Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.32
      1 /*	$NetBSD: uvm_pdaemon.c,v 1.32 2001/05/07 22:01:28 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include "opt_uvmhist.h"
     70 
     71 /*
     72  * uvm_pdaemon.c: the page daemon
     73  */
     74 
     75 #include <sys/param.h>
     76 #include <sys/proc.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/pool.h>
     80 #include <sys/buf.h>
     81 #include <sys/vnode.h>
     82 
     83 #include <uvm/uvm.h>
     84 
     85 /*
     86  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
     87  * in a pass thru the inactive list when swap is full.  the value should be
     88  * "small"... if it's too large we'll cycle the active pages thru the inactive
     89  * queue too quickly to for them to be referenced and avoid being freed.
     90  */
     91 
     92 #define UVMPD_NUMDIRTYREACTS 16
     93 
     94 
     95 /*
     96  * local prototypes
     97  */
     98 
     99 static void		uvmpd_scan __P((void));
    100 static boolean_t	uvmpd_scan_inactive __P((struct pglist *));
    101 static void		uvmpd_tune __P((void));
    102 
    103 /*
    104  * uvm_wait: wait (sleep) for the page daemon to free some pages
    105  *
    106  * => should be called with all locks released
    107  * => should _not_ be called by the page daemon (to avoid deadlock)
    108  */
    109 
    110 void
    111 uvm_wait(wmsg)
    112 	const char *wmsg;
    113 {
    114 	int timo = 0;
    115 	int s = splbio();
    116 
    117 	/*
    118 	 * check for page daemon going to sleep (waiting for itself)
    119 	 */
    120 
    121 	if (curproc == uvm.pagedaemon_proc) {
    122 		/*
    123 		 * now we have a problem: the pagedaemon wants to go to
    124 		 * sleep until it frees more memory.   but how can it
    125 		 * free more memory if it is asleep?  that is a deadlock.
    126 		 * we have two options:
    127 		 *  [1] panic now
    128 		 *  [2] put a timeout on the sleep, thus causing the
    129 		 *      pagedaemon to only pause (rather than sleep forever)
    130 		 *
    131 		 * note that option [2] will only help us if we get lucky
    132 		 * and some other process on the system breaks the deadlock
    133 		 * by exiting or freeing memory (thus allowing the pagedaemon
    134 		 * to continue).  for now we panic if DEBUG is defined,
    135 		 * otherwise we hope for the best with option [2] (better
    136 		 * yet, this should never happen in the first place!).
    137 		 */
    138 
    139 		printf("pagedaemon: deadlock detected!\n");
    140 		timo = hz >> 3;		/* set timeout */
    141 #if defined(DEBUG)
    142 		/* DEBUG: panic so we can debug it */
    143 		panic("pagedaemon deadlock");
    144 #endif
    145 	}
    146 
    147 	simple_lock(&uvm.pagedaemon_lock);
    148 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    149 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
    150 	    timo);
    151 
    152 	splx(s);
    153 }
    154 
    155 
    156 /*
    157  * uvmpd_tune: tune paging parameters
    158  *
    159  * => called when ever memory is added (or removed?) to the system
    160  * => caller must call with page queues locked
    161  */
    162 
    163 static void
    164 uvmpd_tune()
    165 {
    166 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    167 
    168 	uvmexp.freemin = uvmexp.npages / 20;
    169 
    170 	/* between 16k and 256k */
    171 	/* XXX:  what are these values good for? */
    172 	uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
    173 	uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
    174 
    175 	/* Make sure there's always a user page free. */
    176 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
    177 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
    178 
    179 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
    180 	if (uvmexp.freetarg <= uvmexp.freemin)
    181 		uvmexp.freetarg = uvmexp.freemin + 1;
    182 
    183 	/* uvmexp.inactarg: computed in main daemon loop */
    184 
    185 	uvmexp.wiredmax = uvmexp.npages / 3;
    186 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
    187 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    188 }
    189 
    190 /*
    191  * uvm_pageout: the main loop for the pagedaemon
    192  */
    193 
    194 void
    195 uvm_pageout(void *arg)
    196 {
    197 	int npages = 0;
    198 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    199 
    200 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    201 
    202 	/*
    203 	 * ensure correct priority and set paging parameters...
    204 	 */
    205 
    206 	uvm.pagedaemon_proc = curproc;
    207 	(void) spl0();
    208 	uvm_lock_pageq();
    209 	npages = uvmexp.npages;
    210 	uvmpd_tune();
    211 	uvm_unlock_pageq();
    212 
    213 	/*
    214 	 * main loop
    215 	 */
    216 
    217 	for (;;) {
    218 		simple_lock(&uvm.pagedaemon_lock);
    219 
    220 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    221 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    222 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
    223 		uvmexp.pdwoke++;
    224 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    225 
    226 		/* drain pool resources */
    227 		pool_drain(0);
    228 
    229 		/*
    230 		 * now lock page queues and recompute inactive count
    231 		 */
    232 
    233 		uvm_lock_pageq();
    234 		if (npages != uvmexp.npages) {	/* check for new pages? */
    235 			npages = uvmexp.npages;
    236 			uvmpd_tune();
    237 		}
    238 
    239 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
    240 		if (uvmexp.inactarg <= uvmexp.freetarg) {
    241 			uvmexp.inactarg = uvmexp.freetarg + 1;
    242 		}
    243 
    244 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
    245 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
    246 		    uvmexp.inactarg);
    247 
    248 		/*
    249 		 * scan if needed
    250 		 */
    251 
    252 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
    253 		    uvmexp.inactive < uvmexp.inactarg) {
    254 			uvmpd_scan();
    255 		}
    256 
    257 		/*
    258 		 * if there's any free memory to be had,
    259 		 * wake up any waiters.
    260 		 */
    261 
    262 		if (uvmexp.free > uvmexp.reserve_kernel ||
    263 		    uvmexp.paging == 0) {
    264 			wakeup(&uvmexp.free);
    265 		}
    266 
    267 		/*
    268 		 * scan done.  unlock page queues (the only lock we are holding)
    269 		 */
    270 
    271 		uvm_unlock_pageq();
    272 	}
    273 	/*NOTREACHED*/
    274 }
    275 
    276 
    277 /*
    278  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
    279  */
    280 
    281 void
    282 uvm_aiodone_daemon(void *arg)
    283 {
    284 	int s, free;
    285 	struct buf *bp, *nbp;
    286 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
    287 
    288 	for (;;) {
    289 
    290 		/*
    291 		 * carefully attempt to go to sleep (without losing "wakeups"!).
    292 		 * we need splbio because we want to make sure the aio_done list
    293 		 * is totally empty before we go to sleep.
    294 		 */
    295 
    296 		s = splbio();
    297 		simple_lock(&uvm.aiodoned_lock);
    298 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
    299 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    300 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
    301 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
    302 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    303 
    304 			/* relock aiodoned_lock, still at splbio */
    305 			simple_lock(&uvm.aiodoned_lock);
    306 		}
    307 
    308 		/*
    309 		 * check for done aio structures
    310 		 */
    311 
    312 		bp = TAILQ_FIRST(&uvm.aio_done);
    313 		if (bp) {
    314 			TAILQ_INIT(&uvm.aio_done);
    315 		}
    316 
    317 		simple_unlock(&uvm.aiodoned_lock);
    318 		splx(s);
    319 
    320 		/*
    321 		 * process each i/o that's done.
    322 		 */
    323 
    324 		free = uvmexp.free;
    325 		while (bp != NULL) {
    326 			if (bp->b_flags & B_PDAEMON) {
    327 				uvmexp.paging -= bp->b_bufsize >> PAGE_SHIFT;
    328 			}
    329 			nbp = TAILQ_NEXT(bp, b_freelist);
    330 			(*bp->b_iodone)(bp);
    331 			bp = nbp;
    332 		}
    333 		if (free <= uvmexp.reserve_kernel) {
    334 			s = uvm_lock_fpageq();
    335 			wakeup(&uvm.pagedaemon);
    336 			uvm_unlock_fpageq(s);
    337 		} else {
    338 			simple_lock(&uvm.pagedaemon_lock);
    339 			wakeup(&uvmexp.free);
    340 			simple_unlock(&uvm.pagedaemon_lock);
    341 		}
    342 	}
    343 }
    344 
    345 
    346 
    347 /*
    348  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
    349  *
    350  * => called with page queues locked
    351  * => we work on meeting our free target by converting inactive pages
    352  *    into free pages.
    353  * => we handle the building of swap-backed clusters
    354  * => we return TRUE if we are exiting because we met our target
    355  */
    356 
    357 static boolean_t
    358 uvmpd_scan_inactive(pglst)
    359 	struct pglist *pglst;
    360 {
    361 	boolean_t retval = FALSE;	/* assume we haven't hit target */
    362 	int s, free, result;
    363 	struct vm_page *p, *nextpg;
    364 	struct uvm_object *uobj;
    365 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
    366 	int npages;
    367 	struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; 	/* XXX: see below */
    368 	int swnpages, swcpages;				/* XXX: see below */
    369 	int swslot;
    370 	struct vm_anon *anon;
    371 	boolean_t swap_backed;
    372 	vaddr_t start;
    373 	int dirtyreacts, t;
    374 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
    375 
    376 	/*
    377 	 * note: we currently keep swap-backed pages on a seperate inactive
    378 	 * list from object-backed pages.   however, merging the two lists
    379 	 * back together again hasn't been ruled out.   thus, we keep our
    380 	 * swap cluster in "swpps" rather than in pps (allows us to mix
    381 	 * clustering types in the event of a mixed inactive queue).
    382 	 */
    383 
    384 	/*
    385 	 * swslot is non-zero if we are building a swap cluster.  we want
    386 	 * to stay in the loop while we have a page to scan or we have
    387 	 * a swap-cluster to build.
    388 	 */
    389 
    390 	swslot = 0;
    391 	swnpages = swcpages = 0;
    392 	free = 0;
    393 	dirtyreacts = 0;
    394 
    395 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
    396 
    397 		/*
    398 		 * note that p can be NULL iff we have traversed the whole
    399 		 * list and need to do one final swap-backed clustered pageout.
    400 		 */
    401 
    402 		uobj = NULL;
    403 		anon = NULL;
    404 
    405 		if (p) {
    406 
    407 			/*
    408 			 * update our copy of "free" and see if we've met
    409 			 * our target
    410 			 */
    411 
    412 			s = uvm_lock_fpageq();
    413 			free = uvmexp.free;
    414 			uvm_unlock_fpageq(s);
    415 
    416 			if (free + uvmexp.paging >= uvmexp.freetarg << 2 ||
    417 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    418 				UVMHIST_LOG(pdhist,"  met free target: "
    419 					    "exit loop", 0, 0, 0, 0);
    420 				retval = TRUE;
    421 
    422 				if (swslot == 0) {
    423 					/* exit now if no swap-i/o pending */
    424 					break;
    425 				}
    426 
    427 				/* set p to null to signal final swap i/o */
    428 				p = NULL;
    429 			}
    430 		}
    431 
    432 		if (p) {	/* if (we have a new page to consider) */
    433 
    434 			/*
    435 			 * we are below target and have a new page to consider.
    436 			 */
    437 			uvmexp.pdscans++;
    438 			nextpg = TAILQ_NEXT(p, pageq);
    439 
    440 			/*
    441 			 * move referenced pages back to active queue and
    442 			 * skip to next page.
    443 			 */
    444 
    445 			if (pmap_is_referenced(p)) {
    446 				uvm_pageactivate(p);
    447 				uvmexp.pdreact++;
    448 				continue;
    449 			}
    450 
    451 			/*
    452 			 * enforce the minimum thresholds on different
    453 			 * types of memory usage.  if reusing the current
    454 			 * page would reduce that type of usage below its
    455 			 * minimum, reactivate the page instead and move
    456 			 * on to the next page.
    457 			 */
    458 
    459 			t = uvmexp.active + uvmexp.inactive + uvmexp.free;
    460 			if (p->uanon &&
    461 			    uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8) {
    462 				uvm_pageactivate(p);
    463 				uvmexp.pdreanon++;
    464 				continue;
    465 			}
    466 			if (p->uobject && UVM_OBJ_IS_VTEXT(p->uobject) &&
    467 			    uvmexp.vtextpages <= (t * uvmexp.vtextmin) >> 8) {
    468 				uvm_pageactivate(p);
    469 				uvmexp.pdrevtext++;
    470 				continue;
    471 			}
    472 			if (p->uobject && UVM_OBJ_IS_VNODE(p->uobject) &&
    473 			    !UVM_OBJ_IS_VTEXT(p->uobject) &&
    474 			    uvmexp.vnodepages <= (t * uvmexp.vnodemin) >> 8) {
    475 				uvm_pageactivate(p);
    476 				uvmexp.pdrevnode++;
    477 				continue;
    478 			}
    479 
    480 			/*
    481 			 * first we attempt to lock the object that this page
    482 			 * belongs to.  if our attempt fails we skip on to
    483 			 * the next page (no harm done).  it is important to
    484 			 * "try" locking the object as we are locking in the
    485 			 * wrong order (pageq -> object) and we don't want to
    486 			 * deadlock.
    487 			 *
    488 			 * the only time we expect to see an ownerless page
    489 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
    490 			 * anon has loaned a page from a uvm_object and the
    491 			 * uvm_object has dropped the ownership.  in that
    492 			 * case, the anon can "take over" the loaned page
    493 			 * and make it its own.
    494 			 */
    495 
    496 			/* is page part of an anon or ownerless ? */
    497 			if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
    498 				anon = p->uanon;
    499 				KASSERT(anon != NULL);
    500 				if (!simple_lock_try(&anon->an_lock)) {
    501 					/* lock failed, skip this page */
    502 					continue;
    503 				}
    504 
    505 				/*
    506 				 * if the page is ownerless, claim it in the
    507 				 * name of "anon"!
    508 				 */
    509 
    510 				if ((p->pqflags & PQ_ANON) == 0) {
    511 					KASSERT(p->loan_count > 0);
    512 					p->loan_count--;
    513 					p->pqflags |= PQ_ANON;
    514 					/* anon now owns it */
    515 				}
    516 				if (p->flags & PG_BUSY) {
    517 					simple_unlock(&anon->an_lock);
    518 					uvmexp.pdbusy++;
    519 					/* someone else owns page, skip it */
    520 					continue;
    521 				}
    522 				uvmexp.pdanscan++;
    523 			} else {
    524 				uobj = p->uobject;
    525 				KASSERT(uobj != NULL);
    526 				if (!simple_lock_try(&uobj->vmobjlock)) {
    527 					/* lock failed, skip this page */
    528 					continue;
    529 				}
    530 				if (p->flags & PG_BUSY) {
    531 					simple_unlock(&uobj->vmobjlock);
    532 					uvmexp.pdbusy++;
    533 					/* someone else owns page, skip it */
    534 					continue;
    535 				}
    536 				uvmexp.pdobscan++;
    537 			}
    538 
    539 			/*
    540 			 * we now have the object and the page queues locked.
    541 			 * the page is not busy.  remove all the permissions
    542 			 * from the page so we can sync the modified info
    543 			 * without any race conditions.  if the page is clean
    544 			 * we can free it now and continue.
    545 			 */
    546 
    547 			pmap_page_protect(p, VM_PROT_NONE);
    548 			if ((p->flags & PG_CLEAN) != 0 && pmap_is_modified(p)) {
    549 				p->flags &= ~PG_CLEAN;
    550 			}
    551 
    552 			if (p->flags & PG_CLEAN) {
    553 				if (p->pqflags & PQ_SWAPBACKED) {
    554 					/* this page now lives only in swap */
    555 					simple_lock(&uvm.swap_data_lock);
    556 					uvmexp.swpgonly++;
    557 					simple_unlock(&uvm.swap_data_lock);
    558 				}
    559 
    560 				uvm_pagefree(p);
    561 				uvmexp.pdfreed++;
    562 
    563 				if (anon) {
    564 
    565 					/*
    566 					 * an anonymous page can only be clean
    567 					 * if it has backing store assigned.
    568 					 */
    569 
    570 					KASSERT(anon->an_swslot != 0);
    571 
    572 					/* remove from object */
    573 					anon->u.an_page = NULL;
    574 					simple_unlock(&anon->an_lock);
    575 				} else {
    576 					/* pagefree has already removed the
    577 					 * page from the object */
    578 					simple_unlock(&uobj->vmobjlock);
    579 				}
    580 				continue;
    581 			}
    582 
    583 			/*
    584 			 * this page is dirty, skip it if we'll have met our
    585 			 * free target when all the current pageouts complete.
    586 			 */
    587 
    588 			if (free + uvmexp.paging > uvmexp.freetarg << 2) {
    589 				if (anon) {
    590 					simple_unlock(&anon->an_lock);
    591 				} else {
    592 					simple_unlock(&uobj->vmobjlock);
    593 				}
    594 				continue;
    595 			}
    596 
    597 			/*
    598 			 * this page is dirty, but we can't page it out
    599 			 * since all pages in swap are only in swap.
    600 			 * reactivate it so that we eventually cycle
    601 			 * all pages thru the inactive queue.
    602 			 */
    603 
    604 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
    605 			if ((p->pqflags & PQ_SWAPBACKED) &&
    606 			    uvmexp.swpgonly == uvmexp.swpages) {
    607 				dirtyreacts++;
    608 				uvm_pageactivate(p);
    609 				if (anon) {
    610 					simple_unlock(&anon->an_lock);
    611 				} else {
    612 					simple_unlock(&uobj->vmobjlock);
    613 				}
    614 				continue;
    615 			}
    616 
    617 			/*
    618 			 * if the page is swap-backed and dirty and swap space
    619 			 * is full, free any swap allocated to the page
    620 			 * so that other pages can be paged out.
    621 			 */
    622 
    623 			KASSERT(uvmexp.swpginuse <= uvmexp.swpages);
    624 			if ((p->pqflags & PQ_SWAPBACKED) &&
    625 			    uvmexp.swpginuse == uvmexp.swpages) {
    626 
    627 				if ((p->pqflags & PQ_ANON) &&
    628 				    p->uanon->an_swslot) {
    629 					uvm_swap_free(p->uanon->an_swslot, 1);
    630 					p->uanon->an_swslot = 0;
    631 				}
    632 				if (p->pqflags & PQ_AOBJ) {
    633 					uao_dropswap(p->uobject,
    634 						     p->offset >> PAGE_SHIFT);
    635 				}
    636 			}
    637 
    638 			/*
    639 			 * the page we are looking at is dirty.   we must
    640 			 * clean it before it can be freed.  to do this we
    641 			 * first mark the page busy so that no one else will
    642 			 * touch the page.
    643 			 */
    644 
    645 			swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
    646 			p->flags |= PG_BUSY;		/* now we own it */
    647 			UVM_PAGE_OWN(p, "scan_inactive");
    648 			uvmexp.pgswapout++;
    649 
    650 			/*
    651 			 * for swap-backed pages we need to (re)allocate
    652 			 * swap space.
    653 			 */
    654 
    655 			if (swap_backed) {
    656 
    657 				/*
    658 				 * free old swap slot (if any)
    659 				 */
    660 
    661 				if (anon) {
    662 					if (anon->an_swslot) {
    663 						uvm_swap_free(anon->an_swslot,
    664 						    1);
    665 						anon->an_swslot = 0;
    666 					}
    667 				} else {
    668 					uao_dropswap(uobj,
    669 						     p->offset >> PAGE_SHIFT);
    670 				}
    671 
    672 				/*
    673 				 * start new cluster (if necessary)
    674 				 */
    675 
    676 				if (swslot == 0) {
    677 					swnpages = MAXBSIZE >> PAGE_SHIFT;
    678 					swslot = uvm_swap_alloc(&swnpages,
    679 					    TRUE);
    680 					if (swslot == 0) {
    681 						/* no swap?  give up! */
    682 						p->flags &= ~PG_BUSY;
    683 						UVM_PAGE_OWN(p, NULL);
    684 						if (anon)
    685 							simple_unlock(
    686 							    &anon->an_lock);
    687 						else
    688 							simple_unlock(
    689 							    &uobj->vmobjlock);
    690 						continue;
    691 					}
    692 					swcpages = 0;	/* cluster is empty */
    693 				}
    694 
    695 				/*
    696 				 * add block to cluster
    697 				 */
    698 
    699 				swpps[swcpages] = p;
    700 				if (anon)
    701 					anon->an_swslot = swslot + swcpages;
    702 				else
    703 					uao_set_swslot(uobj,
    704 					    p->offset >> PAGE_SHIFT,
    705 					    swslot + swcpages);
    706 				swcpages++;
    707 			}
    708 		} else {
    709 
    710 			/* if p == NULL we must be doing a last swap i/o */
    711 			swap_backed = TRUE;
    712 		}
    713 
    714 		/*
    715 		 * now consider doing the pageout.
    716 		 *
    717 		 * for swap-backed pages, we do the pageout if we have either
    718 		 * filled the cluster (in which case (swnpages == swcpages) or
    719 		 * run out of pages (p == NULL).
    720 		 *
    721 		 * for object pages, we always do the pageout.
    722 		 */
    723 
    724 		if (swap_backed) {
    725 			if (p) {	/* if we just added a page to cluster */
    726 				if (anon)
    727 					simple_unlock(&anon->an_lock);
    728 				else
    729 					simple_unlock(&uobj->vmobjlock);
    730 
    731 				/* cluster not full yet? */
    732 				if (swcpages < swnpages)
    733 					continue;
    734 			}
    735 
    736 			/* starting I/O now... set up for it */
    737 			npages = swcpages;
    738 			ppsp = swpps;
    739 			/* for swap-backed pages only */
    740 			start = (vaddr_t) swslot;
    741 
    742 			/* if this is final pageout we could have a few
    743 			 * extra swap blocks */
    744 			if (swcpages < swnpages) {
    745 				uvm_swap_free(swslot + swcpages,
    746 				    (swnpages - swcpages));
    747 			}
    748 		} else {
    749 			/* normal object pageout */
    750 			ppsp = pps;
    751 			npages = sizeof(pps) / sizeof(struct vm_page *);
    752 			/* not looked at because PGO_ALLPAGES is set */
    753 			start = 0;
    754 		}
    755 
    756 		/*
    757 		 * now do the pageout.
    758 		 *
    759 		 * for swap_backed pages we have already built the cluster.
    760 		 * for !swap_backed pages, uvm_pager_put will call the object's
    761 		 * "make put cluster" function to build a cluster on our behalf.
    762 		 *
    763 		 * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
    764 		 * it to free the cluster pages for us on a successful I/O (it
    765 		 * always does this for un-successful I/O requests).  this
    766 		 * allows us to do clustered pageout without having to deal
    767 		 * with cluster pages at this level.
    768 		 *
    769 		 * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
    770 		 *  IN: locked: uobj (if !swap_backed), page queues
    771 		 * OUT:!locked: pageqs, uobj
    772 		 */
    773 
    774 		/* locked: uobj (if !swap_backed), page queues */
    775 		uvmexp.pdpageouts++;
    776 		result = uvm_pager_put(swap_backed ? NULL : uobj, p,
    777 		    &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
    778 		/* unlocked: pageqs, uobj */
    779 
    780 		/*
    781 		 * if we did i/o to swap, zero swslot to indicate that we are
    782 		 * no longer building a swap-backed cluster.
    783 		 */
    784 
    785 		if (swap_backed)
    786 			swslot = 0;		/* done with this cluster */
    787 
    788 		/*
    789 		 * if the pageout failed, reactivate the page and continue.
    790 		 */
    791 
    792 		if (result == EIO && curproc == uvm.pagedaemon_proc) {
    793 			uvm_lock_pageq();
    794 			nextpg = TAILQ_NEXT(p, pageq);
    795 			uvm_pageactivate(p);
    796 			continue;
    797 		}
    798 
    799 		/*
    800 		 * the pageout is in progress.  bump counters and set up
    801 		 * for the next loop.
    802 		 */
    803 
    804 		uvm_lock_pageq();
    805 		uvmexp.paging += npages;
    806 		uvmexp.pdpending++;
    807 		if (p) {
    808 			if (p->pqflags & PQ_INACTIVE)
    809 				nextpg = TAILQ_NEXT(p, pageq);
    810 			else
    811 				nextpg = TAILQ_FIRST(pglst);
    812 		} else {
    813 			nextpg = NULL;
    814 		}
    815 	}
    816 	return (retval);
    817 }
    818 
    819 /*
    820  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    821  *
    822  * => called with pageq's locked
    823  */
    824 
    825 void
    826 uvmpd_scan()
    827 {
    828 	int s, free, inactive_shortage, swap_shortage, pages_freed;
    829 	struct vm_page *p, *nextpg;
    830 	struct uvm_object *uobj;
    831 	boolean_t got_it;
    832 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    833 
    834 	uvmexp.pdrevs++;		/* counter */
    835 	uobj = NULL;
    836 
    837 	/*
    838 	 * get current "free" page count
    839 	 */
    840 	s = uvm_lock_fpageq();
    841 	free = uvmexp.free;
    842 	uvm_unlock_fpageq(s);
    843 
    844 #ifndef __SWAP_BROKEN
    845 	/*
    846 	 * swap out some processes if we are below our free target.
    847 	 * we need to unlock the page queues for this.
    848 	 */
    849 	if (free < uvmexp.freetarg) {
    850 		uvmexp.pdswout++;
    851 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout", free,
    852 		    uvmexp.freetarg, 0, 0);
    853 		uvm_unlock_pageq();
    854 		uvm_swapout_threads();
    855 		uvm_lock_pageq();
    856 
    857 	}
    858 #endif
    859 
    860 	/*
    861 	 * now we want to work on meeting our targets.   first we work on our
    862 	 * free target by converting inactive pages into free pages.  then
    863 	 * we work on meeting our inactive target by converting active pages
    864 	 * to inactive ones.
    865 	 */
    866 
    867 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    868 
    869 	/*
    870 	 * alternate starting queue between swap and object based on the
    871 	 * low bit of uvmexp.pdrevs (which we bump by one each call).
    872 	 */
    873 
    874 	got_it = FALSE;
    875 	pages_freed = uvmexp.pdfreed;
    876 	if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
    877 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
    878 	if (!got_it)
    879 		got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
    880 	if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
    881 		(void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
    882 	pages_freed = uvmexp.pdfreed - pages_freed;
    883 
    884 	/*
    885 	 * we have done the scan to get free pages.   now we work on meeting
    886 	 * our inactive target.
    887 	 */
    888 
    889 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
    890 
    891 	/*
    892 	 * detect if we're not going to be able to page anything out
    893 	 * until we free some swap resources from active pages.
    894 	 */
    895 
    896 	swap_shortage = 0;
    897 	if (uvmexp.free < uvmexp.freetarg &&
    898 	    uvmexp.swpginuse == uvmexp.swpages &&
    899 	    uvmexp.swpgonly < uvmexp.swpages &&
    900 	    pages_freed == 0) {
    901 		swap_shortage = uvmexp.freetarg - uvmexp.free;
    902 	}
    903 
    904 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
    905 		    inactive_shortage, swap_shortage,0,0);
    906 	for (p = TAILQ_FIRST(&uvm.page_active);
    907 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
    908 	     p = nextpg) {
    909 		nextpg = TAILQ_NEXT(p, pageq);
    910 		if (p->flags & PG_BUSY)
    911 			continue;	/* quick check before trying to lock */
    912 
    913 		/*
    914 		 * lock the page's owner.
    915 		 */
    916 		/* is page anon owned or ownerless? */
    917 		if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
    918 			KASSERT(p->uanon != NULL);
    919 			if (!simple_lock_try(&p->uanon->an_lock))
    920 				continue;
    921 
    922 			/* take over the page? */
    923 			if ((p->pqflags & PQ_ANON) == 0) {
    924 				KASSERT(p->loan_count > 0);
    925 				p->loan_count--;
    926 				p->pqflags |= PQ_ANON;
    927 			}
    928 		} else {
    929 			if (!simple_lock_try(&p->uobject->vmobjlock))
    930 				continue;
    931 		}
    932 
    933 		/*
    934 		 * skip this page if it's busy.
    935 		 */
    936 
    937 		if ((p->flags & PG_BUSY) != 0) {
    938 			if (p->pqflags & PQ_ANON)
    939 				simple_unlock(&p->uanon->an_lock);
    940 			else
    941 				simple_unlock(&p->uobject->vmobjlock);
    942 			continue;
    943 		}
    944 
    945 		/*
    946 		 * if there's a shortage of swap, free any swap allocated
    947 		 * to this page so that other pages can be paged out.
    948 		 */
    949 
    950 		if (swap_shortage > 0) {
    951 			if ((p->pqflags & PQ_ANON) && p->uanon->an_swslot) {
    952 				uvm_swap_free(p->uanon->an_swslot, 1);
    953 				p->uanon->an_swslot = 0;
    954 				p->flags &= ~PG_CLEAN;
    955 				swap_shortage--;
    956 			}
    957 			if (p->pqflags & PQ_AOBJ) {
    958 				int slot = uao_set_swslot(p->uobject,
    959 					p->offset >> PAGE_SHIFT, 0);
    960 				if (slot) {
    961 					uvm_swap_free(slot, 1);
    962 					p->flags &= ~PG_CLEAN;
    963 					swap_shortage--;
    964 				}
    965 			}
    966 		}
    967 
    968 		/*
    969 		 * If we're short on inactive pages, move this over
    970 		 * to the inactive list.  The second hand will sweep
    971 		 * it later, and if it has been referenced again, it
    972 		 * will be moved back to active.
    973 		 */
    974 
    975 		if (inactive_shortage > 0) {
    976 			pmap_clear_reference(p);
    977 			/* no need to check wire_count as pg is "active" */
    978 			uvm_pagedeactivate(p);
    979 			uvmexp.pddeact++;
    980 			inactive_shortage--;
    981 		}
    982 		if (p->pqflags & PQ_ANON)
    983 			simple_unlock(&p->uanon->an_lock);
    984 		else
    985 			simple_unlock(&p->uobject->vmobjlock);
    986 	}
    987 }
    988