uvm_pdaemon.c revision 1.31 1 /* $NetBSD: uvm_pdaemon.c,v 1.31 2001/03/10 22:46:50 chs Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include "opt_uvmhist.h"
70
71 /*
72 * uvm_pdaemon.c: the page daemon
73 */
74
75 #include <sys/param.h>
76 #include <sys/proc.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/pool.h>
80 #include <sys/buf.h>
81 #include <sys/vnode.h>
82
83 #include <uvm/uvm.h>
84
85 /*
86 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
87 * in a pass thru the inactive list when swap is full. the value should be
88 * "small"... if it's too large we'll cycle the active pages thru the inactive
89 * queue too quickly to for them to be referenced and avoid being freed.
90 */
91
92 #define UVMPD_NUMDIRTYREACTS 16
93
94
95 /*
96 * local prototypes
97 */
98
99 static void uvmpd_scan __P((void));
100 static boolean_t uvmpd_scan_inactive __P((struct pglist *));
101 static void uvmpd_tune __P((void));
102
103 /*
104 * uvm_wait: wait (sleep) for the page daemon to free some pages
105 *
106 * => should be called with all locks released
107 * => should _not_ be called by the page daemon (to avoid deadlock)
108 */
109
110 void
111 uvm_wait(wmsg)
112 const char *wmsg;
113 {
114 int timo = 0;
115 int s = splbio();
116
117 /*
118 * check for page daemon going to sleep (waiting for itself)
119 */
120
121 if (curproc == uvm.pagedaemon_proc) {
122 /*
123 * now we have a problem: the pagedaemon wants to go to
124 * sleep until it frees more memory. but how can it
125 * free more memory if it is asleep? that is a deadlock.
126 * we have two options:
127 * [1] panic now
128 * [2] put a timeout on the sleep, thus causing the
129 * pagedaemon to only pause (rather than sleep forever)
130 *
131 * note that option [2] will only help us if we get lucky
132 * and some other process on the system breaks the deadlock
133 * by exiting or freeing memory (thus allowing the pagedaemon
134 * to continue). for now we panic if DEBUG is defined,
135 * otherwise we hope for the best with option [2] (better
136 * yet, this should never happen in the first place!).
137 */
138
139 printf("pagedaemon: deadlock detected!\n");
140 timo = hz >> 3; /* set timeout */
141 #if defined(DEBUG)
142 /* DEBUG: panic so we can debug it */
143 panic("pagedaemon deadlock");
144 #endif
145 }
146
147 simple_lock(&uvm.pagedaemon_lock);
148 wakeup(&uvm.pagedaemon); /* wake the daemon! */
149 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
150 timo);
151
152 splx(s);
153 }
154
155
156 /*
157 * uvmpd_tune: tune paging parameters
158 *
159 * => called when ever memory is added (or removed?) to the system
160 * => caller must call with page queues locked
161 */
162
163 static void
164 uvmpd_tune()
165 {
166 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
167
168 uvmexp.freemin = uvmexp.npages / 20;
169
170 /* between 16k and 256k */
171 /* XXX: what are these values good for? */
172 uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
173 uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
174
175 /* Make sure there's always a user page free. */
176 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
177 uvmexp.freemin = uvmexp.reserve_kernel + 1;
178
179 uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
180 if (uvmexp.freetarg <= uvmexp.freemin)
181 uvmexp.freetarg = uvmexp.freemin + 1;
182
183 /* uvmexp.inactarg: computed in main daemon loop */
184
185 uvmexp.wiredmax = uvmexp.npages / 3;
186 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
187 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
188 }
189
190 /*
191 * uvm_pageout: the main loop for the pagedaemon
192 */
193
194 void
195 uvm_pageout(void *arg)
196 {
197 int npages = 0;
198 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
199
200 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
201
202 /*
203 * ensure correct priority and set paging parameters...
204 */
205
206 uvm.pagedaemon_proc = curproc;
207 (void) spl0();
208 uvm_lock_pageq();
209 npages = uvmexp.npages;
210 uvmpd_tune();
211 uvm_unlock_pageq();
212
213 /*
214 * main loop
215 */
216
217 for (;;) {
218 simple_lock(&uvm.pagedaemon_lock);
219
220 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
221 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
222 &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
223 uvmexp.pdwoke++;
224 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
225
226 /* drain pool resources */
227 pool_drain(0);
228
229 /*
230 * now lock page queues and recompute inactive count
231 */
232
233 uvm_lock_pageq();
234 if (npages != uvmexp.npages) { /* check for new pages? */
235 npages = uvmexp.npages;
236 uvmpd_tune();
237 }
238
239 uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
240 if (uvmexp.inactarg <= uvmexp.freetarg) {
241 uvmexp.inactarg = uvmexp.freetarg + 1;
242 }
243
244 UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
245 uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
246 uvmexp.inactarg);
247
248 /*
249 * scan if needed
250 */
251
252 if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
253 uvmexp.inactive < uvmexp.inactarg) {
254 uvmpd_scan();
255 }
256
257 /*
258 * if there's any free memory to be had,
259 * wake up any waiters.
260 */
261
262 if (uvmexp.free > uvmexp.reserve_kernel ||
263 uvmexp.paging == 0) {
264 wakeup(&uvmexp.free);
265 }
266
267 /*
268 * scan done. unlock page queues (the only lock we are holding)
269 */
270
271 uvm_unlock_pageq();
272 }
273 /*NOTREACHED*/
274 }
275
276
277 /*
278 * uvm_aiodone_daemon: main loop for the aiodone daemon.
279 */
280
281 void
282 uvm_aiodone_daemon(void *arg)
283 {
284 int s, free;
285 struct buf *bp, *nbp;
286 UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
287
288 for (;;) {
289
290 /*
291 * carefully attempt to go to sleep (without losing "wakeups"!).
292 * we need splbio because we want to make sure the aio_done list
293 * is totally empty before we go to sleep.
294 */
295
296 s = splbio();
297 simple_lock(&uvm.aiodoned_lock);
298 if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
299 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
300 UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
301 &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
302 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
303
304 /* relock aiodoned_lock, still at splbio */
305 simple_lock(&uvm.aiodoned_lock);
306 }
307
308 /*
309 * check for done aio structures
310 */
311
312 bp = TAILQ_FIRST(&uvm.aio_done);
313 if (bp) {
314 TAILQ_INIT(&uvm.aio_done);
315 }
316
317 simple_unlock(&uvm.aiodoned_lock);
318 splx(s);
319
320 /*
321 * process each i/o that's done.
322 */
323
324 free = uvmexp.free;
325 while (bp != NULL) {
326 if (bp->b_flags & B_PDAEMON) {
327 uvmexp.paging -= bp->b_bufsize >> PAGE_SHIFT;
328 }
329 nbp = TAILQ_NEXT(bp, b_freelist);
330 (*bp->b_iodone)(bp);
331 bp = nbp;
332 }
333 if (free <= uvmexp.reserve_kernel) {
334 s = uvm_lock_fpageq();
335 wakeup(&uvm.pagedaemon);
336 uvm_unlock_fpageq(s);
337 } else {
338 simple_lock(&uvm.pagedaemon_lock);
339 wakeup(&uvmexp.free);
340 simple_unlock(&uvm.pagedaemon_lock);
341 }
342 }
343 }
344
345
346
347 /*
348 * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
349 *
350 * => called with page queues locked
351 * => we work on meeting our free target by converting inactive pages
352 * into free pages.
353 * => we handle the building of swap-backed clusters
354 * => we return TRUE if we are exiting because we met our target
355 */
356
357 static boolean_t
358 uvmpd_scan_inactive(pglst)
359 struct pglist *pglst;
360 {
361 boolean_t retval = FALSE; /* assume we haven't hit target */
362 int s, free, result;
363 struct vm_page *p, *nextpg;
364 struct uvm_object *uobj;
365 struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
366 int npages;
367 struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; /* XXX: see below */
368 int swnpages, swcpages; /* XXX: see below */
369 int swslot;
370 struct vm_anon *anon;
371 boolean_t swap_backed;
372 vaddr_t start;
373 int dirtyreacts, t;
374 UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
375
376 /*
377 * note: we currently keep swap-backed pages on a seperate inactive
378 * list from object-backed pages. however, merging the two lists
379 * back together again hasn't been ruled out. thus, we keep our
380 * swap cluster in "swpps" rather than in pps (allows us to mix
381 * clustering types in the event of a mixed inactive queue).
382 */
383
384 /*
385 * swslot is non-zero if we are building a swap cluster. we want
386 * to stay in the loop while we have a page to scan or we have
387 * a swap-cluster to build.
388 */
389
390 swslot = 0;
391 swnpages = swcpages = 0;
392 free = 0;
393 dirtyreacts = 0;
394
395 for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
396
397 /*
398 * note that p can be NULL iff we have traversed the whole
399 * list and need to do one final swap-backed clustered pageout.
400 */
401
402 uobj = NULL;
403 anon = NULL;
404
405 if (p) {
406
407 /*
408 * update our copy of "free" and see if we've met
409 * our target
410 */
411
412 s = uvm_lock_fpageq();
413 free = uvmexp.free;
414 uvm_unlock_fpageq(s);
415
416 if (free + uvmexp.paging >= uvmexp.freetarg << 2 ||
417 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
418 UVMHIST_LOG(pdhist," met free target: "
419 "exit loop", 0, 0, 0, 0);
420 retval = TRUE;
421
422 if (swslot == 0) {
423 /* exit now if no swap-i/o pending */
424 break;
425 }
426
427 /* set p to null to signal final swap i/o */
428 p = NULL;
429 }
430 }
431
432 if (p) { /* if (we have a new page to consider) */
433
434 /*
435 * we are below target and have a new page to consider.
436 */
437 uvmexp.pdscans++;
438 nextpg = TAILQ_NEXT(p, pageq);
439
440 /*
441 * move referenced pages back to active queue and
442 * skip to next page.
443 */
444
445 if (pmap_is_referenced(p)) {
446 uvm_pageactivate(p);
447 uvmexp.pdreact++;
448 continue;
449 }
450
451 /*
452 * enforce the minimum thresholds on different
453 * types of memory usage. if reusing the current
454 * page would reduce that type of usage below its
455 * minimum, reactivate the page instead and move
456 * on to the next page.
457 */
458
459 t = uvmexp.active + uvmexp.inactive + uvmexp.free;
460 if (p->uanon &&
461 uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8) {
462 uvm_pageactivate(p);
463 uvmexp.pdreanon++;
464 continue;
465 }
466 if (p->uobject && UVM_OBJ_IS_VTEXT(p->uobject) &&
467 uvmexp.vtextpages <= (t * uvmexp.vtextmin) >> 8) {
468 uvm_pageactivate(p);
469 uvmexp.pdrevtext++;
470 continue;
471 }
472 if (p->uobject && UVM_OBJ_IS_VNODE(p->uobject) &&
473 !UVM_OBJ_IS_VTEXT(p->uobject) &&
474 uvmexp.vnodepages <= (t * uvmexp.vnodemin) >> 8) {
475 uvm_pageactivate(p);
476 uvmexp.pdrevnode++;
477 continue;
478 }
479
480 /*
481 * first we attempt to lock the object that this page
482 * belongs to. if our attempt fails we skip on to
483 * the next page (no harm done). it is important to
484 * "try" locking the object as we are locking in the
485 * wrong order (pageq -> object) and we don't want to
486 * deadlock.
487 *
488 * the only time we expect to see an ownerless page
489 * (i.e. a page with no uobject and !PQ_ANON) is if an
490 * anon has loaned a page from a uvm_object and the
491 * uvm_object has dropped the ownership. in that
492 * case, the anon can "take over" the loaned page
493 * and make it its own.
494 */
495
496 /* is page part of an anon or ownerless ? */
497 if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
498 anon = p->uanon;
499 KASSERT(anon != NULL);
500 if (!simple_lock_try(&anon->an_lock)) {
501 /* lock failed, skip this page */
502 continue;
503 }
504
505 /*
506 * if the page is ownerless, claim it in the
507 * name of "anon"!
508 */
509
510 if ((p->pqflags & PQ_ANON) == 0) {
511 KASSERT(p->loan_count > 0);
512 p->loan_count--;
513 p->pqflags |= PQ_ANON;
514 /* anon now owns it */
515 }
516 if (p->flags & PG_BUSY) {
517 simple_unlock(&anon->an_lock);
518 uvmexp.pdbusy++;
519 /* someone else owns page, skip it */
520 continue;
521 }
522 uvmexp.pdanscan++;
523 } else {
524 uobj = p->uobject;
525 KASSERT(uobj != NULL);
526 if (!simple_lock_try(&uobj->vmobjlock)) {
527 /* lock failed, skip this page */
528 continue;
529 }
530 if (p->flags & PG_BUSY) {
531 simple_unlock(&uobj->vmobjlock);
532 uvmexp.pdbusy++;
533 /* someone else owns page, skip it */
534 continue;
535 }
536 uvmexp.pdobscan++;
537 }
538
539 /*
540 * we now have the object and the page queues locked.
541 * the page is not busy. remove all the permissions
542 * from the page so we can sync the modified info
543 * without any race conditions. if the page is clean
544 * we can free it now and continue.
545 */
546
547 pmap_page_protect(p, VM_PROT_NONE);
548 if ((p->flags & PG_CLEAN) != 0 && pmap_is_modified(p)) {
549 p->flags &= ~PG_CLEAN;
550 }
551
552 if (p->flags & PG_CLEAN) {
553 if (p->pqflags & PQ_SWAPBACKED) {
554 /* this page now lives only in swap */
555 simple_lock(&uvm.swap_data_lock);
556 uvmexp.swpgonly++;
557 simple_unlock(&uvm.swap_data_lock);
558 }
559
560 uvm_pagefree(p);
561 uvmexp.pdfreed++;
562
563 if (anon) {
564
565 /*
566 * an anonymous page can only be clean
567 * if it has backing store assigned.
568 */
569
570 KASSERT(anon->an_swslot != 0);
571
572 /* remove from object */
573 anon->u.an_page = NULL;
574 simple_unlock(&anon->an_lock);
575 } else {
576 /* pagefree has already removed the
577 * page from the object */
578 simple_unlock(&uobj->vmobjlock);
579 }
580 continue;
581 }
582
583 /*
584 * this page is dirty, skip it if we'll have met our
585 * free target when all the current pageouts complete.
586 */
587
588 if (free + uvmexp.paging > uvmexp.freetarg << 2) {
589 if (anon) {
590 simple_unlock(&anon->an_lock);
591 } else {
592 simple_unlock(&uobj->vmobjlock);
593 }
594 continue;
595 }
596
597 /*
598 * this page is dirty, but we can't page it out
599 * since all pages in swap are only in swap.
600 * reactivate it so that we eventually cycle
601 * all pages thru the inactive queue.
602 */
603
604 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
605 if ((p->pqflags & PQ_SWAPBACKED) &&
606 uvmexp.swpgonly == uvmexp.swpages) {
607 dirtyreacts++;
608 uvm_pageactivate(p);
609 if (anon) {
610 simple_unlock(&anon->an_lock);
611 } else {
612 simple_unlock(&uobj->vmobjlock);
613 }
614 continue;
615 }
616
617 /*
618 * if the page is swap-backed and dirty and swap space
619 * is full, free any swap allocated to the page
620 * so that other pages can be paged out.
621 */
622
623 KASSERT(uvmexp.swpginuse <= uvmexp.swpages);
624 if ((p->pqflags & PQ_SWAPBACKED) &&
625 uvmexp.swpginuse == uvmexp.swpages) {
626
627 if ((p->pqflags & PQ_ANON) &&
628 p->uanon->an_swslot) {
629 uvm_swap_free(p->uanon->an_swslot, 1);
630 p->uanon->an_swslot = 0;
631 }
632 if (p->pqflags & PQ_AOBJ) {
633 uao_dropswap(p->uobject,
634 p->offset >> PAGE_SHIFT);
635 }
636 }
637
638 /*
639 * the page we are looking at is dirty. we must
640 * clean it before it can be freed. to do this we
641 * first mark the page busy so that no one else will
642 * touch the page.
643 */
644
645 swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
646 p->flags |= PG_BUSY; /* now we own it */
647 UVM_PAGE_OWN(p, "scan_inactive");
648 uvmexp.pgswapout++;
649
650 /*
651 * for swap-backed pages we need to (re)allocate
652 * swap space.
653 */
654
655 if (swap_backed) {
656
657 /*
658 * free old swap slot (if any)
659 */
660
661 if (anon) {
662 if (anon->an_swslot) {
663 uvm_swap_free(anon->an_swslot,
664 1);
665 anon->an_swslot = 0;
666 }
667 } else {
668 uao_dropswap(uobj,
669 p->offset >> PAGE_SHIFT);
670 }
671
672 /*
673 * start new cluster (if necessary)
674 */
675
676 if (swslot == 0) {
677 swnpages = MAXBSIZE >> PAGE_SHIFT;
678 swslot = uvm_swap_alloc(&swnpages,
679 TRUE);
680 if (swslot == 0) {
681 /* no swap? give up! */
682 p->flags &= ~PG_BUSY;
683 UVM_PAGE_OWN(p, NULL);
684 if (anon)
685 simple_unlock(
686 &anon->an_lock);
687 else
688 simple_unlock(
689 &uobj->vmobjlock);
690 continue;
691 }
692 swcpages = 0; /* cluster is empty */
693 }
694
695 /*
696 * add block to cluster
697 */
698
699 swpps[swcpages] = p;
700 if (anon)
701 anon->an_swslot = swslot + swcpages;
702 else
703 uao_set_swslot(uobj,
704 p->offset >> PAGE_SHIFT,
705 swslot + swcpages);
706 swcpages++;
707 }
708 } else {
709
710 /* if p == NULL we must be doing a last swap i/o */
711 swap_backed = TRUE;
712 }
713
714 /*
715 * now consider doing the pageout.
716 *
717 * for swap-backed pages, we do the pageout if we have either
718 * filled the cluster (in which case (swnpages == swcpages) or
719 * run out of pages (p == NULL).
720 *
721 * for object pages, we always do the pageout.
722 */
723
724 if (swap_backed) {
725 if (p) { /* if we just added a page to cluster */
726 if (anon)
727 simple_unlock(&anon->an_lock);
728 else
729 simple_unlock(&uobj->vmobjlock);
730
731 /* cluster not full yet? */
732 if (swcpages < swnpages)
733 continue;
734 }
735
736 /* starting I/O now... set up for it */
737 npages = swcpages;
738 ppsp = swpps;
739 /* for swap-backed pages only */
740 start = (vaddr_t) swslot;
741
742 /* if this is final pageout we could have a few
743 * extra swap blocks */
744 if (swcpages < swnpages) {
745 uvm_swap_free(swslot + swcpages,
746 (swnpages - swcpages));
747 }
748 } else {
749 /* normal object pageout */
750 ppsp = pps;
751 npages = sizeof(pps) / sizeof(struct vm_page *);
752 /* not looked at because PGO_ALLPAGES is set */
753 start = 0;
754 }
755
756 /*
757 * now do the pageout.
758 *
759 * for swap_backed pages we have already built the cluster.
760 * for !swap_backed pages, uvm_pager_put will call the object's
761 * "make put cluster" function to build a cluster on our behalf.
762 *
763 * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
764 * it to free the cluster pages for us on a successful I/O (it
765 * always does this for un-successful I/O requests). this
766 * allows us to do clustered pageout without having to deal
767 * with cluster pages at this level.
768 *
769 * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
770 * IN: locked: uobj (if !swap_backed), page queues
771 * OUT:!locked: pageqs, uobj
772 */
773
774 /* locked: uobj (if !swap_backed), page queues */
775 uvmexp.pdpageouts++;
776 result = uvm_pager_put(swap_backed ? NULL : uobj, p,
777 &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
778 /* unlocked: pageqs, uobj */
779
780 /*
781 * if we did i/o to swap, zero swslot to indicate that we are
782 * no longer building a swap-backed cluster.
783 */
784
785 if (swap_backed)
786 swslot = 0; /* done with this cluster */
787
788 /*
789 * if the pageout failed, reactivate the page and continue.
790 */
791
792 if (result == EIO && curproc == uvm.pagedaemon_proc) {
793 uvm_lock_pageq();
794 nextpg = TAILQ_NEXT(p, pageq);
795 uvm_pageactivate(p);
796 continue;
797 }
798
799 /*
800 * the pageout is in progress. bump counters and set up
801 * for the next loop.
802 */
803
804 uvm_lock_pageq();
805 uvmexp.paging += npages;
806 uvmexp.pdpending++;
807 if (p) {
808 if (p->pqflags & PQ_INACTIVE)
809 nextpg = TAILQ_NEXT(p, pageq);
810 else
811 nextpg = TAILQ_FIRST(pglst);
812 } else {
813 nextpg = NULL;
814 }
815 }
816 return (retval);
817 }
818
819 /*
820 * uvmpd_scan: scan the page queues and attempt to meet our targets.
821 *
822 * => called with pageq's locked
823 */
824
825 void
826 uvmpd_scan()
827 {
828 int s, free, inactive_shortage, swap_shortage, pages_freed;
829 struct vm_page *p, *nextpg;
830 struct uvm_object *uobj;
831 boolean_t got_it;
832 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
833
834 uvmexp.pdrevs++; /* counter */
835 uobj = NULL;
836
837 /*
838 * get current "free" page count
839 */
840 s = uvm_lock_fpageq();
841 free = uvmexp.free;
842 uvm_unlock_fpageq(s);
843
844 #ifndef __SWAP_BROKEN
845 /*
846 * swap out some processes if we are below our free target.
847 * we need to unlock the page queues for this.
848 */
849 if (free < uvmexp.freetarg) {
850 uvmexp.pdswout++;
851 UVMHIST_LOG(pdhist," free %d < target %d: swapout", free,
852 uvmexp.freetarg, 0, 0);
853 uvm_unlock_pageq();
854 uvm_swapout_threads();
855 uvm_lock_pageq();
856
857 }
858 #endif
859
860 /*
861 * now we want to work on meeting our targets. first we work on our
862 * free target by converting inactive pages into free pages. then
863 * we work on meeting our inactive target by converting active pages
864 * to inactive ones.
865 */
866
867 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
868
869 /*
870 * alternate starting queue between swap and object based on the
871 * low bit of uvmexp.pdrevs (which we bump by one each call).
872 */
873
874 got_it = FALSE;
875 pages_freed = uvmexp.pdfreed;
876 if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
877 got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
878 if (!got_it)
879 got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
880 if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
881 (void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
882 pages_freed = uvmexp.pdfreed - pages_freed;
883
884 /*
885 * we have done the scan to get free pages. now we work on meeting
886 * our inactive target.
887 */
888
889 inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
890
891 /*
892 * detect if we're not going to be able to page anything out
893 * until we free some swap resources from active pages.
894 */
895
896 swap_shortage = 0;
897 if (uvmexp.free < uvmexp.freetarg &&
898 uvmexp.swpginuse == uvmexp.swpages &&
899 uvmexp.swpgonly < uvmexp.swpages &&
900 pages_freed == 0) {
901 swap_shortage = uvmexp.freetarg - uvmexp.free;
902 }
903
904 UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
905 inactive_shortage, swap_shortage,0,0);
906 for (p = TAILQ_FIRST(&uvm.page_active);
907 p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
908 p = nextpg) {
909 nextpg = TAILQ_NEXT(p, pageq);
910 if (p->flags & PG_BUSY)
911 continue; /* quick check before trying to lock */
912
913 /*
914 * lock the page's owner.
915 */
916 /* is page anon owned or ownerless? */
917 if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
918 KASSERT(p->uanon != NULL);
919 if (!simple_lock_try(&p->uanon->an_lock))
920 continue;
921
922 /* take over the page? */
923 if ((p->pqflags & PQ_ANON) == 0) {
924 KASSERT(p->loan_count > 0);
925 p->loan_count--;
926 p->pqflags |= PQ_ANON;
927 }
928 } else {
929 if (!simple_lock_try(&p->uobject->vmobjlock))
930 continue;
931 }
932
933 /*
934 * skip this page if it's busy.
935 */
936
937 if ((p->flags & PG_BUSY) != 0) {
938 if (p->pqflags & PQ_ANON)
939 simple_unlock(&p->uanon->an_lock);
940 else
941 simple_unlock(&p->uobject->vmobjlock);
942 continue;
943 }
944
945 /*
946 * if there's a shortage of swap, free any swap allocated
947 * to this page so that other pages can be paged out.
948 */
949
950 if (swap_shortage > 0) {
951 if ((p->pqflags & PQ_ANON) && p->uanon->an_swslot) {
952 uvm_swap_free(p->uanon->an_swslot, 1);
953 p->uanon->an_swslot = 0;
954 p->flags &= ~PG_CLEAN;
955 swap_shortage--;
956 }
957 if (p->pqflags & PQ_AOBJ) {
958 int slot = uao_set_swslot(p->uobject,
959 p->offset >> PAGE_SHIFT, 0);
960 if (slot) {
961 uvm_swap_free(slot, 1);
962 p->flags &= ~PG_CLEAN;
963 swap_shortage--;
964 }
965 }
966 }
967
968 /*
969 * If the page has not been referenced since the
970 * last scan, deactivate the page if there is a
971 * shortage of inactive pages.
972 */
973
974 if (inactive_shortage > 0 &&
975 pmap_clear_reference(p) == FALSE) {
976 /* no need to check wire_count as pg is "active" */
977 uvm_pagedeactivate(p);
978 uvmexp.pddeact++;
979 inactive_shortage--;
980 }
981 if (p->pqflags & PQ_ANON)
982 simple_unlock(&p->uanon->an_lock);
983 else
984 simple_unlock(&p->uobject->vmobjlock);
985 }
986 }
987