_tune();
211 uvm_unlock_pageq();
212
213 /*
214 * main loop
215 */
216
217 for (;;) {
218 simple_lock(&uvm.pagedaemon_lock);
219
220 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
221 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
222 &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
223 uvmexp.pdwoke++;
224 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
225
226 /* drain pool resources */
227 pool_drain(0);
228
229 /*
230 * now lock page queues and recompute inactive count
231 */
232
233 uvm_lock_pageq();
234 if (npages != uvmexp.npages) { /* check for new pages? */
235 npages = uvmexp.npages;
236 uvmpd_tune();
237 }
238
239 uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
240 if (uvmexp.inactarg <= uvmexp.freetarg) {
241 uvmexp.inactarg = uvmexp.freetarg + 1;
242 }
243
244 UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
245 uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
246 uvmexp.inactarg);
247
248 /*
249 * scan if needed
250 */
251
252 if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
253 uvmexp.inactive < uvmexp.inactarg ||
254 uvmexp.vnodepages >
255 (uvmexp.active + uvmexp.inactive + uvmexp.wired +
256 uvmexp.free) * 13 / 16) {
257 uvmpd_scan();
258 }
259
260 /*
261 * if there's any free memory to be had,
262 * wake up any waiters.
263 */
264
265 if (uvmexp.free > uvmexp.reserve_kernel ||
266 uvmexp.paging == 0) {
267 wakeup(&uvmexp.free);
268 }
269
270 /*
271 * scan done. unlock page queues (the only lock we are holding)
272 */
273
274 uvm_unlock_pageq();
275 }
276 /*NOTREACHED*/
277 }
278
279
280 /*
281 * uvm_aiodone_daemon: main loop for the aiodone daemon.
282 */
283
284 void
285 uvm_aiodone_daemon(void *arg)
286 {
287 int s, free;
288 struct buf *bp, *nbp;
289 UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
290
291 for (;;) {
292
293 /*
294 * carefully attempt to go to sleep (without losing "wakeups"!).
295 * we need splbio because we want to make sure the aio_done list
296 * is totally empty before we go to sleep.
297 */
298
299 s = splbio();
300 simple_lock(&uvm.aiodoned_lock);
301 if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
302 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
303 UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
304 &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
305 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
306
307 /* relock aiodoned_lock, still at splbio */
308 simple_lock(&uvm.aiodoned_lock);
309 }
310
311 /*
312 * check for done aio structures
313 */
314
315 bp = TAILQ_FIRST(&uvm.aio_done);
316 if (bp) {
317 TAILQ_INIT(&uvm.aio_done);
318 }
319
320 simple_unlock(&uvm.aiodoned_lock);
321 splx(s);
322
323 /*
324 * process each i/o that's done.
325 */
326
327 free = uvmexp.free;
328 while (bp != NULL) {
329 if (bp->b_flags & B_PDAEMON) {
330 uvmexp.paging -= bp->b_bufsize >> PAGE_SHIFT;
331 }
332 nbp = TAILQ_NEXT(bp, b_freelist);
333 (*bp->b_iodone)(bp);
334 bp = nbp;
335 }
336 if (free <= uvmexp.reserve_kernel) {
337 s = uvm_lock_fpageq();
338 wakeup(&uvm.pagedaemon);
339 uvm_unlock_fpageq(s);
340 } else {
341 simple_lock(&uvm.pagedaemon_lock);
342 wakeup(&uvmexp.free);
343 simple_unlock(&uvm.pagedaemon_lock);
344 }
345 }
346 }
347
348
349
350 /*
351 * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
352 *
353 * => called with page queues locked
354 * => we work on meeting our free target by converting inactive pages
355 * into free pages.
356 * => we handle the building of swap-backed clusters
357 * => we return TRUE if we are exiting because we met our target
358 */
359
360 static boolean_t
361 uvmpd_scan_inactive(pglst)
362 struct pglist *pglst;
363 {
364 boolean_t retval = FALSE; /* assume we haven't hit target */
365 int s, free, result;
366 struct vm_page *p, *nextpg;
367 struct uvm_object *uobj;
368 struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
369 int npages;
370 struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; /* XXX: see below */
371 int swnpages, swcpages; /* XXX: see below */
372 int swslot;
373 struct vm_anon *anon;
374 boolean_t swap_backed, vnode_only;
375 vaddr_t start;
376 int dirtyreacts, vpgs;
377 UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
378
379 /*
380 * note: we currently keep swap-backed pages on a seperate inactive
381 * list from object-backed pages. however, merging the two lists
382 * back together again hasn't been ruled out. thus, we keep our
383 * swap cluster in "swpps" rather than in pps (allows us to mix
384 * clustering types in the event of a mixed inactive queue).
385 */
386
387 /*
388 * swslot is non-zero if we are building a swap cluster. we want
389 * to stay in the loop while we have a page to scan or we have
390 * a swap-cluster to build.
391 */
392
393 swslot = 0;
394 swnpages = swcpages = 0;
395 free = 0;
396 dirtyreacts = 0;
397 vnode_only = FALSE;
398
399 for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
400
401 /*
402 * note that p can be NULL iff we have traversed the whole
403 * list and need to do one final swap-backed clustered pageout.
404 */
405
406 uobj = NULL;
407 anon = NULL;
408
409 if (p) {
410
411 /*
412 * update our copy of "free" and see if we've met
413 * our target
414 */
415
416 s = uvm_lock_fpageq();
417 free = uvmexp.free;
418 uvm_unlock_fpageq(s);
419
420 /* XXXUBC */
421 vpgs = uvmexp.vnodepages -
422 (uvmexp.active + uvmexp.inactive +
423 uvmexp.wired + uvmexp.free) * 13 / 16;
424
425 if (free + uvmexp.paging >= uvmexp.freetarg << 2 ||
426 vpgs > 0 || dirtyreacts == UVMPD_NUMDIRTYREACTS) {
427 if (vpgs <= 0) {
428 UVMHIST_LOG(pdhist," met free target: "
429 "exit loop", 0, 0, 0, 0);
430 retval = TRUE;
431
432 if (swslot == 0)
433 /* exit now if no
434 swap-i/o pending */
435 break;
436
437 /* set p to null to signal final
438 swap i/o */
439 p = NULL;
440 } else {
441 vnode_only = TRUE;
442 }
443 }
444 }
445
446 if (p) { /* if (we have a new page to consider) */
447 /*
448 * we are below target and have a new page to consider.
449 */
450 uvmexp.pdscans++;
451 nextpg = TAILQ_NEXT(p, pageq);
452
453 /*
454 * move referenced pages back to active queue and
455 * skip to next page (unlikely to happen since
456 * inactive pages shouldn't have any valid mappings
457 * and we cleared reference before deactivating).
458 */
459 if (pmap_is_referenced(p)) {
460 uvm_pageactivate(p);
461 uvmexp.pdreact++;
462 continue;
463 }
464
465 /*
466 * first we attempt to lock the object that this page
467 * belongs to. if our attempt fails we skip on to
468 * the next page (no harm done). it is important to
469 * "try" locking the object as we are locking in the
470 * wrong order (pageq -> object) and we don't want to
471 * deadlock.
472 *
473 * the only time we expect to see an ownerless page
474 * (i.e. a page with no uobject and !PQ_ANON) is if an
475 * anon has loaned a page from a uvm_object and the
476 * uvm_object has dropped the ownership. in that
477 * case, the anon can "take over" the loaned page
478 * and make it its own.
479 */
480
481 /* is page part of an anon or ownerless ? */
482 if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
483 if (vnode_only) {
484 uvm_pageactivate(p);
485 continue;
486 }
487 anon = p->uanon;
488 KASSERT(anon != NULL);
489 if (!simple_lock_try(&anon->an_lock))
490 /* lock failed, skip this page */
491 continue;
492
493 /*
494 * if the page is ownerless, claim it in the
495 * name of "anon"!
496 */
497
498 if ((p->pqflags & PQ_ANON) == 0) {
499 KASSERT(p->loan_count > 0);
500 p->loan_count--;
501 p->pqflags |= PQ_ANON;
502 /* anon now owns it */
503 }
504 if (p->flags & PG_BUSY) {
505 simple_unlock(&anon->an_lock);
506 uvmexp.pdbusy++;
507 /* someone else owns page, skip it */
508 continue;
509 }
510 uvmexp.pdanscan++;
511 } else {
512 uobj = p->uobject;
513 KASSERT(uobj != NULL);
514 if (vnode_only &&
515 UVM_OBJ_IS_VNODE(uobj) == 0) {
516 uvm_pageactivate(p);
517 continue;
518 }
519 if (!simple_lock_try(&uobj->vmobjlock))
520 /* lock failed, skip this page */
521 continue;
522
523 if (p->flags & PG_BUSY) {
524 simple_unlock(&uobj->vmobjlock);
525 uvmexp.pdbusy++;
526 /* someone else owns page, skip it */
527 continue;
528 }
529 uvmexp.pdobscan++;
530 }
531
532 /*
533 * we now have the object and the page queues locked.
534 * the page is not busy. remove all the permissions
535 * from the page so we can sync the modified info
536 * without any race conditions. if the page is clean
537 * we can free it now and continue.
538 */
539
540 pmap_page_protect(p, VM_PROT_NONE);
541 if ((p->flags & PG_CLEAN) != 0 && pmap_is_modified(p))
542 p->flags &= ~PG_CLEAN;
543
544 if (p->flags & PG_CLEAN) {
545 if (p->pqflags & PQ_SWAPBACKED) {
546 /* this page now lives only in swap */
547 simple_lock(&uvm.swap_data_lock);
548 uvmexp.swpgonly++;
549 simple_unlock(&uvm.swap_data_lock);
550 }
551
552 uvm_pagefree(p);
553 uvmexp.pdfreed++;
554
555 if (anon) {
556
557 /*
558 * an anonymous page can only be clean
559 * if it has backing store assigned.
560 */
561
562 KASSERT(anon->an_swslot != 0);
563
564 /* remove from object */
565 anon->u.an_page = NULL;
566 simple_unlock(&anon->an_lock);
567 } else {
568 /* pagefree has already removed the
569 * page from the object */
570 simple_unlock(&uobj->vmobjlock);
571 }
572 continue;
573 }
574
575 /*
576 * this page is dirty, skip it if we'll have met our
577 * free target when all the current pageouts complete.
578 */
579
580 if (free + uvmexp.paging > uvmexp.freetarg << 2 &&
581 !vnode_only) {
582 if (anon) {
583 simple_unlock(&anon->an_lock);
584 } else {
585 simple_unlock(&uobj->vmobjlock);
586 }
587 continue;
588 }
589
590 /*
591 * this page is dirty, but we can't page it out
592 * since all pages in swap are only in swap.
593 * reactivate it so that we eventually cycle
594 * all pages thru the inactive queue.
595 */
596
597 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
598 if ((p->pqflags & PQ_SWAPBACKED) &&
599 uvmexp.swpgonly == uvmexp.swpages) {
600 dirtyreacts++;
601 uvm_pageactivate(p);
602 if (anon) {
603 simple_unlock(&anon->an_lock);
604 } else {
605 simple_unlock(&uobj->vmobjlock);
606 }
607 continue;
608 }
609
610 /*
611 * if the page is swap-backed and dirty and swap space
612 * is full, free any swap allocated to the page
613 * so that other pages can be paged out.
614 */
615
616 KASSERT(uvmexp.swpginuse <= uvmexp.swpages);
617 if ((p->pqflags & PQ_SWAPBACKED) &&
618 uvmexp.swpginuse == uvmexp.swpages) {
619
620 if ((p->pqflags & PQ_ANON) &&
621 p->uanon->an_swslot) {
622 uvm_swap_free(p->uanon->an_swslot, 1);
623 p->uanon->an_swslot = 0;
624 }
625 if (p->pqflags & PQ_AOBJ) {
626 uao_dropswap(p->uobject,
627 p->offset >> PAGE_SHIFT);
628 }
629 }
630
631 /*
632 * the page we are looking at is dirty. we must
633 * clean it before it can be freed. to do this we
634 * first mark the page busy so that no one else will
635 * touch the page.
636 */
637
638 swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
639 p->flags |= PG_BUSY; /* now we own it */
640 UVM_PAGE_OWN(p, "scan_inactive");
641 uvmexp.pgswapout++;
642
643 /*
644 * for swap-backed pages we need to (re)allocate
645 * swap space.
646 */
647
648 if (swap_backed) {
649
650 /*
651 * free old swap slot (if any)
652 */
653
654 if (anon) {
655 if (anon->an_swslot) {
656 uvm_swap_free(anon->an_swslot,
657 1);
658 anon->an_swslot = 0;
659 }
660 } else {
661 uao_dropswap(uobj,
662 p->offset >> PAGE_SHIFT);
663 }
664
665 /*
666 * start new cluster (if necessary)
667 */
668
669 if (swslot == 0) {
670 swnpages = MAXBSIZE >> PAGE_SHIFT;
671 swslot = uvm_swap_alloc(&swnpages,
672 TRUE);
673 if (swslot == 0) {
674 /* no swap? give up! */
675 p->flags &= ~PG_BUSY;
676 UVM_PAGE_OWN(p, NULL);
677 if (anon)
678 simple_unlock(
679 &anon->an_lock);
680 else
681 simple_unlock(
682 &uobj->vmobjlock);
683 continue;
684 }
685 swcpages = 0; /* cluster is empty */
686 }
687
688 /*
689 * add block to cluster
690 */
691
692 swpps[swcpages] = p;
693 if (anon)
694 anon->an_swslot = swslot + swcpages;
695 else
696 uao_set_swslot(uobj,
697 p->offset >> PAGE_SHIFT,
698 swslot + swcpages);
699 swcpages++;
700 }
701 } else {
702
703 /* if p == NULL we must be doing a last swap i/o */
704 swap_backed = TRUE;
705 }
706
707 /*
708 * now consider doing the pageout.
709 *
710 * for swap-backed pages, we do the pageout if we have either
711 * filled the cluster (in which case (swnpages == swcpages) or
712 * run out of pages (p == NULL).
713 *
714 * for object pages, we always do the pageout.
715 */
716
717 if (swap_backed) {
718 if (p) { /* if we just added a page to cluster */
719 if (anon)
720 simple_unlock(&anon->an_lock);
721 else
722 simple_unlock(&uobj->vmobjlock);
723
724 /* cluster not full yet? */
725 if (swcpages < swnpages)
726 continue;
727 }
728
729 /* starting I/O now... set up for it */
730 npages = swcpages;
731 ppsp = swpps;
732 /* for swap-backed pages only */
733 start = (vaddr_t) swslot;
734
735 /* if this is final pageout we could have a few
736 * extra swap blocks */
737 if (swcpages < swnpages) {
738 uvm_swap_free(swslot + swcpages,
739 (swnpages - swcpages));
740 }
741 } else {
742 /* normal object pageout */
743 ppsp = pps;
744 npages = sizeof(pps) / sizeof(struct vm_page *);
745 /* not looked at because PGO_ALLPAGES is set */
746 start = 0;
747 }
748
749 /*
750 * now do the pageout.
751 *
752 * for swap_backed pages we have already built the cluster.
753 * for !swap_backed pages, uvm_pager_put will call the object's
754 * "make put cluster" function to build a cluster on our behalf.
755 *
756 * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
757 * it to free the cluster pages for us on a successful I/O (it
758 * always does this for un-successful I/O requests). this
759 * allows us to do clustered pageout without having to deal
760 * with cluster pages at this level.
761 *
762 * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
763 * IN: locked: uobj (if !swap_backed), page queues
764 * OUT: locked: uobj (if !swap_backed && result !=VM_PAGER_PEND)
765 * !locked: pageqs, uobj (if swap_backed || VM_PAGER_PEND)
766 *
767 * [the bit about VM_PAGER_PEND saves us one lock-unlock pair]
768 */
769
770 /* locked: uobj (if !swap_backed), page queues */
771 uvmexp.pdpageouts++;
772 result = uvm_pager_put(swap_backed ? NULL : uobj, p,
773 &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
774 /* locked: uobj (if !swap_backed && result != PEND) */
775 /* unlocked: pageqs, object (if swap_backed ||result == PEND) */
776
777 /*
778 * if we did i/o to swap, zero swslot to indicate that we are
779 * no longer building a swap-backed cluster.
780 */
781
782 if (swap_backed)
783 swslot = 0; /* done with this cluster */
784
785 /*
786 * first, we check for VM_PAGER_PEND which means that the
787 * async I/O is in progress and the async I/O done routine
788 * will clean up after us. in this case we move on to the
789 * next page.
790 *
791 * there is a very remote chance that the pending async i/o can
792 * finish _before_ we get here. if that happens, our page "p"
793 * may no longer be on the inactive queue. so we verify this
794 * when determining the next page (starting over at the head if
795 * we've lost our inactive page).
796 */
797
798 if (result == VM_PAGER_PEND) {
799 uvmexp.paging += npages;
800 uvm_lock_pageq();
801 uvmexp.pdpending++;
802 if (p) {
803 if (p->pqflags & PQ_INACTIVE)
804 nextpg = TAILQ_NEXT(p, pageq);
805 else
806 nextpg = TAILQ_FIRST(pglst);
807 } else {
808 nextpg = NULL;
809 }
810 continue;
811 }
812
813 if (result == VM_PAGER_ERROR &&
814 curproc == uvm.pagedaemon_proc) {
815 uvm_lock_pageq();
816 nextpg = TAILQ_NEXT(p, pageq);
817 uvm_pageactivate(p);
818 continue;
819 }
820
821 /*
822 * clean up "p" if we have one
823 */
824
825 if (p) {
826 /*
827 * the I/O request to "p" is done and uvm_pager_put
828 * has freed any cluster pages it may have allocated
829 * during I/O. all that is left for us to do is
830 * clean up page "p" (which is still PG_BUSY).
831 *
832 * our result could be one of the following:
833 * VM_PAGER_OK: successful pageout
834 *
835 * VM_PAGER_AGAIN: tmp resource shortage, we skip
836 * to next page
837 * VM_PAGER_{FAIL,ERROR,BAD}: an error. we
838 * "reactivate" page to get it out of the way (it
839 * will eventually drift back into the inactive
840 * queue for a retry).
841 * VM_PAGER_UNLOCK: should never see this as it is
842 * only valid for "get" operations
843 */
844
845 /* relock p's object: page queues not lock yet, so
846 * no need for "try" */
847
848 /* !swap_backed case: already locked... */
849 if (swap_backed) {
850 if (anon)
851 simple_lock(&anon->an_lock);
852 else
853 simple_lock(&uobj->vmobjlock);
854 }
855
856 /* handle PG_WANTED now */
857 if (p->flags & PG_WANTED)
858 /* still holding object lock */
859 wakeup(p);
860
861 p->flags &= ~(PG_BUSY|PG_WANTED);
862 UVM_PAGE_OWN(p, NULL);
863
864 /* released during I/O? */
865 if (p->flags & PG_RELEASED) {
866 if (anon) {
867 /* remove page so we can get nextpg */
868 anon->u.an_page = NULL;
869
870 simple_unlock(&anon->an_lock);
871 uvm_anfree(anon); /* kills anon */
872 pmap_page_protect(p, VM_PROT_NONE);
873 anon = NULL;
874 uvm_lock_pageq();
875 nextpg = TAILQ_NEXT(p, pageq);
876 /* free released page */
877 uvm_pagefree(p);
878
879 } else {
880
881 /*
882 * pgo_releasepg nukes the page and
883 * gets "nextpg" for us. it returns
884 * with the page queues locked (when
885 * given nextpg ptr).
886 */
887
888 if (!uobj->pgops->pgo_releasepg(p,
889 &nextpg))
890 /* uobj died after release */
891 uobj = NULL;
892
893 /*
894 * lock page queues here so that they're
895 * always locked at the end of the loop.
896 */
897
898 uvm_lock_pageq();
899 }
900 } else { /* page was not released during I/O */
901 uvm_lock_pageq();
902 nextpg = TAILQ_NEXT(p, pageq);
903 if (result != VM_PAGER_OK) {
904 /* pageout was a failure... */
905 if (result != VM_PAGER_AGAIN)
906 uvm_pageactivate(p);
907 pmap_clear_reference(p);
908 /* XXXCDC: if (swap_backed) FREE p's
909 * swap block? */
910 } else {
911 /* pageout was a success... */
912 pmap_clear_reference(p);
913 pmap_clear_modify(p);
914 p->flags |= PG_CLEAN;
915 }
916 }
917
918 /*
919 * drop object lock (if there is an object left). do
920 * a safety check of nextpg to make sure it is on the
921 * inactive queue (it should be since PG_BUSY pages on
922 * the inactive queue can't be re-queued [note: not
923 * true for active queue]).
924 */
925
926 if (anon)
927 simple_unlock(&anon->an_lock);
928 else if (uobj)
929 simple_unlock(&uobj->vmobjlock);
930
931 } else {
932
933 /*
934 * if p is null in this loop, make sure it stays null
935 * in the next loop.
936 */
937
938 nextpg = NULL;
939
940 /*
941 * lock page queues here just so they're always locked
942 * at the end of the loop.
943 */
944
945 uvm_lock_pageq();
946 }
947
948 if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
949 nextpg = TAILQ_FIRST(pglst); /* reload! */
950 }
951 }
952 return (retval);
953 }
954
955 /*
956 * uvmpd_scan: scan the page queues and attempt to meet our targets.
957 *
958 * => called with pageq's locked
959 */
960
961 void
962 uvmpd_scan()
963 {
964 int s, free, inactive_shortage, swap_shortage, pages_freed;
965 struct vm_page *p, *nextpg;
966 struct uvm_object *uobj;
967 boolean_t got_it;
968 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
969
970 uvmexp.pdrevs++; /* counter */
971 uobj = NULL;
972
973 /*
974 * get current "free" page count
975 */
976 s = uvm_lock_fpageq();
977 free = uvmexp.free;
978 uvm_unlock_fpageq(s);
979
980 #ifndef __SWAP_BROKEN
981 /*
982 * swap out some processes if we are below our free target.
983 * we need to unlock the page queues for this.
984 */
985 if (free < uvmexp.freetarg) {
986 uvmexp.pdswout++;
987 UVMHIST_LOG(pdhist," free %d < target %d: swapout", free,
988 uvmexp.freetarg, 0, 0);
989 uvm_unlock_pageq();
990 uvm_swapout_threads();
991 uvm_lock_pageq();
992
993 }
994 #endif
995
996 /*
997 * now we want to work on meeting our targets. first we work on our
998 * free target by converting inactive pages into free pages. then
999 * we work on meeting our inactive target by converting active pages
1000 * to inactive ones.
1001 */
1002
1003 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
1004
1005 /*
1006 * alternate starting queue between swap and object based on the
1007 * low bit of uvmexp.pdrevs (which we bump by one each call).
1008 */
1009
1010 got_it = FALSE;
1011 pages_freed = uvmexp.pdfreed;
1012 if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
1013 got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
1014 if (!got_it)
1015 got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
1016 if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
1017 (void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
1018 pages_freed = uvmexp.pdfreed - pages_freed;
1019
1020 /*
1021 * we have done the scan to get free pages. now we work on meeting
1022 * our inactive target.
1023 */
1024
1025 inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
1026
1027 /*
1028 * detect if we're not going to be able to page anything out
1029 * until we free some swap resources from active pages.
1030 */
1031
1032 swap_shortage = 0;
1033 if (uvmexp.free < uvmexp.freetarg &&
1034 uvmexp.swpginuse == uvmexp.swpages &&
1035 uvmexp.swpgonly < uvmexp.swpages &&
1036 pages_freed == 0) {
1037 swap_shortage = uvmexp.freetarg - uvmexp.free;
1038 }
1039
1040 UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
1041 inactive_shortage, swap_shortage,0,0);
1042 for (p = TAILQ_FIRST(&uvm.page_active);
1043 p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
1044 p = nextpg) {
1045 nextpg = TAILQ_NEXT(p, pageq);
1046 if (p->flags & PG_BUSY)
1047 continue; /* quick check before trying to lock */
1048
1049 /*
1050 * lock the page's owner.
1051 */
1052 /* is page anon owned or ownerless? */
1053 if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
1054 KASSERT(p->uanon != NULL);
1055 if (!simple_lock_try(&p->uanon->an_lock))
1056 continue;
1057
1058 /* take over the page? */
1059 if ((p->pqflags & PQ_ANON) == 0) {
1060 KASSERT(p->loan_count > 0);
1061 p->loan_count--;
1062 p->pqflags |= PQ_ANON;
1063 }
1064 } else {
1065 if (!simple_lock_try(&p->uobject->vmobjlock))
1066 continue;
1067 }
1068
1069 /*
1070 * skip this page if it's busy.
1071 */
1072
1073 if ((p->flags & PG_BUSY) != 0) {
1074 if (p->pqflags & PQ_ANON)
1075 simple_unlock(&p->uanon->an_lock);
1076 else
1077 simple_unlock(&p->uobject->vmobjlock);
1078 continue;
1079 }
1080
1081 /*
1082 * if there's a shortage of swap, free any swap allocated
1083 * to this page so that other pages can be paged out.
1084 */
1085
1086 if (swap_shortage > 0) {
1087 if ((p->pqflags & PQ_ANON) && p->uanon->an_swslot) {
1088 uvm_swap_free(p->uanon->an_swslot, 1);
1089 p->uanon->an_swslot = 0;
1090 p->flags &= ~PG_CLEAN;
1091 swap_shortage--;
1092 }
1093 if (p->pqflags & PQ_AOBJ) {
1094 int slot = uao_set_swslot(p->uobject,
1095 p->offset >> PAGE_SHIFT, 0);
1096 if (slot) {
1097 uvm_swap_free(slot, 1);
1098 p->flags &= ~PG_CLEAN;
1099 swap_shortage--;
1100 }
1101 }
1102 }
1103
1104 /*
1105 * If the page has not been referenced since the
1106 * last scan, deactivate the page if there is a
1107 * shortage of inactive pages.
1108 */
1109
1110 if (inactive_shortage > 0 &&
1111 pmap_clear_reference(p) == FALSE) {
1112 /* no need to check wire_count as pg is "active" */
1113 uvm_pagedeactivate(p);
1114 uvmexp.pddeact++;
1115 inactive_shortage--;
1116 }
1117 if (p->pqflags & PQ_ANON)
1118 simple_unlock(&p->uanon->an_lock);
1119 else
1120 simple_unlock(&p->uobject->vmobjlock);
1121 }
1122 }
1123