uvm_pdaemon.c revision 1.42 1 /* $NetBSD: uvm_pdaemon.c,v 1.42 2001/11/10 07:37:01 lukem Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_pdaemon.c: the page daemon
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.42 2001/11/10 07:37:01 lukem Exp $");
75
76 #include "opt_uvmhist.h"
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/pool.h>
83 #include <sys/buf.h>
84 #include <sys/vnode.h>
85
86 #include <uvm/uvm.h>
87
88 /*
89 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedeamon will reactivate
90 * in a pass thru the inactive list when swap is full. the value should be
91 * "small"... if it's too large we'll cycle the active pages thru the inactive
92 * queue too quickly to for them to be referenced and avoid being freed.
93 */
94
95 #define UVMPD_NUMDIRTYREACTS 16
96
97
98 /*
99 * local prototypes
100 */
101
102 void uvmpd_scan __P((void));
103 boolean_t uvmpd_scan_inactive __P((struct pglist *));
104 void uvmpd_tune __P((void));
105
106 /*
107 * uvm_wait: wait (sleep) for the page daemon to free some pages
108 *
109 * => should be called with all locks released
110 * => should _not_ be called by the page daemon (to avoid deadlock)
111 */
112
113 void
114 uvm_wait(wmsg)
115 const char *wmsg;
116 {
117 int timo = 0;
118 int s = splbio();
119
120 /*
121 * check for page daemon going to sleep (waiting for itself)
122 */
123
124 if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
125 /*
126 * now we have a problem: the pagedaemon wants to go to
127 * sleep until it frees more memory. but how can it
128 * free more memory if it is asleep? that is a deadlock.
129 * we have two options:
130 * [1] panic now
131 * [2] put a timeout on the sleep, thus causing the
132 * pagedaemon to only pause (rather than sleep forever)
133 *
134 * note that option [2] will only help us if we get lucky
135 * and some other process on the system breaks the deadlock
136 * by exiting or freeing memory (thus allowing the pagedaemon
137 * to continue). for now we panic if DEBUG is defined,
138 * otherwise we hope for the best with option [2] (better
139 * yet, this should never happen in the first place!).
140 */
141
142 printf("pagedaemon: deadlock detected!\n");
143 timo = hz >> 3; /* set timeout */
144 #if defined(DEBUG)
145 /* DEBUG: panic so we can debug it */
146 panic("pagedaemon deadlock");
147 #endif
148 }
149
150 simple_lock(&uvm.pagedaemon_lock);
151 wakeup(&uvm.pagedaemon); /* wake the daemon! */
152 UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
153 timo);
154
155 splx(s);
156 }
157
158
159 /*
160 * uvmpd_tune: tune paging parameters
161 *
162 * => called when ever memory is added (or removed?) to the system
163 * => caller must call with page queues locked
164 */
165
166 void
167 uvmpd_tune(void)
168 {
169 UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
170
171 uvmexp.freemin = uvmexp.npages / 20;
172
173 /* between 16k and 256k */
174 /* XXX: what are these values good for? */
175 uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
176 uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
177
178 /* Make sure there's always a user page free. */
179 if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
180 uvmexp.freemin = uvmexp.reserve_kernel + 1;
181
182 uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
183 if (uvmexp.freetarg <= uvmexp.freemin)
184 uvmexp.freetarg = uvmexp.freemin + 1;
185
186 /* uvmexp.inactarg: computed in main daemon loop */
187
188 uvmexp.wiredmax = uvmexp.npages / 3;
189 UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
190 uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
191 }
192
193 /*
194 * uvm_pageout: the main loop for the pagedaemon
195 */
196
197 void
198 uvm_pageout(void *arg)
199 {
200 int npages = 0;
201 UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
202
203 UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
204
205 /*
206 * ensure correct priority and set paging parameters...
207 */
208
209 uvm.pagedaemon_proc = curproc;
210 uvm_lock_pageq();
211 npages = uvmexp.npages;
212 uvmpd_tune();
213 uvm_unlock_pageq();
214
215 /*
216 * main loop
217 */
218
219 for (;;) {
220 simple_lock(&uvm.pagedaemon_lock);
221
222 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
223 UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
224 &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
225 uvmexp.pdwoke++;
226 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
227
228 /*
229 * now lock page queues and recompute inactive count
230 */
231
232 uvm_lock_pageq();
233 if (npages != uvmexp.npages) { /* check for new pages? */
234 npages = uvmexp.npages;
235 uvmpd_tune();
236 }
237
238 uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
239 if (uvmexp.inactarg <= uvmexp.freetarg) {
240 uvmexp.inactarg = uvmexp.freetarg + 1;
241 }
242
243 UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
244 uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
245 uvmexp.inactarg);
246
247 /*
248 * scan if needed
249 */
250
251 if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
252 uvmexp.inactive < uvmexp.inactarg) {
253 uvmpd_scan();
254 }
255
256 /*
257 * if there's any free memory to be had,
258 * wake up any waiters.
259 */
260
261 if (uvmexp.free > uvmexp.reserve_kernel ||
262 uvmexp.paging == 0) {
263 wakeup(&uvmexp.free);
264 }
265
266 /*
267 * scan done. unlock page queues (the only lock we are holding)
268 */
269
270 uvm_unlock_pageq();
271
272 /*
273 * drain pool resources now that we're not holding any locks
274 */
275
276 pool_drain(0);
277 }
278 /*NOTREACHED*/
279 }
280
281
282 /*
283 * uvm_aiodone_daemon: main loop for the aiodone daemon.
284 */
285
286 void
287 uvm_aiodone_daemon(void *arg)
288 {
289 int s, free;
290 struct buf *bp, *nbp;
291 UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
292
293 for (;;) {
294
295 /*
296 * carefully attempt to go to sleep (without losing "wakeups"!).
297 * we need splbio because we want to make sure the aio_done list
298 * is totally empty before we go to sleep.
299 */
300
301 s = splbio();
302 simple_lock(&uvm.aiodoned_lock);
303 if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
304 UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
305 UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
306 &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
307 UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
308
309 /* relock aiodoned_lock, still at splbio */
310 simple_lock(&uvm.aiodoned_lock);
311 }
312
313 /*
314 * check for done aio structures
315 */
316
317 bp = TAILQ_FIRST(&uvm.aio_done);
318 if (bp) {
319 TAILQ_INIT(&uvm.aio_done);
320 }
321
322 simple_unlock(&uvm.aiodoned_lock);
323 splx(s);
324
325 /*
326 * process each i/o that's done.
327 */
328
329 free = uvmexp.free;
330 while (bp != NULL) {
331 nbp = TAILQ_NEXT(bp, b_freelist);
332 (*bp->b_iodone)(bp);
333 bp = nbp;
334 }
335 if (free <= uvmexp.reserve_kernel) {
336 s = uvm_lock_fpageq();
337 wakeup(&uvm.pagedaemon);
338 uvm_unlock_fpageq(s);
339 } else {
340 simple_lock(&uvm.pagedaemon_lock);
341 wakeup(&uvmexp.free);
342 simple_unlock(&uvm.pagedaemon_lock);
343 }
344 }
345 }
346
347 /*
348 * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
349 *
350 * => called with page queues locked
351 * => we work on meeting our free target by converting inactive pages
352 * into free pages.
353 * => we handle the building of swap-backed clusters
354 * => we return TRUE if we are exiting because we met our target
355 */
356
357 boolean_t
358 uvmpd_scan_inactive(pglst)
359 struct pglist *pglst;
360 {
361 int error;
362 struct vm_page *p, *nextpg;
363 struct uvm_object *uobj;
364 struct vm_anon *anon;
365 struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT];
366 struct simplelock *slock;
367 int swnpages, swcpages;
368 int swslot;
369 int dirtyreacts, t, result;
370 UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
371
372 /*
373 * swslot is non-zero if we are building a swap cluster. we want
374 * to stay in the loop while we have a page to scan or we have
375 * a swap-cluster to build.
376 */
377
378 swslot = 0;
379 swnpages = swcpages = 0;
380 dirtyreacts = 0;
381 for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
382 uobj = NULL;
383 anon = NULL;
384 if (p) {
385
386 /*
387 * see if we've met the free target.
388 */
389
390 if (uvmexp.free + uvmexp.paging >=
391 uvmexp.freetarg << 2 ||
392 dirtyreacts == UVMPD_NUMDIRTYREACTS) {
393 UVMHIST_LOG(pdhist," met free target: "
394 "exit loop", 0, 0, 0, 0);
395
396 if (swslot == 0) {
397 /* exit now if no swap-i/o pending */
398 break;
399 }
400
401 /* set p to null to signal final swap i/o */
402 p = NULL;
403 nextpg = NULL;
404 }
405 }
406 if (p) { /* if (we have a new page to consider) */
407
408 /*
409 * we are below target and have a new page to consider.
410 */
411
412 uvmexp.pdscans++;
413 nextpg = TAILQ_NEXT(p, pageq);
414
415 /*
416 * move referenced pages back to active queue and
417 * skip to next page.
418 */
419
420 if (pmap_clear_reference(p)) {
421 uvm_pageactivate(p);
422 uvmexp.pdreact++;
423 continue;
424 }
425 anon = p->uanon;
426 uobj = p->uobject;
427
428 /*
429 * enforce the minimum thresholds on different
430 * types of memory usage. if reusing the current
431 * page would reduce that type of usage below its
432 * minimum, reactivate the page instead and move
433 * on to the next page.
434 */
435
436 t = uvmexp.active + uvmexp.inactive + uvmexp.free;
437 if (anon &&
438 uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8) {
439 uvm_pageactivate(p);
440 uvmexp.pdreanon++;
441 continue;
442 }
443 if (uobj && UVM_OBJ_IS_VTEXT(uobj) &&
444 uvmexp.vtextpages <= (t * uvmexp.vtextmin) >> 8) {
445 uvm_pageactivate(p);
446 uvmexp.pdrevtext++;
447 continue;
448 }
449 if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
450 !UVM_OBJ_IS_VTEXT(uobj) &&
451 uvmexp.vnodepages <= (t * uvmexp.vnodemin) >> 8) {
452 uvm_pageactivate(p);
453 uvmexp.pdrevnode++;
454 continue;
455 }
456
457 /*
458 * first we attempt to lock the object that this page
459 * belongs to. if our attempt fails we skip on to
460 * the next page (no harm done). it is important to
461 * "try" locking the object as we are locking in the
462 * wrong order (pageq -> object) and we don't want to
463 * deadlock.
464 *
465 * the only time we expect to see an ownerless page
466 * (i.e. a page with no uobject and !PQ_ANON) is if an
467 * anon has loaned a page from a uvm_object and the
468 * uvm_object has dropped the ownership. in that
469 * case, the anon can "take over" the loaned page
470 * and make it its own.
471 */
472
473 /* is page part of an anon or ownerless ? */
474 if ((p->pqflags & PQ_ANON) || uobj == NULL) {
475 KASSERT(anon != NULL);
476 slock = &anon->an_lock;
477 if (!simple_lock_try(slock)) {
478 /* lock failed, skip this page */
479 continue;
480 }
481
482 /*
483 * if the page is ownerless, claim it in the
484 * name of "anon"!
485 */
486
487 if ((p->pqflags & PQ_ANON) == 0) {
488 KASSERT(p->loan_count > 0);
489 p->loan_count--;
490 p->pqflags |= PQ_ANON;
491 /* anon now owns it */
492 }
493 if (p->flags & PG_BUSY) {
494 simple_unlock(slock);
495 uvmexp.pdbusy++;
496 continue;
497 }
498 uvmexp.pdanscan++;
499 } else {
500 KASSERT(uobj != NULL);
501 slock = &uobj->vmobjlock;
502 if (!simple_lock_try(slock)) {
503 continue;
504 }
505 if (p->flags & PG_BUSY) {
506 simple_unlock(slock);
507 uvmexp.pdbusy++;
508 continue;
509 }
510 uvmexp.pdobscan++;
511 }
512
513
514 /*
515 * we now have the object and the page queues locked.
516 * if the page is not swap-backed, call the object's
517 * pager to flush and free the page.
518 */
519
520 if ((p->pqflags & PQ_SWAPBACKED) == 0) {
521 uvm_unlock_pageq();
522 error = (uobj->pgops->pgo_put)(uobj, p->offset,
523 p->offset + PAGE_SIZE,
524 PGO_CLEANIT|PGO_FREE);
525 uvm_lock_pageq();
526 if (nextpg &&
527 (nextpg->flags & PQ_INACTIVE) == 0) {
528 nextpg = TAILQ_FIRST(pglst);
529 }
530 continue;
531 }
532
533 /*
534 * the page is swap-backed. remove all the permissions
535 * from the page so we can sync the modified info
536 * without any race conditions. if the page is clean
537 * we can free it now and continue.
538 */
539
540 pmap_page_protect(p, VM_PROT_NONE);
541 if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
542 p->flags &= ~(PG_CLEAN);
543 }
544 if (p->flags & PG_CLEAN) {
545 uvm_pagefree(p);
546 uvmexp.pdfreed++;
547
548 /*
549 * for anons, we need to remove the page
550 * from the anon ourselves. for aobjs,
551 * pagefree did that for us.
552 */
553
554 if (anon) {
555 KASSERT(anon->an_swslot != 0);
556 anon->u.an_page = NULL;
557 }
558 simple_unlock(slock);
559
560 /* this page is now only in swap. */
561 simple_lock(&uvm.swap_data_lock);
562 KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
563 uvmexp.swpgonly++;
564 simple_unlock(&uvm.swap_data_lock);
565 continue;
566 }
567
568 /*
569 * this page is dirty, skip it if we'll have met our
570 * free target when all the current pageouts complete.
571 */
572
573 if (uvmexp.free + uvmexp.paging >
574 uvmexp.freetarg << 2) {
575 simple_unlock(slock);
576 continue;
577 }
578
579 /*
580 * free any swap space allocated to the page since
581 * we'll have to write it again with its new data.
582 */
583
584 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
585 uvm_swap_free(anon->an_swslot, 1);
586 anon->an_swslot = 0;
587 } else if (p->pqflags & PQ_AOBJ) {
588 uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
589 }
590
591 /*
592 * if all pages in swap are only in swap,
593 * the swap space is full and we can't page out
594 * any more swap-backed pages. reactivate this page
595 * so that we eventually cycle all pages through
596 * the inactive queue.
597 */
598
599 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
600 if (uvmexp.swpgonly == uvmexp.swpages) {
601 dirtyreacts++;
602 uvm_pageactivate(p);
603 simple_unlock(slock);
604 continue;
605 }
606
607 /*
608 * start new swap pageout cluster (if necessary).
609 */
610
611 if (swslot == 0) {
612 swnpages = MAXBSIZE >> PAGE_SHIFT;
613 swslot = uvm_swap_alloc(&swnpages, TRUE);
614 if (swslot == 0) {
615 simple_unlock(slock);
616 continue;
617 }
618 swcpages = 0;
619 }
620
621 /*
622 * at this point, we're definitely going reuse this
623 * page. mark the page busy and delayed-free.
624 * we should remove the page from the page queues
625 * so we don't ever look at it again.
626 * adjust counters and such.
627 */
628
629 p->flags |= PG_BUSY;
630 UVM_PAGE_OWN(p, "scan_inactive");
631
632 p->flags |= PG_PAGEOUT;
633 uvmexp.paging++;
634 uvm_pagedequeue(p);
635
636 uvmexp.pgswapout++;
637
638 /*
639 * add the new page to the cluster.
640 */
641
642 if (anon) {
643 anon->an_swslot = swslot + swcpages;
644 simple_unlock(slock);
645 } else {
646 result = uao_set_swslot(uobj,
647 p->offset >> PAGE_SHIFT, swslot + swcpages);
648 if (result == -1) {
649 p->flags &= ~(PG_BUSY|PG_PAGEOUT);
650 UVM_PAGE_OWN(p, NULL);
651 uvmexp.paging--;
652 uvm_pageactivate(p);
653 simple_unlock(slock);
654 continue;
655 }
656 simple_unlock(slock);
657 }
658 swpps[swcpages] = p;
659 swcpages++;
660
661 /*
662 * if the cluster isn't full, look for more pages
663 * before starting the i/o.
664 */
665
666 if (swcpages < swnpages) {
667 continue;
668 }
669 }
670
671 /*
672 * if this is the final pageout we could have a few
673 * unused swap blocks. if so, free them now.
674 */
675
676 if (swcpages < swnpages) {
677 uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
678 }
679
680 /*
681 * now start the pageout.
682 */
683
684 uvm_unlock_pageq();
685 uvmexp.pdpageouts++;
686 error = uvm_swap_put(swslot, swpps, swcpages, 0);
687 KASSERT(error == 0);
688 uvm_lock_pageq();
689
690 /*
691 * zero swslot to indicate that we are
692 * no longer building a swap-backed cluster.
693 */
694
695 swslot = 0;
696
697 /*
698 * the pageout is in progress. bump counters and set up
699 * for the next loop.
700 */
701
702 uvmexp.pdpending++;
703 if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
704 nextpg = TAILQ_FIRST(pglst);
705 }
706 }
707 return (error);
708 }
709
710 /*
711 * uvmpd_scan: scan the page queues and attempt to meet our targets.
712 *
713 * => called with pageq's locked
714 */
715
716 void
717 uvmpd_scan(void)
718 {
719 int inactive_shortage, swap_shortage, pages_freed;
720 struct vm_page *p, *nextpg;
721 struct uvm_object *uobj;
722 struct vm_anon *anon;
723 UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
724
725 uvmexp.pdrevs++;
726 uobj = NULL;
727 anon = NULL;
728
729 #ifndef __SWAP_BROKEN
730
731 /*
732 * swap out some processes if we are below our free target.
733 * we need to unlock the page queues for this.
734 */
735
736 if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
737 uvmexp.pdswout++;
738 UVMHIST_LOG(pdhist," free %d < target %d: swapout",
739 uvmexp.free, uvmexp.freetarg, 0, 0);
740 uvm_unlock_pageq();
741 uvm_swapout_threads();
742 uvm_lock_pageq();
743
744 }
745 #endif
746
747 /*
748 * now we want to work on meeting our targets. first we work on our
749 * free target by converting inactive pages into free pages. then
750 * we work on meeting our inactive target by converting active pages
751 * to inactive ones.
752 */
753
754 UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
755
756 /*
757 * alternate starting queue between swap and object based on the
758 * low bit of uvmexp.pdrevs (which we bump by one each call).
759 */
760
761 pages_freed = uvmexp.pdfreed;
762 (void) uvmpd_scan_inactive(&uvm.page_inactive);
763 pages_freed = uvmexp.pdfreed - pages_freed;
764
765 /*
766 * we have done the scan to get free pages. now we work on meeting
767 * our inactive target.
768 */
769
770 inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
771
772 /*
773 * detect if we're not going to be able to page anything out
774 * until we free some swap resources from active pages.
775 */
776
777 swap_shortage = 0;
778 if (uvmexp.free < uvmexp.freetarg &&
779 uvmexp.swpginuse == uvmexp.swpages &&
780 uvmexp.swpgonly < uvmexp.swpages &&
781 pages_freed == 0) {
782 swap_shortage = uvmexp.freetarg - uvmexp.free;
783 }
784
785 UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
786 inactive_shortage, swap_shortage,0,0);
787 for (p = TAILQ_FIRST(&uvm.page_active);
788 p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
789 p = nextpg) {
790 nextpg = TAILQ_NEXT(p, pageq);
791 if (p->flags & PG_BUSY) {
792 continue;
793 }
794
795 /*
796 * lock the page's owner.
797 */
798 /* is page anon owned or ownerless? */
799 if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
800 anon = p->uanon;
801 KASSERT(anon != NULL);
802 if (!simple_lock_try(&anon->an_lock)) {
803 continue;
804 }
805
806 /* take over the page? */
807 if ((p->pqflags & PQ_ANON) == 0) {
808 KASSERT(p->loan_count > 0);
809 p->loan_count--;
810 p->pqflags |= PQ_ANON;
811 }
812 } else {
813 uobj = p->uobject;
814 if (!simple_lock_try(&uobj->vmobjlock)) {
815 continue;
816 }
817 }
818
819 /*
820 * skip this page if it's busy.
821 */
822
823 if ((p->flags & PG_BUSY) != 0) {
824 if (p->pqflags & PQ_ANON)
825 simple_unlock(&anon->an_lock);
826 else
827 simple_unlock(&uobj->vmobjlock);
828 continue;
829 }
830
831 /*
832 * if there's a shortage of swap, free any swap allocated
833 * to this page so that other pages can be paged out.
834 */
835
836 if (swap_shortage > 0) {
837 if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
838 uvm_swap_free(anon->an_swslot, 1);
839 anon->an_swslot = 0;
840 p->flags &= ~PG_CLEAN;
841 swap_shortage--;
842 } else if (p->pqflags & PQ_AOBJ) {
843 int slot = uao_set_swslot(uobj,
844 p->offset >> PAGE_SHIFT, 0);
845 if (slot) {
846 uvm_swap_free(slot, 1);
847 p->flags &= ~PG_CLEAN;
848 swap_shortage--;
849 }
850 }
851 }
852
853 /*
854 * if there's a shortage of inactive pages, deactivate.
855 */
856
857 if (inactive_shortage > 0) {
858 /* no need to check wire_count as pg is "active" */
859 uvm_pagedeactivate(p);
860 uvmexp.pddeact++;
861 inactive_shortage--;
862 }
863
864 /*
865 * we're done with this page.
866 */
867
868 if (p->pqflags & PQ_ANON)
869 simple_unlock(&anon->an_lock);
870 else
871 simple_unlock(&uobj->vmobjlock);
872 }
873 }
874